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ABSTRACT

A germ of normal complex analytical surface is called a Hirzebruch-Jung singu-
larity if it is analytically isomorphic to the germ at the 0-dimensional orbit of
an affine toric surface. Two such germs are known to be isomorphic if and only
if the toric surfaces corresponding to them are equivariantly isomorphic. We ex-
tend this result to higher-dimensional Hirzebruch-Jung singularities, which we
define to be the germs analytically isomorphic to the germ at the 0-dimensional
orbit of an affine toric variety determined by a lattice and a simplicial cone of
maximal dimension. We deduce a normalization algorithm for quasi-ordinary
hypersurface singularities.

Key words: Hirzebruch-Jung singularities, quasi-ordinary singularities, toric singulari-
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Introduction

In this paper we generalize to arbitrary dimensions the notion of Hirzebruch-Jung
singularities and we show how to classify them up to analytical isomorphism by
combinatorial data. Then we give normal forms for these data and we compute these
normal forms when the germ is the normalization of an irreducible quasi-ordinary
hypersurface singularity.
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A germ of reduced equidimensional complex analytical space is called quasi-ordi-
nary if there exists a finite morphism from it to a smooth space of the same dimension,
such that the discriminant locus of the morphism is contained in a divisor with normal
crossings.

If the term “quasi-ordinary” seems to appear first in the ’60s, in works of Zariski
and Lipman, the study of quasi-ordinary germs goes back at least to the work [16] of
Jung on the problem of local uniformization of surfaces. For details on it see the first
chapter of [29]. The idea of Jung was to study an arbitrary germ of surface embedded
in C3 by considering a finite linear projection and an embedded desingularization
of the discriminant curve. By changing the base of the initial projection using this
desingularization morphism, he obtained a surface which is quasi-ordinary in the
neighborhood of any of its points.

This method was used by Walker [28] in order to prove the existence of a resolu-
tion of the singularities of a complex algebraic surface. This work is considered by
Zariski [29] to be the first rigorous proof of this fact. Hirzebruch [15] uses again Jung’s
method in order to prove the existence of a desingularization for complex analytical
surfaces which are locally embeddable in C3. This last restriction was eliminated by
Laufer [17].

An important step in Hirzebruch’s method was to consider the normalizations of
the quasi-ordinary germs he arrived at by Jung’s method. He gave explicit construc-
tions of their minimal resolutions by patching affine planes. Later on, those germs
were called “Hirzebruch-Jung singularities”. After Artin’s work on rational surface
singularities in the ’60s, they were seen to be precisely the rational surface singular-
ities which have as dual resolution graph a segment. This is the definition used in
[3]. Hirzebruch-Jung singularities are usually classified up to analytical isomorphism
by an ordered pair (n, q) ∈ N∗ × N of coprime numbers with q < n. In order to
get this classification, Hirzebruch studied the exceptional divisor of the minimal res-
olution morphism of the singularity and introduced the numbers n, q starting from
the self-intersection numbers of its components (see [3] and section 6). It is also
known that this classification is topological up to orientation. For historical details,
see Brieskorn [5].

After the introduction of toric geometry in the ’70s, Hirzebruch-Jung surface sin-
gularities were seen to be precisely the germs analytically isomorphic to the germs of
toric surfaces taken at 0-dimensional orbits (see [10, 20]). It is this view-point which
we generalize here.

If W is a lattice and σ is a strictly convex finite rational polyhedral cone in
WR := W ⊗ R, we denote by M the dual lattice of W and by σ̌ ⊂ MR the dual
cone of σ. We denote by Z(W, σ) := SpecC[σ̌ ∩M] the affine normal toric variety
determined by the pair (W, σ). When σ and WR have the same dimension d, we
say that (W, σ) is a maximal pair of dimension d. When σ is a simplicial cone, we
say that (W, σ) is a simplicial pair. We say that the simplicial cone σ is regular with
respect to W if it is generated by a subset of a basis of W. In this case we say also
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2005, 18; Núm. 1, 209–232

210



Patrick Popescu-Pampu Higher dimensional Hirzebruch-Jung singularities

that (W, σ) is a regular pair. Two pairs (W1, σ1) and (W2, σ2) are called isomorphic
if there exists an isomorphism of lattices φ : W1 →W2 sending σ1 onto σ2.

By analogy with the bidimensional case, one can define:

A germ of irreducible normal complex analytical space of arbitrary di-
mension is called a Hirzebruch-Jung singularity if it is analytically isomor-
phic with the normalization of an n-dimensional irreducible quasi-ordinary
germ.

In [21] (see also [23] and section 2) we showed that such a normalization is in
fact analytically isomorphic to the germ at the 0-dimensional orbit of an affine toric
variety defined by a maximal simplicial pair. Conversely (see Proposition 2.5), the
germ at the 0-dimensional orbit of a toric variety defined by a maximal simplicial
pair is quasi-ordinary. This shows that, alternatively, one can define Hirzebruch-Jung
singularities by combinatorial data (see section 2):

A germ of irreducible normal complex analytical space of arbitrary
dimension is called a Hirzebruch-Jung singularity if it is analytically iso-
morphic with the germ at the 0-dimensional orbit of an affine toric variety
defined by a maximal simplicial pair.

It is clear that isomorphic maximal simplicial pairs give rise to analytically iso-
morphic Hirzebruch-Jung singularities. Our main theorem (see Theorem 3.4) shows
the converse statement:

The analytical type of a Hirzebruch-Jung singularity (Z, 0) '
(Z(W, σ), 0) determines the pair (W, σ) up to isomorphism.

In order to prove this result, we make the Riemann extension of the universal
covering map of the smooth part of (Z, 0) over all of (Z, 0). We call this map
µ : (Z̃, 0) → (Z, 0) the orbifold map of Z (see section 3). Then we look at the
action ρ(Z) of the local fundamental group of (Z, 0) on the Zariski cotangent space
of (Z̃, 0) and we construct from it a pair (W (ρ(Z)), σ0) determined by the analytical
type of Z. Theorem 3.4 says that the pairs (W, σ) and (W (ρ(Z)), σ0) are isomorphic.

We used for the first time orbifold maps in [23] in order to get analytical invariants
of quasi-ordinary singularities. When we began to study the problems solved in [23]
and in the present paper, we tried to use some desingularization morphism of (Z, 0).
We could not manage their high non-canonicity, and so the idea to use instead the
orbifold map came as a relief.

We see that, in order to classify up to analytical isomorphism n-dimensional
Hirzebruch-Jung singularities, one needs only to classify up to isomorphism the pairs
(W, σ), which is a combinatorial problem. We give normal forms for such pairs once
an ordering of the edges of σ is chosen (Proposition 3.7). We define the type of a
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Hirzebruch-Jung singularity (Z, 0) to be one of the normal forms associated to the
pair (W (ρ(Z)), σ0) (Definition 3.8).

In section 4 we give an algorithm of normalization of an irreducible quasi-ordinary
hypersurface singularity (Proposition 4.5). More precisely, we compute the type of the
normalization, the ordering being the one determined by the choice of the ambient
coordinates of the starting quasi-ordinary singularity. The algorithm starts from
the characteristic exponents and constitutes a generalization of the normalization
algorithm for surfaces that we published in [21,22] (see Proposition 6.5). Incidentally,
if (W, σ) is a maximal regular pair, we compute the normal forms for the pairs (W ′, σ),
where W ′ is a sublattice of finite index of W defined by a congruence (Lemma 4.3).

Section 5 contains a tridimensional example of application of the algorithm. In
section 6 we restrict our attention to the bidimensional case and we compare our
definition of the type with the classical one. We conclude by stating in section 7
some questions about the topological types of Hirzebruch-Jung singularities and of
the germs at the 0-dimensional orbits of general affine toric varieties.

Since the first version of this work (see [24]), another proof of the analytical
invariance of the pair (W, σ) was obtained by González Pérez and González-Sprinberg
in [13]. Their result is more general, as it applies in particular to any maximal pair
(W, σ), not necessarily a simplicial one. They use as an essential tool results of
Gubeladze [14], which show that two affine toric varieties are isomorphic if and only
if the defining pairs are isomorphic. Their method gives no canonical way to associate
to a germ (Z, 0) ' (Z(W, σ)) a pair (W ′, σ′) ' (W, σ). It would be interesting to
find one.

1. Generalities on quasi-ordinary germs

For any point P on a complex analytical space V, we denote by OV,P the local algebra
of V at P . In the sequel we will denote with the same letter a germ and a sufficiently
small representative of it. It will be deduced from the context if one deals with one
or the other notion. We denote by Sing(V) the singular locus of V.

Let d ≥ 1 be an integer. Define the algebra of fractional series

C̃{X} := lim−→
N≥0

C{X
1
N
1 , . . . , X

1
N

d },

whereX := (X1, . . . , Xd). Ifm = (m1, . . . ,md) ∈ Qd
+, we denoteXm := Xm1

1 · · ·Xmd
d .

If η ∈ C̃{X} can be written η = Xmu(X), withm ∈ Qd
+ and u ∈ C̃{X}, u(0, . . . , 0) 6=

0, we say that η has a dominating exponent.

Definition 1.1. Let (S, 0) be a germ of reduced equidimensional complex space. The
germ (S, 0) is called quasi-ordinary if there exists a finite morphism ψ from (S, 0) to
a smooth space of the same dimension, whose discriminant locus is contained in a
hypersurface with normal crossings. Such a morphism ψ is also called quasi-ordinary.
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For instance, all reduced germs of curves are quasi-ordinary with respect to any
finite morphism whose target is a smooth curve.

In the special case in which S is a d-dimensional hypersurface germ, one can find
local coordinates X on the target space of ψ such that the discriminant locus of ψ
is contained in {X1 · · ·Xd = 0} and an element Y in the maximal ideal of OS,0 such
that (ψ, Y ) embeds (S, 0) in Cd ×C. So ψ appears as a map

ψ : S → Cd,

which is unramified over (C∗)d. By the Weierstrass preparation Theorem, the image
of S by (ψ, Y ), identified in the sequel with S, is defined by a unitary polynomial
f ∈ C{X}[Y ]. The discriminant locus of ψ is defined by the discriminant ∆Y (f) of f ,
which has therefore a dominating exponent.

Definition 1.2. Let f ∈ C{X}[Y ] be unitary. If ∆Y (f) has a dominating exponent,
we say that f is quasi-ordinary.

The following Theorem (see [1, 19]), generalizes the Theorem of Newton-Puiseux
for plane curves:

Theorem 1.3 (Jung-Abhyankar). If f ∈ C{X}[Y ] is quasi-ordinary, then the set

R(f) of roots of f embeds canonically in the algebra C̃{X}.

In the sequel, we consider R(f) as a subset of C̃{X}. Moreover, we suppose that
f is irreducible. Then all the differences of roots of f have dominating exponents,
which are totally ordered for the componentwise order (see [18, 19]). If G is their
number, denote them by A1 < · · · < AG, Ai = (A1

i , . . . , A
d
i ), ∀i ∈ {1, . . . , G}.

Definition 1.4. We call the vectors A1, . . . , AG ∈ Qd
+ the characteristic exponents

and the monomials XA1 , . . . , XAG the characteristic monomials of f or of ψ.

Following Proposition 4.5, we explain a way to normalize the characteristic expo-
nents.

2. Generalized Hirzebruch-Jung singularities

In this section we recall some results about the normalization of quasi-ordinary sin-
gularities and we define Hirzebruch-Jung singularities in any dimension.

For details about toric geometry, see Oda [20] and Fulton [10].
We denote by W0 = Zd the canonical d-dimensional lattice, by M0 = Zd its

canonical dual and by σ0 the canonical regular cone of maximal dimension in W0.
Let (S, 0) be an irreducible d-dimensional quasi-ordinary germ and let

ψ : (S, 0) → (Cd, 0) be a finite morphism unramified over (C∗)d. We look at Cd

as the affine toric variety Z(W0, σ0). Then the fundamental group π1((C∗)d) can be
canonically identified with W0 (see [10]).
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Define
W (ψ) := ψ∗π1(ψ−1((C∗)d)).

It is a subgroup of π1((C∗)d) = W0. Moreover, W (ψ) is of finite index in W0, as ψ is a
finite morphism. Consider the affine toric variety Z(W (ψ), σ0) obtained by changing
the lattice from W0 to W (ψ). Denote by

γW0:W (ψ) : Z(W (ψ), σ0) → Z(W0, σ0) = Cd

the canonical morphism associated to this change of lattice. We proved topologically
the following Theorem in [21, 23]. A more algebraic proof was given later by Aroca
and Snoussi in [2].

Theorem 2.1. One has the following commutative diagram, in which ν is a normal-
ization morphism:

(Z(W (ψ), σ0), 0)

γW0:W (ψ) ''OOOOOOOOOOO
ν // (S, 0)

ψzzvvv
vv

vv
vv

(Cd, 0)

In the special case in which S is a hypersurface germ, we can express the lattice
W (ψ) using the characteristic exponents of ψ. In order to do this let us introduce, fol-
lowing Lipman [19], the abelian groups M0 := Zd,Mi := Mi−1 +ZAi, ∀i ∈ {1, . . . , G}
and the successive indices Ni := (Mi : Mi−1), ∀i ∈ {1, . . . , G}. Following González
Pérez [12] we consider also the dual lattices Wk of the lattices Mk:

Wk := Hom(Mk,Z), ∀ k ∈ {1, . . . , G}.

One has the inclusions: M0 ( M1 ( · · · ( MG, W0 ) W1 ) · · · ) WG. The following
Proposition was proved in [21,23]:

Proposition 2.2. Let f ∈ C{X}[Y ] be an irreducible quasi-ordinary polynomial and
ψ be the associated quasi-ordinary projection. Then W (ψ) = WG.

Using this identification, Theorem 2.1 becomes:

Corollary 2.3 (González Pérez). If f is an irreducible quasi-ordinary polynomial
defining the germ S, then one has the following commutative diagram, in which ν is
a normalization morphism:

(Z(WG, σ0), 0)

γW0:WG ''NNNNNNNNNNN
ν // (S, 0)

ψzzvvv
vv

vv
vv

(Cd, 0)
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This theorem was first proved algebraically by González Pérez in [12], without
passing through Proposition 2.2. It inspired our Theorem 2.1.

Theorem 2.1 and the fact that in dimension 2 Hirzebruch-Jung singularities are
precisely the normalizations of quasi-ordinary ones, motivates us to introduce the
following definition in arbitrary dimension:

Definition 2.4. The irreducible germ (Z, 0) of complex analytical space is called
a Hirzebruch-Jung singularity if it is analytically isomorphic with the germ at the
0-dimensional orbit of an affine toric variety defined by a maximal simplicial pair.

One can give another definition of Hirzebruch-Jung singularities:

Proposition 2.5. Hirzebruch-Jung singularities are precisely the quasi-ordinary sin-
gularities which are normal.

Proof. By Theorem 2.1, each normal quasi-ordinary singularity is a Hirzebruch-Jung
one.

Conversely, let (Z, 0) be a Hirzebruch-Jung singularity, according to Definition 2.4.
Then (Z, 0) ' (Z(W, σ), 0), where (W, σ) is a maximal simplicial pair. Let v1, . . . , vd
be the primitive elements of W situated on the edges of σ and let w1, . . . , wd be
a basis of the lattice W. The matrix transforming (v1, . . . , vd) in (w1, . . . , wd) has
rational coefficients. So, there is a number q ∈ N∗ such that the matrix transforming
( 1
q v1, . . . ,

1
q vd) into (w1, . . . , wd) has integral coefficients. If W0 :=

∑d
i=1 Z 1

q vi ⊂ WQ,
then W is a sublattice of finite index of W0 and (W0, σ) is a maximal regular pair.
Denote also by 0 the 0-dimensional orbit of Z(W0, σ). Consider the toric morphism
obtained by changing the lattice:

η : Z(W, σ) → Z(W0, σ) ' Cd.

It is finite and unramified over the torus Z(W0, {0}). So, its germ

η : (Z(W, σ), 0) → (Z(W0, σ), 0)

is quasi-ordinary. But Z(W, σ) is normal, and the Proposition is proved.

3. The analytical classification of Hirzebruch-Jung singularities

In this section we prove our main result (Theorem 3.4) which classifies Hirzebruch-
Jung singularities up to analytical isomorphism by combinatorial data. It states that
a maximal simplicial pair (W, σ) can be reconstructed from the analytical type of
the germ (Z(W, σ), 0). Our essential tool is the orbifold map µ associated to Z
(Definition 3.3). Then we give a normal form for maximal simplicial pairs (W, σ),
once an ordering of the edges of σ was fixed (Proposition 3.7). This allows us to define
the type of a Hirzebruch-Jung singularity (Definition 3.8).
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Let V be a complex finite dimensional vector space. An element of GL(V ) is
called a complex reflection if its fixed-point set is a hyperplane of V . A finite group
Γ ⊂ GL(V ) is called small (see Prill [25]) if it contains no complex reflections.

Let us recall a generalization of the Riemann existence theorem (see [4]):

Theorem 3.1 (Grauert-Remmert). Let S be a connected normal complex space
and T ⊂ S a proper closed analytical subset. Let Y := S − T , let X be a normal
complex space and φ : X → Y be a ramified covering. Then φ extends to a ramified
covering φ̃ : X̃ → S with X̃ normal if and only if the closure B in S of the branch
locus B ⊂ Y of φ is an analytical subset in S. In this case, the extension is unique.

In the case it exists, we say that φ̃ is obtained by Riemann extension of φ.
Let (W, σ) be a maximal simplicial pair of dimension d ≥ 2. Denote by vi,

i ∈ {1, . . . , d} the primitive elements of W situated on the edges of σ. Denote by W̃
the sublattice of W generated by v1, . . . , vd. Then (W̃, σ) is a maximal regular pair.
Consider the toric morphism

µ : Z(W̃, σ) → Z(W, σ),

obtained by keeping the same cone σ and by replacing the latticeW by W̃. In what fol-
lows, we will denote by (Z, 0) and (Z̃, 0) the complex analytic germs (Z(W, σ), 0) and
(Z(W̃, σ), 0), or sufficiently small representatives of them. Notice that 0 = µ−1(0).

Proposition 3.2. The map µ is obtained by Riemann extension of the universal
covering map of the smooth part of Z(W, σ). In particular, the restriction of µ over
the germ (Z, 0) depends only on the analytical structure of (Z, 0).

Proof. The proof of this Proposition is also contained in the section 6 of [23].
By general results of toric geometry (see [20, Corollary 1.16]), µ is the quotient

map of Z(W̃, σ) by the natural action of the finite group W/W̃. Moreover, in toric
coordinates, this action is linear, faithful, and does not contain complex reflections.
So, as a linear group W/W̃ is small (see the Remark which follows Theorem 3.4).

This shows that the locus Fix(µ) of the fixed points of the elements of W/W̃
distinct from the identity has codimension at least 2 in Z(W̃, σ). Moreover,

µ−1(Sing(Z(W, σ))) ⊂ Fix(µ).

As Z(W̃, σ) is smooth, the complement Z(W̃, σ) − µ−1(Sing(Z(W, σ))) is simply
connected, and so the restriction of µ over the smooth part of Z(W, σ) is a universal
covering map. The uniqueness in Theorem 3.1 implies then the Proposition.

Following a terminology used in [6], we define:

Definition 3.3. The morphism µ obtained by Riemann extension of the univer-
sal covering map of the smooth part of (Z, 0) is called the orbifold map associated
to (Z, 0).
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2005, 18; Núm. 1, 209–232

216



Patrick Popescu-Pampu Higher dimensional Hirzebruch-Jung singularities

Denote by Γ(Z) the group of covering transformations of µ (in the terminology
of [8]), formed by those analytical automorphisms φ : (Z̃, 0) → (Z̃, 0) which verify
µ = µ ◦ φ. Consider its action

Γ(Z)
ρ(Z)−→ GL(m̃/m̃2) (1)

on the Zariski cotangent space of Z̃ at 0. Here m̃ denotes the maximal ideal of Z̃ at 0.
Being abelian, the group Γ(Z) is canonically isomorphic with the local fundamental
group of (Z, 0). As an abstract representation, ρ(Z) is clearly determined by the
analytical type of the germ (Z, 0). The proof of Proposition 3.2 shows that the
map (1) is a faithful C-linear representation of Γ(Z), whose image is small.

More generally, consider a faithful finite-dimensional C-linear representation

Γ
ρ−→ GL(V )

of a finite abelian group Γ, such that its image is small. Denote d = dimV . Choose
a decomposition V = E1 ⊕E2 ⊕ · · · ⊕Ed of ρ as a sum of irreducible (1-dimensional)
representations. This is possible, since Γ is abelian (see [27]). Denote by E this
decomposition.

For any g ∈ Γ and any k ∈ {1, . . . , d}, g acts on Ek by multiplication by a root of
unity e2iπwk(g). Here wk(g) ∈ Q is well-defined modulo Z. Define then

wE(g) := (w1(g), . . . , wd(g)) ∈ Qd.

This vector is well-defined modulo Zd. Define the following over-lattice of W0 = Zd:

WE(ρ) := Zd +
∑
g∈Γ

ZwE(g). (2)

As the vectors wE(g) are well-defined modulo Zd, it is clear that WE(ρ) does not
depend on their choices. Moreover, as the decomposition of a representation of a finite
group as direct sum of irreducible ones is unique up to the order of the summands
(see [27]), the pair (WE(ρ), σ0) is independent up to isomorphism of the choice of
decomposition E . That is why we denote it shortly

(W (ρ), σ0).

Our main theorem is:

Theorem 3.4. The pairs (W, σ) and (W (ρ(Z)), σ0) are isomorphic.

Proof. As a C-vector space, C[M̃ ∩ σ̌] is generated by the monomials Xm̃, with
m̃ ∈ M̃ ∩ σ̌. The canonical action of W on these monomials is given by

(w,Xm̃) → e2iπ(w,m̃)Xm̃ (3)
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Let (v̌1, . . . , v̌d) be the basis of M̃ dual to the basis (v1, . . . , vd) of W̃. Then
the images of X v̌1 , . . . , X v̌d constitute a basis of the C-vector space m̃/m̃2. For any
k ∈ {1, . . . , d}, denote by Fk the subspace of m̃/m̃2 generated by the image of X v̌k .
Denote by F the decomposition m̃/m̃2 = F1 ⊕ F2 ⊕ · · · ⊕ Fd. Then, by formula (3),
for any w ∈ W and any k ∈ {1, . . . , d}, w acts on Fk by multiplication with e2iπ(w,v̌k).
If g(w) denotes the image of w in the group Γ(Z) ' W/W̃, this shows that

wF (g(w)) = ((w, v̌1), . . . , (w, v̌d)),

and so, by formula (2),

(W (ρ(Z)), σ0) ' (Zd +
∑
w∈W

Z((w, v̌1), . . . , (w, v̌d)), σ0).

If we express the pair (W, σ) using the basis (v1, . . . , vd) of the associated Q-vector
space, we get the isomorphism

(W, σ) =
( d∑
k=1

Zvk +
∑
w∈W

Z
(
(w, v̌1)v1 + · · ·+ (w, v̌d)vd

)
,
d∑
k=1

R+vk

)
'

(
Zd +

∑
w∈W

Z
(
(w, v̌1), . . . , (w, v̌d)

)
, σ0

)
which proves the Theorem.

Remark. The constructions done in the previous proof show easily that the image of
the group Γ(Z) ' W/W̃ by the representation ρ(Z) is small. Suppose this is false and
consider w ∈ W such that g(w) acts on m̃/m̃2 as a complex reflection. Consider again
the basis of m̃/m̃2 formed by the images of X v̌1 , . . . , X v̌d . Possibly after reordering
it, we can suppose that (w, v̌i) ∈ Z, ∀ i ∈ {1, . . . , d − 1} and (w, v̌d) /∈ Z. As
w =

∑d
i=1(w, v̌i)vi, this implies that (w, v̌d)vd ∈ W. As (w, v̌d) /∈ Z, this contradicts

the fact that vd is a primitive element of W.

The following proposition shows that a representation ρ and the pair (W (ρ), σ0)
it determines contain equivalent information.

Proposition 3.5. Let Γ
ρ−→ GL(V ) be faithful finite-dimensional C-linear repre-

sentation of a finite abelian group Γ whose image is small. If (Z, 0) denotes the
Hirzebruch-Jung singularity defined by (W (ρ), σ0), then the representations ρ and
ρ(Z) are isomorphic.

Proof. Choose E , an arbitrary decomposition of ρ as a sum of irreducible representa-
tions. As ρ(Γ) is small, we see that no d-tuple wE(g), with g 6= 1, is contained on a line
defined by an edge of σ0. This shows that the d-tuples modulo Zd can be recovered
from (W (ρ), σ0), simply by expressing the elements of W (ρ) in terms of the primitive
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elements situated on the edges of σ0. Moreover, there is a bijection between the ele-
ments of Γ and the set of these tuples in Qd/Zd. Associate then to wE(g) the vector
(e2iπw1(g), . . . , e2iπwd(g)) ∈ (C∗)d. This map is injective and invariant modulo Zd. We
get immediately the Proposition.

As (W (ρ(Z)), σ0) is determined by the analytical type of (Z, 0), an immediate
corollary of the Theorem 3.4 is the announced analytical classification of Hirzebruch-
Jung singularities:

Corollary 3.6. Let Z and Z ′ be two toric varieties defined by maximal simplicial
pairs. Denote by 0 and 0′ their closed orbits. Then the Hirzebruch-Jung singularities
(Z, 0) and (Z ′, 0′) are isomorphic as germs of complex analytical varieties if and only
if Z and Z ′ are isomorphic as toric varieties.

The Theorem 3.4 and its Corollary 3.6 show that in order to describe the analytical
type of a Hirzebruch-Jung singularity, it is enough to describe the combinatorial type
of the pair (W, σ) associated to it. In the following Proposition we give a normal
form for such a pair, once an ordering of the edges of σ is fixed. We will denote by
“≺” such an ordering.

Proposition 3.7. Let (W, σ) be a maximal simplicial pair of dimension d. Let
v1, . . . , vd be the primitive elements of W situated on the edges of σ, once an or-
dering ≺ of them is chosen. Then, there exists a unique basis (e1, . . . , ed) of W such
that the vectors (v1, . . . , vd) can be written as

v1 = e1

v2 = −α1,2e1 + α2,2e2

v3 = −α1,3e1 − α2,3e2 + α3,3e3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vd = −α1,de1 − · · · − αd−1,ded−1 + αd,ded

(4)

with 0 ≤ αi,j < αj,j for all 1 ≤ i < j ≤ d.

Proof. If the given relations are verified, then ∀k ∈ {1, . . . , d}, the vectors e1, . . . , ek
are elements of the lattice W ∩ (

∑k
i=1 Qvi). Moreover, they form a basis of it, as

(e1, . . . , ed) is a basis of W. So, in order to prove the existence and the unicity of
(e1, . . . , ed) once the conditions 0 ≤ αi,j < αj,j are imposed, we will restrict to d-tuples
of vectors such that (e1, . . . , ek) is a basis of W ∩ (

∑k
i=1 Qvi), ∀ k ∈ {1, . . . , d}.

It is clear that e1 exists and is unique verifying the first relation.
Suppose that (e1, . . . , ek−1) is a basis of the latticeW∩(

∑k−1
i=1 Qvi) that verifies the

first (k− 1) relations of (4), where k ≥ 2. Choose ẽk ∈ W such that (e1, . . . , ek−1, ẽk)
is a basis of the lattice W ∩ (

∑k
i=1 Qvi). This is possible, as the quotient (W ∩

(
∑k
i=1 Qvi))/(W ∩ (

∑k−1
i=1 Qvi)) has no torsion. Then one can write

vk = −α̃1,ke1 − · · · − α̃k−1,kek−1 + α̃k,kẽk
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with α̃i,k ∈ Z, ∀ i ∈ {1, . . . , k}.
If e′k is such that (e1, . . . , ek−1, e

′
k) is also a basis of W ∩ (

∑k
i=1 Qvi), then

ẽk = εe′k + λk−1ek−1 + · · ·+ λ1e1,

where ε ∈ {+1,−1} and λi ∈ Z, ∀ i ∈ {1, . . . , k − 1}. So,

vk = −(α̃1,k − λ1α̃k,k)e1 − · · · − (α̃k−1,k − λk−1α̃k,k)ek−1 + εα̃k,ke
′
k.

The number ε is uniquely determined by the condition εα̃k,k > 0. Then,
∀ i ∈ {1, . . . , k − 1}, the integer λi is clearly uniquely determined by the condition
0 ≤ α̃i,k − λiα̃k,k < εα̃k,k.

So, there exists a unique ek such that (e1, . . . , ek−1, ek) verify the first k relations
of (4). This proves the Proposition by induction.

We denote by B(W, σ,≺) the basis (e1, . . . , ed) of W and by m(W, σ,≺) the matrix
1 −α1,2 · · · −α1,d

0 α2,2 · · · −α2,d

...
...

. . .
...

0 0 · · · αd,d


Definition 3.8. Let (Z, 0) be a Hirzebruch-Jung singularity isomorphic with
(Z(W, σ), 0), where (W, σ) is a maximal simplicial pair. If ≺ is an ordering of the
edges of σ, we say that (Z, 0) is of type m(W, σ,≺).

We see that there is a finite ambiguity in the definition of the type of (Z, 0).
Indeed, there are d! possible orderings, and so d! possible matrices m(W, σ,≺).

Remark. It would be interesting to find a method to decide if two matrices correspond
to the same pair (W, σ) but to distinct choices of the ordering of the edges of σ. Such
a method is known classically in dimension 2 (see Proposition 6.4).

4. A normalization algorithm for quasi-ordinary hypersurface
singularities

We proved in [21] (see also [22]) an algorithm for computing the Hirzebruch-Jung
type of the normalization of a quasi-ordinary singularity of hypersurface in C3. In
this section we generalize it to arbitrary dimensions (Proposition 4.5). In order to do
it, we need to give a normal form for sublattices W of finite index of a lattice W, once
a basis of W is fixed (Proposition 4.1). As an important intermediate result, we give
an algorithm of computation of this normal form when W is defined by a congruence
(Lemma 4.3).

By Corollary 2.3, the normalization of the germ (S, 0) defined by an irreducible
quasi-ordinary polynomial is a Hirzebruch-Jung singularity of type m(WG, σ0,≺0).
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This shows that we need to compute the sublattice WG of W0. We will first prove a
Proposition similar to Proposition 3.7, which gives a normal form to a sublattice W
of finite index of a given lattice W, once a basis of W has been fixed.

Proposition 4.1. Let (W, σ) be a maximal regular pair of dimension d. Let
(w1, . . . , wd) be the primitive elements of W situated on the edges of σ, once an
ordering ≺ of them has been chosen. If W is a sublattice of finite index of W, then
there exists a unique basis (w1, . . . , wd) of W such that

w1 = r1,1w1

w2 = r1,2w1 + r2,2w2

w3 = r1,3w1 + r2,3w2 + r3,3w3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wd = r1,dw1 + r2,dw2 + · · ·+ rd,dwd

(5)

with 0 ≤ ri,j < ri,i for all 1 ≤ i < j ≤ d.

The proof being very similar to the proof of Proposition 3.7, we leave it to the
reader.

We denote by B(W, σ,≺;W) the basis (w1, . . . , wd) of W and by
m(W, σ,≺;W) the matrix 

r1,1 r1,2 · · · r1,d
0 r2,2 · · · r2,d
...

...
. . .

...
0 0 · · · rd,d

 .

Suppose now that the relations (5) are verified but perhaps without satisfying the
conditions 0 ≤ ri,j < ri,i. Let m be the matrix (ri,j)i,j . Denote by

ns(m)

the matrix m(W, σ,≺;W). Here “s” is the initial letter of “sublattice”. This alludes
to the fact that one has to choose the base of the sublattice W of W. The proof
of Proposition 4.1 gives an algorithm of computation of ns(m) starting from the
knowledge of m.

Analogously, if the relations (4) are verified but perhaps without satisfying the
conditions 0 ≤ αi,j < αj,j , and m denotes the matrix transforming (e1, . . . , ed) into
(v1, . . . , vd), we denote by

na(m)

the matrix m(W, σ,≺). Here “a” is the initial letter of “ambient lattice”, it alludes
to the fact that one has to choose the base of the ambient lattice W. The proof
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of Proposition 3.7 gives an algorithm of computation of na(m) starting from the
knowledge of m.

If t ∈ Q, one can write in a unique way t = p
q with gcd(p, q) = 1 and q > 0. Define

the numerator and the denominator of t by

num(t) := p,

den(t) := q.

The following lemma relates the normal forms of the Propositions 3.7 and 4.1:

Lemma 4.2. If (W, σ) is a maximal simplicial pair, that ≺ is an ordering of the edges
of σ and that W is a sublattice of finite index of W, then the matrix m(W, σ,≺;W)
determines the matrix m(W, σ,≺).

Proof. As m(W, σ,≺;W) is upper triangular, so is its inverse. But unlike the entries
of m(W, σ,≺;W), the entries ti,j of m(W, σ,≺;W)−1 are not in general integers.
As wj =

∑j
i=1 ti,jwi, ∀ j ∈ {1, . . . , d}, one sees that (djwj)1≤j≤d are the primitive

elements of W situated on the edges of σ, their ordering ≺ being the same as before.
We have denoted

dj := lcm(den(t1,j), . . . ,den(tj,j)), ∀ j ∈ {1, . . . , d}.

This shows that
m(W, σ,≺) = na((djti,j)i,j). (6)

Let M,W be two dual rank d lattices endowed with dual basis (u1, . . . , ud), re-
spectively (w1, . . . , wd). Denote by σ the cone spanned by (w1, . . . , wd). Consider
a ∈ MQ and let W(a) be the sublattice of W dual to M(a) := M + Za, i.e.
W(a) := Hom(M+ Za,Z).

If we write a =
∑d
i=1 a

iui, with a1, . . . , ad ∈ Q, then

W(a) = {w ∈ W | (w, a) ∈ Z } =
{ d∑
i=1

ciwi

∣∣∣ d∑
i=1

cia
i ∈ Z

}
. (7)

Remark. The relation
∑d
i=1 cia

i ∈ Z can also be written
∑d
i=1(lda

i)ci ≡ 0 (mod ld),
where ld := lcm(den(a1), . . . ,den(ad)). So, W(a) can be seen as a sublattice of finite
index of W defined by a congruence.

In the sequel we will also denote

m(a1, . . . , ad) := m(W, σ,≺;W(a)).

The following lemma gives an algorithm which computes the matrix m(a1, . . . , ad)
starting from the values of a1, . . . , ad.
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Lemma 4.3. Consider the matrix m(a1, . . . , ad) = (ri,j)i,j and introduce the numbers
lk := lcm(den(a1), . . . ,den(ak)), ∀ k ∈ {1, . . . , d}. Then

rk,k =
lk
lk−1

, ∀ k ∈ {1, . . . , d}.

Moreover, for any k ∈ {1, . . . , d} and any j ∈ {1, . . . , k − 1}, one has the equivalent
relations:

k∑
i=j

lja
iri,k ≡ 0 (mod rj,j)

rj,k =

{
−(

∑k
i=j+1 lja

iri,k)(ljaj)−1 in Z/rj,jZ, if rj,j 6= 1
0, if rj,j = 1

Proof. Denote by tk(a) :=
∑k
j=1 a

juj the k-truncation of a, for all k ∈ {1, . . . , d}.
One knows (see the proof of Lemma 4.1) that (w1, . . . , wk) is a basis of

W(a) ∩ (
∑k
j=1 Zwj) = W(tk(a)). This shows that

∏k
j=1 rj,j = (W : W(tk(a))).

But, as the pairs of lattices M,W and M(tk(a)),W(tk(a)) are in duality, one has the
equality of indices: (W : W(tk(a))) = (M(tk(a)) : M). This last index is equal to
the order of tk(a) in M(tk(a))/M, which is obviously equal to lk. This implies

k∏
j=1

rj,j = lk

which proves the first equalities.
Let us fix now k ∈ {2, . . . , d} and j ∈ {1, . . . , k}. The relation (7) implies∑k
i=1 a

iri,k ∈ Z. Multiplying this relation by lj , we get

(j−1∑
i=1

lja
iri,k

)
+

( k∑
i=j

lja
iri,k

)
∈ ljZ ⊂ rj,jZ. (8)

But ∀i ∈ {1, . . . , j − 1}, ljai = rj,j(lj−1a
i) ∈ rj,jZ, as lj−1a

i ∈ Z by the definition
of lj−1. This shows that

∑j−1
i=1 lja

iri,k ∈ rj,jZ, and (8) implies

k∑
i=j

lja
iri,k ∈ rj,jZ. (9)

This is one of the forms in which were written the second relations of the Lemma.
Formula (9) can also be written

lja
jrj,k +

k∑
i=j+1

lja
iri,k ∈ rj,jZ. (10)
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As
k∑

i=j+1

lja
iri,k =

∑k
i=j+1 lj+1a

iri,k

rj+1,j+1
,

relation (9) at the order j + 1 implies that
∑k
i=j+1 lja

iri,k ∈ Z. Moreover,

gcd(ljaj , rj,j) = 1. Indeed, if p is a prime number dividing rj,j = lj
lj−1

, then p | den(aj)

and p - lj
den(aj) . As gcd(den(aj),num(aj)) = 1, we also have p - num(aj), and so

p - (ljaj). This shows that ljaj is invertible in the ring Z/rj,jZ if rj,j 6= 1, and from
relation (10) we get the last formulae of the Lemma. If rj,j = 1, as 0 ≤ rj,k < rj,j we
get rj,k = 0.

Remark. The previous Lemma shows that once r1,1, . . . , rd,d are computed, one has
to compute the entries of the k-th column in the order: rk−1,k, rk−2,k, . . . , r1,k. As
0 ≤ ri,j < ri,i, ∀ 1 ≤ i < j ≤ d, the entries ri,j of the matrix m(a1, . . . , ad) are
completely determined by the congruences of the Lemma.

Suppose now that g ≥ 1 and a1, . . . , ag is a sequence of vectors of MQ. Define for
all k ∈ {1, . . . , g}:

Mk := M+ Za1 + · · ·+ Zak
Wk := Hom(Mk,Z).

We denote (rki,j)i,j = m(W, σ,≺;Wk). Write ak = a1
ku1 + · · · + adkud, with

a1
k, . . . , a

d
k ∈ Q. Introduce also the basis Bk = (wk1 , . . . , w

k
d) := B(W, σ,≺;Wk).

Denote by ≺k its ordering, deduced canonically from ≺, and by σk the cone gener-
ated by Bk. Then

Wk = {w ∈ Wk−1 | (w, ak) ∈ Z } =

=
{
w =

d∑
i=1

ciw
k−1
i

∣∣∣ ( d∑
i=1

d∑
j=1

cir
k−1
j,i wj ,

d∑
j=1

ajkwj

)
∈ Z

}
=

=
{
w =

d∑
i=1

ciw
k−1
i

∣∣∣ d∑
i=1

ci

( d∑
j=1

ajkr
k−1
j,i

)
∈ Z

}
.

We get:

Lemma 4.4. One has the equality of matrices

m(Wk−1, σk−1,≺k−1;Wk) = m(
d∑
j=1

ajkr
k−1
j,1 , . . . ,

d∑
j=1

ajkr
k−1
j,d ).
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The Lemmas 4.3 and 4.4 allow to compute recursively the matrices m(W, σ,≺;Wk)
for k ∈ {1, . . . , g} from the knowledge of the components of a1, . . . , ak in the basis
(u1, . . . , ud). Indeed:

m(W, σ,≺;Wk) = ns(m(Wk−1, σk−1,≺k−1;Wk)m(W, σ,≺;Wk−1)). (11)

Once the matrix m(W, σ,≺;Wk) is known, Lemma 4.2 shows that m(Wk, σ,≺) is
also known.

In the special case in which (S, 0) is an irreducible quasi-ordinary singularity of
hypersurface having (A1, . . . , AG) as characteristic exponents with respect to some
projection, we put g = G, W = W0, M = M0, and ak = Ak, ∀ k ∈ {1, . . . , g}. By
combining Corollary 2.3 and Definition 3.8, we see that the normalization of (S, 0) is
a Hirzebruch-Jung singularity of type m(WG, σ0,≺0), which can be computed by the
previous method. Using the Lemmas 4.2 (more precisely the relation (6)), 4.3, 4.4
and relation (11), we get the following compact form of the algorithm:

Proposition 4.5. Let f ∈ C{X1, . . . , Xd}[Y ] be an irreducible quasi-ordinary poly-
nomial with characteristic exponents A1, . . . , AG. We look at Ak as a matrix 1×d. If
Rk := m(W0, σ0 ≺0;Wk), Sk := m(Wk−1, σk−1,≺k−1;Wk), T k = (tki,j)i,j := (Rk)−1,
dkj := lcm(den(tk1,j), . . . ,den(tkj,j))), ∀ k ∈ {1, . . . , G}, ∀ j ∈ {1, . . . , d}, and R0 := Id,
then:

Sk = m(AkRk−1),

Rk = ns(SkRk−1)

Nk = det(Sk).

The normalization of the germ defined by f = 0 is a Hirzebruch-Jung singularity of
type

m(WG, σ0,≺0) = na((dGj t
G
i,j)i,j).

We recall that the numbers Nk were defined after having stated Theorem 2.1.
If (S, 0) is an irreducible quasi-ordinary singularity of dimension d ≥ 1 and em-

bedding dimension d + 1, Lipman [18] showed that there is always a quasi-ordinary
polynomial f ∈ C{X1, . . . , Xd}[Y ] defining S such that its characteristic exponents
A1, . . . , AG verify {

(A1
1, . . . , A

1
G) ≥lex · · · ≥lex (Ad1, . . . , A

d
G)

A2
1 6= 0 or A1

1 > 1
(12)

Lipman [19] and Gau [11] showed that a sequence A1, . . . , AG which verifies (12)
—they called it then normalized— is an embedded topological invariant of (S, 0). In
particular, it is an analytical invariant of (S, 0). In [23] we gave an algebraic proof
of this analytical invariance. This shows that for an irreducible quasi-ordinary germ
of hypersurface, there is a way to choose a well-defined matrix for the type of its
normalization between the d! possibilities. Indeed, one simply starts the application
of the previous algorithm from normalized characteristic exponents.
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5. A tridimensional example

Consider the following sequence of characteristic exponents:

A1 =
(1

4
,
1
6
,
1
6

)
, A2 =

(3
8
,

5
12
,

7
12

)
.

As the relations (12) are verified, it is a normalized sequence (see the definition in the
last paragraph of the previous section).

Let us apply the algorithm summarized in Proposition 4.5:

R1 = S1 =

4 2 2
0 3 2
0 0 1

 ,

N1 = det(S1) = 12,

T 1 = (R1)−1 =
1

22 · 3

3 −2 −2
0 4 −8
0 0 12

 =

 1
4 − 1

6 − 1
6

0 1
3 − 2

3
0 0 1

 ,

d1
1 = 4, d1

2 = 6, d1
3 = 6,

(d1
j t

1
i,j)i,j =

1 −1 −1
0 2 −4
0 0 6

 ,

m(W1, σ0,≺0) = na((d1
j t

1
i,j)i,j) =

1 −1 −1
0 2 −4
0 0 6

 ,

A2R
1 =

(
3
2 2 13

6

)
,

S2 = m( 3
2 , 2,

13
6 ) =

2 0 1
0 1 0
0 0 3

 ,

N2 = det(S2) = 6,

S2R1 =

8 4 5
0 3 2
0 0 3

 ,

R2 = ns(S2R1) =

8 4 5
0 3 2
0 0 3

 ,

T 2 = (R2)−1 =
1

23 · 32

9 −12 −7
0 24 −16
0 0 24

 =

 1
23 − 1

2·3 − 7
23·32

0 1
3 − 2

32

0 0 1
3

 ,
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d2
1 = 23, d2

2 = 6, d2
3 = 23 · 32,

(d2
j t

2
i,j)i,j =

1 −1 −7
0 2 −16
0 0 24

 ,

m(W1, σ0,≺0) = na((d2
j t

2
i,j)i,j) =

1 −1 −7
0 2 −16
0 0 24

 .

This shows that the normalization of a quasi-ordinary hypersurface singularity
with one characteristic exponent ( 1

4 ,
1
6 ,

1
6 ) has a Hirzebruch-Jung singularity of type1 −1 −1

0 2 −4
0 0 6


and the normalization of a quasi-ordinary hypersurface singularity with two charac-
teristic exponents ( 1

4 ,
1
6 ,

1
6 ), ( 3

8 ,
5
12 ,

7
12 ) has a Hirzebruch-Jung singularity of type1 −1 −7
0 2 −16
0 0 24

 .

By the comments made at the end of the previous section, we have obtained like
this well-defined normal forms for the types of the normalizations of the considered
quasi-ordinary singularities.

6. The classical (2-dimensional) Hirzebruch-Jung singularities

In this section we restrict to the case of surfaces and we compare our definition of
the type of a Hirzebruch-Jung singularity with the one given in Barth, Peters, Van
de Ven [3]. For details on Hirzebruch’s work [15], one should consult Brieskorn [5].

Let p1, . . . , pr be a sequence of integers, such that pi ≤ −2, ∀i ∈ {1, . . . , r} and
r ≥ 1. Let X be a smooth complex analytical surface containing a reduced divisor
with normal crossings C whose components C1, . . . , Cr are projective lines with self-
intersections C2

i = pi, ∀i ∈ {1, . . . , r}, and such that

Ci · Cj =

{
1, if |i− j| = 1
0, either.

Such a couple (X,C) always exists. The curve C is called a Hirzebruch-Jung string
with self-intersection numbers pi.
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Define also the coprime numbers (n, q) ∈ N2, 0 < q < n by the formula

n

q
= |p1| −

1

|p2| −
1

· · · −
1
|pr|

(13)

Then one has the following theorem ((5.1) in [3]):

Theorem 6.1 (Hirzebruch). If C ⊂ X is a Hirzebruch-Jung string with self-inter-
section numbers pi satisfying the relation (13), then the germ obtained by contracting
C to a point is analytically isomorphic to the normalization of the germ at the origin
of the surface with equation Y n = X1X

n−q
2 .

This motivates the following definition given in [3]:

Definition 6.2. A normal germ of surface is said to be a Hirzebruch-Jung singularity
of type An,q if it is analytically isomorphic to the normalization at the origin of the
surface with equation Y n = X1X

n−q
2 .

Remark. In [2], Aroca and Snoussi showed more generally that any normal quasi-
ordinary singularity (i.e. Hirzebruch-Jung singularity in our terms) is the normaliza-
tion of a complete intersection germ defined by binomial equations.

Let us see the relation between the classical normal form of Definition 6.2 and the
one we introduced in the Definition 3.8.

Proposition 6.3. The Hirzebruch-Jung singularity of type An,q following Defini-
tion 6.2 is of type

(
1 −q
0 n

)
following Definition 3.8.

Proof. The polynomial Y n −X1X
n−q
2 is quasi-ordinary with only one characteristic

exponent A1 = ( 1
n , 1−

q
n ). Applying Lemma 4.3, with m(W0, σ0,≺0;W1) =

( r1,1 r1,2
0 r2,2

)
and B(W0, σ0,≺0;W1) = (w1

1, w
1
2), we get l1 = den( 1

n ) = n, l2 = lcm(den( 1
n ),

den(1− q
n )) = n, r1,1 = l1 = n, r2,2 = l2

l1
= 1, r1,2 = −(l1A2

1r2,2)(l1A
1
1)
−1 in Z/r1,1Z,

which implies r1,2 = q. So, {
w1

1 = nw1,

w1
2 = qw1 + w2,

which implies {
w1 = 1

nw
1
1,

w2 = w1
2 −

q
nw

1
1.

Then, following the notations of Proposition 3.7, if v1, v2 are the minimal genera-
tors of W1 situated on the edges R+w1,R+w2 of σ0, we deduce{

v1 = w1
1,

v2 = nw1
2 − qw1

1.
(14)
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This shows that

m(W1, σ0,≺0) =
(

1 −q
0 n

)
.

The Proposition is proved.

In dimension 2, there are only two possible choices of the ordering of the edges
of σ, and so only two matrices for the type of a Hirzebruch-Jung singularity (see the
comments following Definition 3.8). The following Proposition which relates them
was probably first proved by Hirzebruch [15]:

Proposition 6.4 (Hirzebruch). If two Hirzebruch-Jung singularities of types An,q
and An′,q′ are isomorphic, then n = n′ and (q = q′ or qq′ ≡ 1 (mod n)).

Proof. Hirzebruch proved this result by looking at the minimal desingularizations of
the singularities. Both have as exceptional divisors Hirzebruch-Jung strings with the
same sequences of self-intersection numbers, but possibly reversed. Then one makes
computations using formula (13).

Here we give another proof, which uses the orbifold map instead of the minimal
desingularization one. As showed by Theorem 3.4, the couple (W, σ) is well-defined
up to isomorphism by the analytical structure of the singularity. If one chooses the
reverse order of ≺0 in the previous computations, one gets{

v2 = e11,

v1 = n′e12 − q′e11,

where (e11, e
1
2) is a basis of W1. Combining these relations with (14), we get first

n = n′, as both measure the index (W1 : Zv1 + Zv2). Then w1
1 = v1 = ne12 − q′e11 =

ne12− q′v2 = ne12− q′(nw1
2− qw1

1) ⇒ (1− qq′)w1
1 = n(e12− q′w1

2). As w1
1 is a primitive

element of W1, this implies that 1− qq′ ≡ 0(mod n), which proves the Proposition.
Another method would have been to apply the algorithm of normalization as in

the proof of Proposition 6.3, but starting with A1 = (1− q
n ,

1
n ).

The computations we have done in order to prove Proposition 6.3 are a particular
case of the normalization algorithm 4.5 presented in the previous section. By using
Lemma 4.3, we can give in a more explicit form this algorithm, as we published it
(but with slightly different notations) in [21,22]:

Proposition 6.5. Let f ∈ C{X1, X2}[Y ] be an irreducible quasi-ordinary polynomial
with characteristic exponents A1, . . . , AG. If

m(W0, σ0,≺0;Wk) =
(
rk1,1 rk1,2
0 rk2,2

)
,

m(Wk−1, σk−1,≺k−1;Wk) =
(
sk1,1 sk1,2
0 sk2,2

)
, ∀ k ∈ {1, . . . , G},
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and (
r01,1 r01,2
0 r02,2

)
=

(
1 0
0 1

)
,

then

sk1,1 = den(A1
kr
k
1,1),

sk2,2 =
lcm(den(A1

kr
k
1,1),den(A1

kr
k−1
1,2 +A2

kr
k−1
2,2 ))

den(A1
kr
k
1,1)

,

sk1,2 =


−den(A1

kr
k−1
1,2 +A2

kr
k−1
2,2 )

· lcm(den(A1
kr
k
1,1),den(A1

kr
k−1
1,2 +A2

kr
k−1
2,2 ))

·num(A1
kr
k−1
1,1 )−1 in Z/den(A1

kr
k−1
1,1 )Z, if den(A1

kr
k−1
1,1 ) 6= 1,

0, if den(A1
kr
k−1
1,1 ) = 1,

rk1,1 = sk1,1r
k−1
1,1 ,

rk2,2 = sk2,2r
k−1
2,2 ,

rk1,2 = sk1,1r
k−1
1,2 + sk2,2r

k−1
2,2 in Z/rk1,1Z.

The normalization of the germ defined by f = 0 is a Hirzebruch-Jung singularity of
type 1 − rG1,2

gcd(rG1,2,r
G
1,2)

0 rG1,1
gcd(rG1,2,r

G
1,2)

 .

7. Questions

If (S, 0) is a reduced germ of complex analytical space, we denote by K(S) its ab-
stract boundary (also called the link of (S, 0)). It is defined as the intersection of a
representative of (S, 0) with a sufficiently small Euclidean sphere centered at 0 in an
arbitrary system of local coordinates at 0. It is independent of these choices (Durfee’s
proof in [9] for algebraic varieties extends to analytical ones).

Hirzebruch [15] noticed that the abstract boundary of a bidimensional Hirzebruch-
Jung singularity (Z, 0) of type An,q is a lens space L(n, q). As it was known since Rei-
demeister [26] that L(n, q) is homeomorphic (preserving the orientations) to L(n′, q′)
if and only if n = n′ and (q = q′ or qq′ ≡ 1(mod n)), this showed by Proposition 6.4
that in this case the homeomorphism type of K(Z) determines the analytical type of
(Z, 0). More generally, we ask:

Question 7.1. Let (Z, 0) be a Hirzebruch-Jung singularity of dimension ≥ 3. Denote
by K(Z) its abstract boundary. Is it true that the homeomorphism type of K(Z)
determines the analytical type of (Z, 0)?
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If the answer to the previous question is negative, it would be interesting to know
what supplementary structure one should add to the boundary K(Z) in order to make
it affirmative (e.g. should one consider it rather as an orbifold, or add some stratified
smooth structure?)

In the case when the canonical representation ρ(Z) associated to the singularity
(see (1)) is a cyclic fixed-point free action outside the origin, the answer to the question
is affirmative. Indeed, in this case the boundary is a generalized lens space and
the corresponding result was obtained by Franz (see Dieudonné [7, page 246]). If
d ≥ 3, the action ρ(Z) may be non-cyclic, and even if it is cyclic, it may have
fixed points. One can decide if Γ(Z) is cyclic by computing the invariant factors
of a matrix of presentation of W̃ with respect to W, for example m(W, σ,≺) for an
arbitrary ordering ≺.

Consider now more general pairs (W, σ) than the simplicial ones. By analogy with
Question 7.1, we ask also:

Question 7.2. Let Z be an affine (not necessarily simplicial) toric variety. Is it
true that the homeomorphism type (possibly enriched with supplementary structure)
of K(Z) determines the analytical type of (Z, 0)?

Acknowledgements. I am grateful to Clément Caubel, Mart́ın Sombra and Ber-
nard Teissier for their useful remarks on a previous version of this paper.
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102–109.
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