Indices of 1-Forms and Newton Polyhedra

Alexander ESTEROV

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, GSP-2, 119992 — Russia esterov@mail.ru

Recibido: 12 de Febrero de 2004 Aceptado: 4 de Octubre de 2004

ABSTRACT

A formula of Matsuo Oka [9] expresses the Milnor number of a germ of a complex analytic map with a generic principal part in terms of the Newton polyhedra of the components of the map. In this paper this formula is generalized to the case of the index of a 1-form on a local complete intersection singularity (Theorem 1.10, Corollaries 1.11, 4.1). In particular, the Newton polyhedron of a 1-form is defined (Definition 1.6). This also simplifies the Oka formula in some particular cases (Propositions 3.5, 3.7).

Key words: Newton polyhedra, singularities of vector fields 2000 Mathematics Subject Classification: 32865, 14M25

1. Indices of 1-forms

In this paper we give a formula for the index of a 1-form on a local complete intersection singularity. First of all we recall the definition of this index (introduced by W. Ebeling and S. M. Gusein-Zade).

Definition 1.1 ([5,6]). Consider a germ of a map $\overline{f} = (f_1, \ldots, f_k) : (\mathbb{C}^n, 0) \to (\mathbb{C}^k, 0), k < n$ and a germ of a 1-form ω on $(\mathbb{C}^n, 0)$. Suppose that $\overline{f} = 0$ is an (n - k)-dimensional complete intersection with an isolated singular point at the origin, and the restriction $\omega|_{\{\overline{f}=0\}}$ has not singular points (zeroes) in a punctured neighborhood of the origin. For a small sphere S_{δ}^{2n-1} around the origin the set $S_{\delta}^{2n-1} \cap \{\overline{f}=0\} = M^{2n-2k-1}$ is a smooth manifold. One can define the map $(\omega, df_1, \ldots, df_k) : M^{2n-2k-1}$

Rev. Mat. Complut. 2005, 18; Núm. 1, 233–242

233

ISSN: 1139-1138

This paper has been partially supported by RFBR-04-01-00762 and NSh-1972.2003.1

 $\rightarrow W(n, k+1)$ to the Stiefel manifold of (k+1)-frames in \mathbb{C}^n . The image of the fundamental class of the manifold $M^{2n-2k-1}$ in the homology group $H_{2n-2k-1}(W(n, k+1)) = \mathbb{Z}$ is called the index $\operatorname{ind}_0 \omega|_{\{\bar{f}=0\}}$ of the 1-form ω on the local complete intersection singularity $\{\bar{f}=0\}$ (all orientations are defined by the complex structure).

Remark 1.2. One can consider this index as a generalization of the Milnor number. Indeed, let g be a complex analytic function, then $\operatorname{ind}_0 dg|_{\{\bar{f}=0\}}$ is equal to the sum of the Milnor numbers of the germs $(f_1, \ldots, f_k) : (\mathbb{C}^n, 0) \to (\mathbb{C}^k, 0)$ and $(g, f_1, \ldots, f_k) : \mathbb{C}^n \to \mathbb{C}^{k+1}$ (if k = 0 then the first Milnor number is 0). This follows from [6, Example 2.6 and Proposition 2.8].

Now we introduce some necessary notation and recall the statement of the Oka theorem. Suppose f_1, \ldots, f_k are holomorphic functions on a smooth complex manifold V. Then " $f_1 = \cdots = f_k = 0$ is a generic system of equations in V" means " df_1, \ldots, df_k are linearly independent at any point of the set $\{f_1 = \cdots = f_k = 0\}$."

Definition 1.3. Suppose $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ is a germ of a complex analytic function. Represent f as a sum over a subset of the integral lattice $f(x) = \sum_{c \in A \subset \mathbb{Z}_+^n} f_c x^c$, where $f_c \in \mathbb{C} \setminus \{0\}, \mathbb{Z}_+ = \{z \in \mathbb{Z} \mid z \ge 0\}$, and x^c means $x_1^{c_1}, \ldots, x_n^{c_n}$. The convex hull Δ_f of the set $(A + \mathbb{R}_+^n) \subset \mathbb{R}_+^n = \{r \in \mathbb{R} \mid r \ge 0\}^n$ is called the Newton polyhedron of f.

We denote by $(\mathbb{Z}_{+}^{n})^{*}$ the set of covectors $\gamma \in (\mathbb{Z}^{n})^{*}$ such that $(\gamma, v) > 0$ for every $v \in \mathbb{Z}_{+}^{n}, v \neq 0$. Consider a polyhedron $\Delta \subset \mathbb{R}_{+}^{n}$ with integer vertices and a covector $\gamma \in (\mathbb{Z}_{+}^{n})^{*}$. As a function on Δ the linear form γ achieves its minimum on a maximal compact face of Δ . Denote this face by Δ^{γ} . Denote by f^{γ} the polynomial $\sum_{c \in \Delta_{+}^{\gamma}} f_{c} x^{c}$.

Definition 1.4. A collection of germs of functions f_1, \ldots, f_k on $(\mathbb{C}^n, 0)$ is called \mathbb{C} generic, if for every $\gamma \in (\mathbb{Z}^n_+)^*$ the system $f_1^{\gamma} = \cdots = f_k^{\gamma} = 0$ is a generic system of
equations in $(\mathbb{C} \setminus \{0\})^n$. A collection of germs f_1, \ldots, f_k is called strongly \mathbb{C} -generic,
if the collections (f_1, \ldots, f_k) and (f_2, \ldots, f_k) are \mathbb{C} -generic.

Theorem 1.5 ([9, Theorem (6.8), ii]). Suppose that a collection of germs of complex analytic functions f_1, \ldots, f_k on $(\mathbb{C}^n, 0)$ is strongly \mathbb{C} -generic and the polyhedra $\Delta_{f_1}, \ldots, \Delta_{f_k} \subset \mathbb{R}^n_+$ intersect all coordinate axes. Then the Milnor number of the map (f_1, \ldots, f_k) equals the number $\mu(\Delta_{f_1}, \ldots, \Delta_{f_k})$ which depends only on the Newton polyhedra of the components of the map.

The explicit formula for $\mu(\Delta_1, \ldots, \Delta_k)$ in terms of the integral volumes of some polyhedra associated to $\Delta_1, \ldots, \Delta_k$ is given in [9], Theorem (6.8), ii. In the case k = 1one has the well-known Kouchnirenko formula [8] for the Milnor number of a germ of a function.

To generalize this theorem we generalize Definitions 1.3 and 1.4 first.

Definition 1.6. One can formally represent an analytic 1-form ω on \mathbb{C}^n as $\sum_{c \in A} x^c \omega_c$, where $A \subset \mathbb{Z}^n_+$, $\omega_c = \sum_{i=1}^n \omega_c^i \frac{dx_i}{x_i} \neq 0$, $\omega_c^i \in \mathbb{C}$. The convex hull Δ_ω of the set $A + \mathbb{R}^n_+ \subset \mathbb{R}^n_+$ is called the Newton polyhedron of the 1-form ω .

Revista Matemática Complutense 2005, 18; Núm. 1, 233–242

Remark 1.7. The Newton polyhedron of the differential of an analytic function coincides with the Newton polyhedron of the function itself.

Definition 1.8. A collection of germs of a 1-form ω and k functions f_1, \ldots, f_k on $(\mathbb{C}^n, 0)$ is called \mathbb{C} -generic, if for every $\gamma \in (\mathbb{Z}^n_+)^*$ the system $f_1^{\gamma} = \cdots = f_k^{\gamma} = 0$ is a generic system of equations in $(\mathbb{C} \setminus \{0\})^n$, and the restriction $\omega^{\gamma}|_{\{f_1^{\gamma} = \cdots = f_k^{\gamma} = 0\} \cap (\mathbb{C} \setminus \{0\})^n}$ has not singular points (we define the polynomial 1-form ω^{γ} as $\sum_{c \in \Delta_{\omega}} \omega_c x^c$ for $\omega = \sum_{c \in \Delta_{\omega}} \omega_c x^c$).

Remark 1.9. A collection (dg, f_1, \ldots, f_k) is \mathbb{C} -generic if and only if the collection (g, f_1, \ldots, f_k) is strongly \mathbb{C} -generic.

Non- \mathbb{C} -generic collections form a subset Σ in the set of germs with given Newton polyhedra $B(\Delta_0, \ldots, \Delta_k) = \{ (\omega, f_1, \ldots, f_k) \mid \Delta_\omega = \Delta_0, \Delta_{f_i} = \Delta_i, i = 1, \ldots, k \}.$

Theorem 1.10. Suppose that the polyhedra $\Delta_0, \ldots, \Delta_k$ in \mathbb{R}^n_+ , k < n intersect all coordinate axes. Then the index of a 1-form on a local complete intersection singularity as a function on $B(\Delta_0, \ldots, \Delta_k) \setminus \Sigma$ is well defined and equals a constant.

Corollary 1.11. This constant equals $\mu(\Delta_1, \ldots, \Delta_k) + \mu(\Delta_0, \ldots, \Delta_k)$. (To prove it one can choose a 1-form to be the differential of a complex analytic function and use Theorem 1.5 and the remarks above.)

Corollary 1.12. In Theorem 1.5, one can substitute the strong \mathbb{C} -genericity condition by the \mathbb{C} -genericity condition. (To prove it one can choose a function g such that the collection (g, f_1, \ldots, f_k) is strongly \mathbb{C} -generic, and use Theorems 1.5 and 1.10 for it.)

It is somewhat natural to express the index not in terms of the separate Newton polyhedra of the components of a 1-form, but in some sense in terms of their union. Indeed, consider a germ of a 1-form $\omega = (\omega_1, \ldots, \omega_n)$ on $(\mathbb{C}^n, 0)$ and an $n \times n$ matrix C. If the entries of C are in general position, then all the components of the 1-form $C\omega$ have the same Newton polyhedron which is the convex hull of $\bigcup_{i=1}^n \Delta_{\omega_i}$. On the other hand, $\operatorname{ind}_0 C\omega = \operatorname{ind}_0 \omega$.

The definition of the Newton polyhedron of a 1-form is a bit different from the convex hull of the union of the Newton polyhedra of the components of a 1-form. This definition is more natural in the framework of toric geometry. Consider a monomial map $p : (\mathbb{C} \setminus \{0\})^m \to (\mathbb{C} \setminus \{0\})^n$, $v = p(z) = z^C$, where C is an $n \times n$ matrix with integer entries. Consider a 1-form $\omega = (\omega_1, \ldots, \omega_n)$ on the torus $(\mathbb{C} \setminus \{0\})^n$. Then the lifting $p^*\omega$ satisfies the following equality: $z \cdot p^*\omega(z) = C(p(z) \cdot \omega(p(z)))$. In this equality we multiply vectors componentwise. Therefore, the Newton polyhedron in the sense of Definition 1.6 is invariant with respect to monomial mappings. Thus, multiplication by a matrix mixes the components of a 1-form, just as a monomial map mixes its "shifted" components $v_i \cdot \omega_i(v)$. This difference leads to some relations for integral volumes of polyhedra. We discuss them in section 3.

Revista Matemática Complutense 2005, 18; Núm. 1, 233–242

2. Proof of Theorem 1.10

The idea of the proof is the following. In fact, the set Σ is closed and its complex codimension is 1. Thus, it is enough to prove that the index is a locally constant function on $B(\Delta_0, \ldots, \Delta_k) \setminus \Sigma$. The only problem is that the last set is infinite dimensional, so we substitute it by a finite dimensional "approximation."

The union of all compact faces of the Newton polyhedron of a function f is called the Newton diagram of a function f. We denote it by Δ_f^0 . Suppose that $f(x) = \sum_{c \in \mathbb{Z}^n_+} f_c x^c$, then the polynomial $\sum_{c \in \Delta_f^0} f_c x^c$ is called the principal part of f. We denote it by f^0 . Denote by B(f) the set $\{g \mid \Delta_g = \Delta_f, g - g^0 = \lambda(f - f^0), \lambda \in \mathbb{C}\}$. Similarly, we define the Newton diagram Δ_{ω}^0 , the principal part ω^0 and the set $B(\omega)$ for a 1-form ω .

A collection of germs of an analytic 1-form ω and k analytic functions f_1, \ldots, f_k on $(\mathbb{C}^n, 0)$ is \mathbb{C} -generic if and only if $(\omega^0, f_1^0, \ldots, f_k^0)$ is \mathbb{C} -generic. The set of non- \mathbb{C} generic collections $\Sigma \cap B(\omega) \times B(f_1) \times \cdots \times B(f_k)$ is a (Zariski) closed proper subset of a finite dimensional set $B(\omega) \times B(f_1) \times \cdots \times B(f_k)$. Its complex codimension is 1 (see, for instance, [1, ch. II, § 6.2, Lemma 1], for an example of the proof of such facts).

Now we can reformulate Theorem 1.10 in the following form:

Lemma 2.1. For any \mathbb{C} -generic collection $(\omega, f_1, \ldots, f_k)$ there exists a neighborhood $U \subset B(\omega) \times B(f_1) \times \cdots \times B(f_k)$ of it and a punctured neighborhood $V \subset \mathbb{C}^n$ around the origin such that for any $(v, g_1, \ldots, g_k) \in U$ the system $g_1 = \cdots = g_k = 0$ is a generic system of equations in V and the restriction $v|_{\{g_1=\cdots=g_k=0\}\cap V}$ has no singular points (in particular the index $\operatorname{ind}_0 v|_{\{g_1=\cdots=g_k=0\}}$ is well defined and equals $\operatorname{ind}_0 \omega|_{\{f_1=\cdots=f_k=0\}}$).

Consider the toric resolution $p: (M, D) \to (\mathbb{C}^n, 0)$ related to a simplicial fan Γ compatible with $\Delta_{\omega}, \Delta_{f_1}, \ldots, \Delta_{f_k}$ (see [1, ch. II, § 8.2, Theorem 2] or [9, § 4] for definitions). We call it a toric resolution of the collection $(\omega, f_1, \ldots, f_k)$. Since the exceptional divisor D is compact, we can reformulate Lemma 2.1 as follows:

Lemma 2.2. For any $y \in D$ there exist neighborhoods $U_y \subset B(\omega) \times B(f_1) \times \cdots \times B(f_k)$ around $(\omega, f_1, \ldots, f_k)$ and $V_y \subset M$ around y such that for every $(v, g_1, \ldots, g_k) \in U_y$ the system $(g_1, \ldots, g_k) \circ p = 0$ is a generic system of equations in $(V_y \setminus D)$ and the restriction $p^*v|_{\{(g_1, \ldots, g_k) \circ p=0\} \cap (V_y \setminus D)}$ has no critical points.

Proof. M is a toric manifold, so we have a natural action of the complex torus $(\mathbb{C}\setminus\{0\})^n$ on M. The exceptional divisor D is invariant with respect to this action. Denote by D_y the orbit of the point y. The exceptional divisor D has the minimal decomposition into the union of disjoint smooth strata. Denote by D_y^0 the stratum of D, such that $y \in D_y^0$ (if y is in the closure of the set p^{-1} (the union of coordinate planes $\setminus\{0\}$) then $D_y \subsetneq D_y^0$). If $a \in T_z^*M$ is orthogonal to the orbit of $z \in M$ under the action of the stabilizer of D_y^0 , then we (formally) write $a \parallel D_y^0$.

Revista Matemática Complutense 2005, 18; Núm. 1, 233–242

Now we consider the three cases of location of the point y on D_y with respect to the collection $(\omega, f_1, \ldots, f_k)$.

Case 1. $y \notin \overline{(\{(f_1, \ldots, f_k) \circ p = 0\} \setminus D_y)} \cap D_y$.

Case 2. y doesn't satisfy the condition of the case 1, but $y \notin \overline{(\{p^* \omega \| D_y^0\} \setminus D_y)} \cap D_y$. Case 3. y doesn't satisfy the conditions of the cases 1 and 2.

To prove Lemma 2.2 in these three cases we need a coordinate system near D_y . Let $m = n - \dim D_y$. By definition of a toric variety related to a fan the orbit D_y corresponds to some *m*-dimensional cone Γ_y . Denote by *s* the number of coordinate axes which are generatrices of Γ_y . Then $s = \dim D_y^0 - \dim D_y$. Γ_y is a face of some *n*-dimensional cone in the fan Γ . Coordinates of generating covectors of this cone form as row-vectors an integral square matrix *B* with nonnegative entries. After an appropriate reordering of variables the first *m* its rows correspond to the generating covectors of Γ_y , and the first *s* of them coincide with the first rows of the unit matrix.

This cone gives a system of coordinates z_1, \ldots, z_n on a (Zariski) open set containing D_y . These coordinates are given by the equation $(z_1, \ldots, z_n)^B = (x_1, \ldots, x_n) \circ p$ (note that $||B|| = \pm 1$ because Γ is chosen to be simplicial). We can describe D_y , $f_1 \circ p, \ldots, f_k \circ p$ and the components of

$$p^*\omega = \begin{pmatrix} (p^*\omega)^1 \\ \vdots \\ (p^*\omega)^n \end{pmatrix}$$

in this coordinate system as follows (\bar{o} means a smooth function on an open neighborhood of D_y which equals zero on D_y):

(i) $D_y = \{z_1 = \dots = z_m = 0, z_{m+1} \neq 0, \dots, z_n \neq 0\}; D_y^0 = \{z_{s+1} = \dots = z_m = 0\};$ $a \parallel D_y^0 \Leftrightarrow a \perp \langle \frac{\partial}{\partial z_{s+1}}, \dots, \frac{\partial}{\partial z_m} \rangle.$

(ii)
$$(f_i \circ p)(z_1, \dots, z_n) = z_{s+1}^{\varphi_i^{s+1}} \cdots z_m^{\varphi_i^m} (\hat{f}_i(z_{m+1}, \dots, z_n) + \bar{o})$$
 where $i = 1, \dots, k$.

- (iii) $(p^*\omega)^i(z_1,\ldots,z_n) = z_{s+1}^{\nu^{s+1}}\cdots z_m^{\nu^m}(\widehat{(p^*\omega)_i}(z_{m+1},\ldots,z_n) + \bar{o})$ where $i = 1,\ldots,s$.
- (iv) $(p^*\omega)^i(z_1,\ldots,z_n) = z_{s+1}^{\nu^{s+1}}\cdots z_m^{\nu^m}(\widehat{(p^*\omega)^i}(z_{m+1},\ldots,z_n) + \bar{o})z_i^{-1}$ where $i = s+1, \ldots, n.$

These descriptions are related to the functions which appear in the definition of \mathbb{C} -genericity. Namely, for any $\gamma \in \Gamma_y$:

(ii')
$$(f_i^{\gamma} \circ p)(z_1, \dots, z_n) = z_{s+1}^{\varphi_i^{s+1}} \cdots z_m^{\varphi_i^m} \hat{f}_i(z_{m+1}, \dots, z_n)$$
 where $i = 1, \dots, k$.

(iii') $(\omega^{\gamma})^i = 0$ for $i = 1, \dots, s$ by definition.

Revista Matemática Complutense 2005, 18; Núm. 1, 233–242

(iv')

$$B\begin{pmatrix}0\\\vdots\\0\\x_{s+1}(\omega^{\gamma})^{s+1}\\\vdots\\x_n(\omega^{\gamma})^n\end{pmatrix} \circ p = z_{s+1}^{\nu^{s+1}} \cdots z_m^{\nu^m} \begin{pmatrix}0\\\vdots\\0\\(\widehat{p^*\omega)^{s+1}(z_{m+1},\dots,z_n)\\\vdots\\(\widehat{p^*\omega)^n}(z_{m+1},\dots,z_n)\end{pmatrix}.$$

Now we can prove Lemma 2.2.

Case 1. This means that $y \notin \{\hat{f}_1 = \cdots = \hat{f}_k = 0\}$. The same holds for y' close to y in M and (g_1, \ldots, g_k) close to (f_1, \ldots, f_k) in $B(f_1) \times \cdots \times B(f_k)$. Thus if $y' \notin D$ is close to y then $y' \notin \{(g_1, \ldots, g_k) \circ p = 0\}$.

Case 2. (Informally, in this case v is almost orthogonal to D_y^0 near y.) This means that y does not satisfy the condition of the case 1 and $y \notin \{(\widehat{p^*\omega})^{s+1} = \cdots = (\widehat{p^*\omega})^m = 0\}$. Choose $j_0 \in \{s+1,\ldots,m\}$ such that $(\widehat{p^*\omega})^{j_0}(y) \neq 0$. Then the same holds for y' close to y in M and v close to ω in $B(\omega)$.

From \mathbb{C} -genericity, (ii), and (ii') it follows that $\hat{f}_1 = \cdots = \hat{f}_k = 0$ is a generic system of equations in $(\mathbb{C} \setminus \{0\})^n$. Thus we can choose $\{j_1, \ldots, j_k\} \subset \{m+1, \ldots, n\}$ such that $\left\|\frac{\partial \hat{f}_i}{\partial z_j}(y)\right\|_{j=j_1,\ldots,j_k}^{i=1,\ldots,k} \neq 0$. Then the same holds for y' close to y in M and (g_1,\ldots,g_k) close to (f_1,\ldots,f_k) in $B(f_1) \times \cdots \times B(f_k)$.

The matrix $U = p^*(v, dg_1, \ldots, dg_k)$ has the full rank for $y' \notin D$ close to y in Mand (v, g_1, \ldots, g_k) close to $(\omega, f_1, \ldots, f_k)$ in $B(\omega) \times B(f_1) \times \cdots \times B(f_k)$. Indeed,

$$\begin{aligned} \|U_{i,j}\|_{j=j_0,\dots,j_k}^{i=1,\dots,k+1} &= z_{s+1}^{\nu^{s+1}+\varphi_1^{s+1}+\dots+\varphi_k^{s+1}} \cdots z_m^{\nu^m+\varphi_1^m+\dots+\varphi_k^m} z_{j_0}^{-1} \cdots z_{j_k}^{-1} \times \\ & \times (\widehat{(p^*v)^{j_0}} \left\| \frac{\partial \hat{g}_i}{\partial z_j} \right\|_{j=j_1,\dots,j_k}^{i=1,\dots,k} + \bar{o}) \neq 0. \end{aligned}$$

Case 3. In this case $y \in \{\hat{f}_1 = \cdots = \hat{f}_k = 0\} \cap \{\widehat{(p^*\omega)^{s+1}} = \cdots = \widehat{(p^*\omega)^m} = 0\}$. From \mathbb{C} -genericity, (iii), (iii), (iv), and (iv') it follows that the matrix $\widehat{(p^*\omega, d\hat{f}_1, \ldots, d\hat{f}_k)}$ has the rank k + 1. Thus some of its minors U_0 (suppose it consists of rows $j_0 > \cdots > j_k > m$) is nonzero and the same holds for y' close to y in M and (v, g_1, \ldots, g_k) close to $(\omega, f_1, \ldots, f_k)$ in $B(\omega) \times B(f_1) \times \cdots \times B(f_k)$.

 $\begin{array}{l} (v,g_1,\ldots,g_k) \text{ close to } (\omega,f_1,\ldots,f_k) \text{ in } B(\omega) \times B(f_1) \times \cdots \times B(f_k). \\ \text{The same minor of the matrix } U = p^*(v,dg_1,\ldots,dg_k) \text{ is equal to } z_{j_0}^{-1}\cdots z_{j_k}^{-1} \times z_{s+1}^{\nu^{s+1}+\cdots+\varphi_k^{s+1}}\cdots z_m^{\nu^m+\varphi_1^m+\cdots+\varphi_k^m}(U_0+\bar{o}) \neq 0. \\ \text{close to } y \text{ in } M \text{ and } (v,g_1,\ldots,g_k) \text{ close to } (\omega,f_1,\ldots,f_k) \text{ in } B(\omega) \times B(f_1) \times \cdots \times B(f_k). \\ \text{Lemma 2.2 and, consequently, Theorem 1.10 are proved.} \end{array}$

Revista Matemática Complutense 2005, 18; Núm. 1, 233–242

3. Interlaced polyhedra

Consider polyhedra $\Delta_1, \ldots, \Delta_n \subset \mathbb{R}^n_+$. Denote by $U_{\Delta_1, \ldots, \Delta_n}$ the convex hull of $\bigcup_{i=1}^n \Delta_i$.

Definition 3.1. Suppose that for any $\gamma \in (\mathbb{Z}^n_+)^*$ there exists $I \in \{1, \ldots, n\}$, $|I| = \dim U^{\gamma}_{\Delta_1, \ldots, \Delta_n} + 1$ such that $\Delta^{\gamma}_i \subset U^{\gamma}_{\Delta_1, \ldots, \Delta_n}$ for any $i \in I$. Then the polyhedra $\Delta_1, \ldots, \Delta_n$ are said to be interlaced.

The notion of interlaced polyhedra is related to the notion of \mathbb{C} -genericity. As a consequence, Oka formulas from [9] and Theorem 1.10 give some interrelations for the polyhedra $\Delta_1, \ldots, \Delta_n$ and $U_{\Delta_1,\ldots,\Delta_n}$ provided $\Delta_1, \ldots, \Delta_n$ are interlaced. The aim of the discussion below is to point out these facts.

Suppose that $\Delta_1, \ldots, \Delta_n \subset \mathbb{R}^n_+$ are convex polyhedra with integer vertices and the sets $\mathbb{R}^n_+ \setminus \Delta_1, \ldots, \mathbb{R}^n_+ \setminus \Delta_n$ are bounded. Suppose $\omega = \sum_{i=1}^n \omega_i dx_i$ is a germ of a 1-form such that the Newton polyhedra of $\omega_1, \ldots, \omega_n$ are $\Delta_1, \ldots, \Delta_n$ (with respect to a coordinate system x_1, \ldots, x_n on $(\mathbb{C}^n, 0)$). We can also consider the collection $(\omega_1, \ldots, \omega_n)$ as a map $\omega_* = (\omega_1, \ldots, \omega_n) : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$. Generally speaking, the \mathbb{C} -genericity of the map $w_* : \mathbb{C}^n \to \mathbb{C}^n$ in sense of the definition 1.4 and the \mathbb{C} genericity of the 1-form w in sense of the definition 1.8 are not related. The following lemmas are obvious (they follow from the Bertini-Sard theorem, see [1, ch.II, § 6.2, Lemma 1] for an example of the proof of such facts).

Lemma 3.2. If $\Delta_1, \ldots, \Delta_n$ are interlaced, then, for a generic complex square matrix B and generic principal parts of $\omega_1, \ldots, \omega_n$, the map $(B\omega)_* : \mathbb{C}^n \to \mathbb{C}^n$ is \mathbb{C} -generic.

Denote by e_1, \ldots, e_n the standard basis of \mathbb{Z}^n ,

$$e_j = (\underbrace{0, \dots, 0}_{j-1}, 1, 0, \dots, 0).$$

Lemma 3.3. If $\Delta_1 + e_1, \ldots, \Delta_n + e_n$ are not interlaced, then the 1-form ω is not \mathbb{C} -generic. If they are interlaced, then the condition of \mathbb{C} -genericity of the 1-form ω on a local complete intersection singularity $\{f_1 = \cdots = f_k = 0\}$ is a condition of general position for the principal parts of $\omega_1, \ldots, \omega_n, f_1, \ldots, f_k$.

Remark 3.4. This lemma implies that the Newton diagrams of $\omega_i x_i$ don't necessary belong to the Newton diagram of a \mathbb{C} -generic 1-form $\omega = \sum_{i=1}^{n} \omega_i dx_i$. For instance, suppose n = 2: the Newton diagram of Δ_i , i = 1, 2, consists of N edges, and the j-th edge of $\Delta_1 + e_1$ intersects the j-th edge of $\Delta_2 + e_2$ for any j. Then, by Lemma 3.3, there exists a \mathbb{C} -generic 1-form $\omega = \omega_1 dx_1 + \omega_2 dx_2$ such that $\Delta_{\omega_i} = \Delta_i$ for i = 1, 2.

Recall that $\mu(\Delta_{f_1}, \ldots, \Delta_{f_m})$ is the Milnor number $\mu(f_1, \ldots, f_m)$ of a germ of a \mathbb{C} -generic map (f_1, \ldots, f_m) . Denote by Vol the integral volume in $\mathbb{R}^n \supset \mathbb{Z}^n$ (such that Vol $[0, 1]^n = 1$).

Revista Matemática Complutense 2005, 18; Núm. 1, 233–242

Proposition 3.5. If $\Delta_1, \ldots, \Delta_n$ are interlaced, then

$$\mu(\Delta_1, \dots, \Delta_n) = n! \operatorname{Vol}(\mathbb{R}^n_+ \setminus U_{\Delta_1, \dots, \Delta_n}) - 1.$$

Proof. This statement is true if all the polyhedra coincide (this is a consequence of the Oka formula, see [9, Theorem (7.2)]). The following equality is obvious: $\mu(\omega_1, \ldots, \omega_n) = \operatorname{ind}_0 \omega - 1 = \operatorname{ind}_0(B\omega) - 1 = \mu((B\omega)_1, \ldots, (B\omega)_n)$. Now one can apply these facts to a 1-form $\omega = \sum_{i=1}^n \omega_i \, dx_i$ such that the maps ω_* and $(B\omega)_*$ are \mathbb{C} -generic (they exist because of Lemma 3.2), and the Newton polyhedra of all the components of $(B\omega)_*$ are equal to $U_{\Delta_1,\ldots,\Delta_n}$.

Remark 3.6. This statement gives an independent proof of Theorem 1.10 in the case k = 0. One can use Proposition 3.5 and the evident equation

$$\mu(x_1\omega_1,\ldots,x_n\omega_n) = \sum_{\{i_1,\ldots,i_m\} \subsetneq \{1,\ldots,n\}} \operatorname{ind}_0 \omega|_{\{x_{i_1}=\cdots=x_{i_m}=0\}}$$

to prove this particular case by induction on n. (If the 1-form ω is \mathbb{C} -generic then any map

$$(x_1\omega_1,\ldots,x_n\omega_n)|_{\{x_{i_1}=\cdots=x_{i_m}=0\}}: \{x_{i_1}=\cdots=x_{i_m}=0\} \to \{x_{i_1}=\cdots=x_{i_m}=0\}$$

is \mathbb{C} -generic as well.)

Proposition 3.7. If the polyhedra $\Delta_1 + e_1, \ldots, \Delta_n + e_n$ are interlaced, then

 $\mu(\Delta_1,\ldots,\Delta_n)=\mu(U_{\Delta_1+e_1,\ldots,\Delta_n+e_n})-1.$

It is a consequence of Theorems 1.5 and 1.10 and the equation $\mu(\omega_1, \ldots, \omega_n) = \operatorname{ind}_0 \omega - 1$ (one should choose $\omega_1, \ldots, \omega_n$ such that the 1-form ω and the map ω_* are \mathbb{C} -generic).

Corollary 3.8. If the polyhedra $\Delta_1, \ldots, \Delta_n$ are interlaced and the polyhedra $\Delta_1 + e_1, \ldots, \Delta_n + e_n$ are interlaced, then

$$\mu(U_{\Delta_1+e_1,\ldots,\Delta_n+e_n}) = n! \operatorname{Vol}(\mathbb{R}^n_+ \setminus U_{\Delta_1,\ldots,\Delta_n}).$$

One can easily give a straightforward combinatorial proof of this equation (it is enough to explicitly express these volumes in terms of the coordinates of the vertices of the polyhedra).

Remark 3.9. In a similar way we can define interlaced compact polyhedra: compact polyhedra $\Delta_1, \ldots, \Delta_n \subset \mathbb{R}^n$ are interlaced if for any $\gamma \in (\mathbb{R}^n)^*$ there exists $I \in \{1, \ldots, n\}, |I| = \dim U^{\gamma}_{\Delta_1, \ldots, \Delta_n} + 1$ such that $\Delta^{\gamma}_i \subset U^{\gamma}_{\Delta_1, \ldots, \Delta_n}$ for any $i \in I$. In the same way we can prove that, for interlaced polyhedra $\Delta_1, \ldots, \Delta_n \subset \mathbb{R}^n$, the mixed volume of $\Delta_1, \ldots, \Delta_n$ equals $\operatorname{Vol}(U_{\Delta_1, \ldots, \Delta_n})$. As a consequence, the volume $\operatorname{Vol}(U_{\Delta_1 + \bar{a}_1, \ldots, \Delta_n + \bar{a}_n)$ does not depend on $\bar{a}_1, \ldots, \bar{a}_n \in \mathbb{R}^n$, if the polyhedra $\Delta_1 + \bar{a}_1, \ldots, \Delta_n + \bar{a}_n$ are interlaced.

Revista Matemática Complutense 2005, 18; Núm. 1, 233–242

4. Remarks

For a 1-form on a germ of a manifold with an isolated singular point there is defined the, so called, radial index (see [6, Definition 2.1]). The radial index of a 1-form ω on a local complete intersection singularity $f_1 = \cdots = f_k = 0$ equals $\operatorname{ind}_0 \omega|_{\{\bar{f}=0\}}$ minus the Milnor number of the map (f_1, \ldots, f_k) .

Corollary 4.1. Suppose a collection of germs ω, f_1, \ldots, f_k on \mathbb{C}^n is \mathbb{C} -generic and the polyhedra $\Delta_{\omega}, \Delta_{f_1}, \ldots, \Delta_{f_k} \subset \mathbb{R}^n_+$ intersect all coordinate axes. Then $V^{n-k} = \{f_1 = \cdots = f_k = 0\}$ is a local complete intersection singularity and the radial index of ω on V^{n-k} equals $\mu(\Delta_{\omega}, \Delta_{f_1}, \ldots, \Delta_{f_k})$.

This corollary follows from Theorems 1.5 and 1.10.

This corollary and Theorem 1.10 are generalizations of the Oka theorem, which is a consequence of the A'Campo theorem (see [2]). Thus, it would be interesting to obtain this corollary and Theorem 1.10 as consequences of a generalization of the A'Campo theorem. To do it, we need the notion of a resolution of a germ of a 1-form on a germ of a manifold with an isolated singular point. Namely, we can try to generalize the notion of a toric resolution of a 1-form on a local complete intersection singularity, taking the three cases from the proof of Lemma 2.2 as a definition of a resolution.

Let $(V,0) \subset (\mathbb{C}^n,0)$ be a germ of a variety. Suppose $V \setminus \{0\}$ is smooth. Let ω be a 1-form on $(\mathbb{C}^n,0)$. Suppose $\omega|_{V \setminus \{0\}}$ has no singular points near 0.

Definition 4.2. Let $p: (M, D) \to (V, 0)$ be a proper map. Suppose M is smooth, $D = p^{-1}(0)$ is a normal crossing divisor, $D = \bigsqcup D_i$ is the minimal stratification such that D_i are smooth, and p is biholomorphic on $M \setminus D$. Suppose that, for any $y \in D_i \subset D$ and for any holomorphic vector field v near y such that $v(y) \notin T_y(D_i)$, there exists a neighborhood $U \subset M$ of y such that

- (i) $\langle p^*(\omega), v \rangle = 0$ is a generic system of equations in $U \setminus D$,
- (ii) $\{\langle p^*(\omega), v \rangle = 0\} \cap U$ is a normal crossing divisor.

(In coordinates, these conditions mean that $\langle p^*(\omega), v \rangle$ equals either $x_1^{a_1} \cdots x_k^{a_k}$ or $x_1^{a_1} \cdots x_k^{a_k} x_{k+1}$, where $a_i \in \mathbb{N}$, and (x_1, \ldots, x_n) are coordinates near y such that $D = \{x_1 \cdots x_k = 0\}$). Then p is called a resolution of (ω, V) .

The toric resolution from the proof of Lemma 2.2 is a partial case of a resolution in sense of this definition. If w = df, then a resolution of f in the sense of Hironaka is a resolution of w in the sense of this definition. It would be interesting to know, whether every (ω, V) is resolvable. There are some works on resolutions of singular points of vector fields and 1-forms, especially integrable and low-dimensional ones, see [3], [7], [4].

> Revista Matemática Complutense 2005, 18; Núm. 1, 233–242

Form the sets

 $S_m = \{ y \in D \mid \text{ the function } \langle p^*(\omega), v \rangle \text{ in a neighborhood of } y \\ \text{has the form } z^m, \text{ where } z \text{ is some local coordinate on } M \text{ near } y \}.$

Consider the straightforward generalization of the A'Campo formula:

Conjecture. The radial index of ω on V equals $(-1)^n \left(-1 + \sum_{m>1} m\chi(S_m)\right)$.

Theorem 1.10 proves this generalization in the toric case. The A'Campo formula itself proves it if ω is the differential of a function. This generalization is also obviously true in the case n-k=1. It would be interesting to know whether this generalization is true in the general case.

The simplest example to illustrate Theorem 1.10 is the following: $n = 2, k = 0, \omega_1 = x^a + y^b, \omega_2 = x^c + y^d, \frac{a}{b} > \frac{c}{d}$, and a, b, c, d are coprime. Then $\operatorname{ind}_0 \omega = \mu(\omega_1, \omega_2) + 1 = bc$ (the last equation illustrates the Oka formula). The Newton polyhedron Δ_{ω} is generated by the points (a+1,0), (c,1), (1,b), (0,d+1). The Newton polyhedra of the components are interlaced when c < a, b < d. In accordance with Theorem 1.10, the index $\operatorname{ind}_0 \omega$ can be computed by the Kouchnirenko formula $\mu(\Delta_{\omega})$ if and only if the Newton polyhedra of the components are interlaced.

References

- V. I. Arnol'd, S. M. Guseňn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. II, Monographs in Mathematics, vol. 83, Birkhäuser Boston Inc., Boston, MA, 1988.
- [2] N. A'Campo, La fonction zêta d'une monodromie, Comment. Math. Helv. 50 (1975), 233-248.
- [3] F. Cano, Desingularization strategies for three-dimensional vector fields, Lecture Notes in Mathematics, vol. 1259, Springer-Verlag, Berlin, 1987.
- [4] _____, Reduction of the singularities of nondicritical singular foliations. Dimension three, Amer. J. Math. 115 (1993), no. 3, 509–588.
- [5] W. Ebeling and S. M. Guseĭn-Zade, Indices of 1-forms on an isolated complete intersection singularity, Mosc. Math. J. 3 (2003), no. 2, 439–455, 742–743.
- [6] W. Ebeling, S. M. Guseň-Zade, and J. Seade, Homological index for 1-forms and a Milnor number for isolated singularities, preprint, arXiv:math.AG/0307239.
- [7] Y. Ilyashenko and S. Yakovenko, Lectures on Analytic Differential Equations, to appear.
- [8] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), no. 1, 1–31.
- M. Oka, Principal zeta-function of nondegenerate complete intersection singularity, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), no. 1, 11–32.

Revista Matemática Complutense 2005, 18; Núm. 1, 233–242