A Number Theoretic Approach to Sylow *r*-Subgroups of Classical Groups

Mashhour I. ALALI, Christoph HERING,

and Anni NEUMANN

Department of Mathematics Mu'tah University Alkarak — Jordan masshour_ibrahim@yahoo.com Mathematics Institute University of Tübingen Morgen Stelle 10 D-72076 Tübingen — Germany hering@uni-tuebingen.de

Mathematics Institute University of Tübingen Morgen Stelle 10 D-72076 Tübingen — Germany drvneuman@web.de

Recibido: 20 de Enero de 2003 Aceptado: 28 de Enero de 2005

ABSTRACT

The purpose of this paper is to give a general and a simple approach to describe the Sylow r-subgroups of classical groups.

Key words: Sylow r-subgroups, wreath product.2000 Mathematics Subject Classification: 20D15.

Introduction

Let G be a finite classical group over a finite field of characteristic p. The Sylow r-subgroups of G, where r is a prime number, have been given by Weir [5] in the case $r \neq 2, r \neq p$, and by Chevalley [3] and Ree [4] in the case r = p. In the later case the normalizers of the Sylow p-subgroups were obtained as well. The remaining case $r = 2, p \neq 2$ has been investigated by Carter and Fong [2], where the description is not easy to follow.

Rev. Mat. Complut. 2005, 18; Núm. 2, 329–338

329

ISSN: 1139-1138

The main purpose of this paper is to give a more general and simple approach to describe the Sylow r-subgroups of the general linear group $\operatorname{GL}(n,q)$, the symplectic group $\operatorname{Sp}(2n,q)$ over $\operatorname{GF}(q)$, $q = p^a$, and the symmetric group S_n , using number theoretic techniques, so that general readers simply can read it. Among other results the conditions on r and G forcing the Sylow r-subgroups of $\operatorname{GL}(n,q)$ to be maximal nilpotent are given.

Let V be a n-dimensional vector space over GF(q). In the case of GL(V) = GL(n,q), if d is a divisor of n, we consider the set $\{V_1, V_2, \ldots, V_m\}$ of d-dimensional subspaces such that $V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$, where m = n/d. Then the stabilizer of this set in GL(V) is obviously a wreath-product $GL(V_1) \wr S_m$. Then we show that for any prime $r \neq p$, the number d can be chosen in such a way that this stabilizer contains a Sylow r-subgroup. Hence the Sylow r-subgroups are of the form $R \wr T_m \leq GL(V_1) \wr S_M$, where R is a Sylow r-subgroup of $GL(V_1)$ and T_m is a Sylow r-subgroup of S_m . From this description the action of the Sylow r-subgroups on the underlying vector space are obvious.

The approach for the other classical groups is quite similar. Let V be a vector space endowed with a bilinear, unitary or quadratic form. Then we consider an orthogonal decomposition $V = V_1 \perp V_2 \perp \cdots \perp V_m$ into non-degenerate subspaces of equal dimension d say. The stabilizer of the set $\{V_1, V_2, \ldots, V_m\}$ is then obviously isomorphic to $I(V_1) \wr S_m$, where $I(V_1)$ denotes the isometry group of V_1 . Again by choosing d properly we find the Sylow r-subgroups are contained in such stabilizer and hence are isomorphic to $R \wr T_m$ where R is a Sylow r-subgroup of $I(V_1)$ and T_m is a Sylow r-subgroup of S_m . Also the action on the underlying vector space can be immediately seen.

1. Notation and basic definitions

Let *n* be an integer, *p* prime, we denote by n_p the *p* part of *n*. If *G* is a finite group, then |G| denotes the order of *G*. If *p* is prime \mathbb{Z}_{p-1} will denote the multiplicative cyclic group $(\mathbb{Z}/p\mathbb{Z})^*$ of the finite field GF(*p*). If $g \in G$, o(g) denotes the order of *g*. Throughout the paper *r*, *p* are primes, $r \neq p$, and $q = p^a$. $H \wr K$ denotes the wreath product of *H* by *K*. For more information about the wreath product see [1]. [H:K]denotes the index of *K* in *H*. We write X^m for a direct product of *m* copies of *X*.

2. The Sylow *r*-subgroups of GL(n, q)

To investigate the Sylow r-subgroups of GL(n,q), we prove the following Lemmata which are of fundamental importance in this investigation.

Lemma 2.1. Let d be the order of $q + r\mathbb{Z} \in (\mathbb{Z}/r\mathbb{Z})^*$, then $(q^i - 1)_r \neq 1$ if and only if $d \mid i$.

Revista Matemática Complutense 2005, 18; Núm. 2, 329–338

Proof. Since $|\operatorname{GL}(n,q)| = q^{\binom{n}{2}} \prod_{i=1}^{n} (q^i - 1)$, we have $|\operatorname{GL}(n,q)|_r = \prod_{i=1}^{n} (q^i - 1)_r$. It is clear that $r \mid q^i - 1$ if and only if $(q + r\mathbb{Z})^i = 1 + r\mathbb{Z}$, and $(q + r\mathbb{Z})^i = 1 + r\mathbb{Z}$ iff $d \mid i$. Hence the Lemma is proved.

Lemma 2.2. If $r \mid q-1$, then the following properties hold:

- (i) If $r \neq 2$, then $(q^i 1)_r = i_r(q 1)_r$.
- (ii) If r = 2 and $q \equiv 1 \pmod{4}$, then $(q^i 1)_2 = i_2(q 1)_2$.
- (iii) If r = 2, and $q \equiv 3 \pmod{4}$, then

$$(q^{i} - 1)_{2} = \begin{cases} 2, & \text{if } i \text{ is odd,} \\ i_{2}(q+1)_{2} & \text{if } i \text{ is even.} \end{cases}$$

Proof. Since $r \mid q-1$ we write $q = 1 + r^a x$ for $a \ge 1$ and gcd(r, x) = 1. On the other hand, $q^i - 1 = (q-1)(1+q+\cdots+q^{i-1})$ implies $(q^i - 1)_r = (q-1)_r(1+q+\cdots+q^{i-1})_r$. Since $q \equiv 1 \pmod{r}$ then $1 + q + \cdots + q^{i-1} \equiv i \pmod{r}$.

(i) Case 1: $r \nmid i$. Then $(1 + q + \dots + q^{i-1})_r = 1$ and we are done.

Case 2: r|i. So $i = r^b j$ with gcd(j, r) = 1. We need to prove that $(1 + q + \dots + q^{i-1})_r = r^b$.

Since $q^i - 1 = q^{r^b j} - 1 = (q^j - 1)(q^{j(r^b - 1)} + \dots + q^{2j} + q^j + 1)$ then $(q^i - 1)_r = (q^j - 1)_r(q^{j(r^b - 1)} + \dots + q^j + 1)_r = (q - 1)_r(q^{j(r^b - 1)} + \dots + q^j + 1)_r)$, by case 1. We have also $q^{j(r^b - k)} = (1 + r^a x)^{j(r^b - k)} \equiv 1 + j(r^b - k)r^q x \pmod{r^{2a}}$. Thus,

$$1 + \sum_{k=1}^{r^b - 1} q^{j(r^b - k)} \equiv r^b \left(1 + jr^a x(r^b - 1) - jr^a x \frac{r^b - 1}{2} \right) \pmod{r^{2a}}$$

because $r \neq 2$. Therefore

$$(1+q^j+\cdots+q^{j(r^b-1)})_r=r^b.$$

(ii) We consider the following two cases:

- Case 1: *i* is odd. Then $1 + q + \cdots + q^{i-1}$ is odd, and this implies $(q^i 1)_2 = (q-1)_2(1+q+\cdots+q^{i-1})_2 = (q-1)_2 = i_2(q-1)_2$.
- Case 2: *i* is even. So i = 2j and $(q^i 1)_2 = (q^{2j} 1)_2 = (q^j 1)_2(q^j + 1)_2$. Since $q \equiv 1 \pmod{4}$ this implies $q^j + 1 \equiv 2 \pmod{4}$. Hence $(q^i 1)_2 = (q^j 1)_2 \cdot 2 = j_2(q-1)_2 \cdot 2 = i_2(q-1)_2$ by induction.
 - (iii) Again we have two cases:

Revista Matemática Complutense 2005, 18; Núm. 2, 329–338

Case 1: *i* is odd. Then $(q^i - 1)_2 = (q - 1)_2(1 + q + \dots + q^{i-1})_2 = (q - 1)_2 = 2$. ad since $a^2 = 1 \pmod{4}$ then by (ii) we have $(a^i - 1)$

Case 2: *i* is even. So
$$i = 2j$$
 and since $q^2 \equiv 1 \pmod{4}$, then by (ii) we have $(q^i - 1)_2 = (q^{2j} - 1)_2 = j_2(q^2 - 1)_2 = j_2(q - 1)_2(q + 1)_2 = j_2 \cdot 2 \cdot (q + 1)_2 = i_2(q + 1)_2$. \Box

Lemma 2.3. Let r and p be distinct primes, $q = p^a$, and $d = o(q + r\mathbb{Z})$ where $q + r\mathbb{Z} \in (\mathbb{Z}/r\mathbb{Z})^*$ then the following properties hold:

- (i) If either $r \neq 2 \text{ or } r = 2 \text{ and } q \equiv 1 \pmod{4}$, then $|\operatorname{GL}(n,q)|_r = (q^d 1)_r^{\left[\frac{n}{r}\right]}([\frac{n}{d}]!)_r$.
- (ii) If r = 2, $q \equiv 3 \pmod{4}$ and n is even, then $|\operatorname{GL}(n,q)|_r = (2^2(q+1)_2)^{\frac{n}{2}}((n/2)!)_2$.

(iii) If r = 2, $q \equiv 3 \pmod{4}$ and n is odd, then

$$|\operatorname{GL}(n,q)|_r = 2\left(2^{n-1}\prod_{\substack{i\leq n\\i \ even}} i_2(q+1)_2\right).$$

Proof. (i) We have

$$|\operatorname{GL}(n,q)|_r = \left|q^{\binom{n}{2}}\prod_{i=1}^n (q^i-1)\right|_r = \prod_{i=1}^n (q^i-1)_r = \prod_{i\leq n,\ d|i} (q^i-1)_r.$$

By Lemma 2.1, $r \mid q^i - 1$ iff $d \mid i$. We obtain $\prod_{i \leq n, d \mid i} (q^i - 1)_r = \prod_{j=1}^{[\frac{n}{d}]} (q^{dj} - 1)_r$ and by Lemma 2.2, with q replaced by q^d , we obtain

$$\prod_{j=1}^{\left[\frac{n}{d}\right]} (q^{dj} - 1)_r = \prod_{j=1}^{\left[\frac{n}{d}\right]} j_r (q^d - 1)_r = (q^d - 1)_r^{\left[\frac{n}{d}\right]} \prod_{j=1}^{\left[\frac{n}{d}\right]} j_r = (q^d - 1)_r^{\left[\frac{n}{d}\right]} \left(\left[\frac{n}{d}\right]!\right)_r.$$

Hence a Sylow r-subgroup of $\operatorname{GL}(n,q)$ is isomorphic to $Z_{(q^d-1)_r} \wr T_{\left[\frac{n}{d}\right]}$, where $T_{\left[\frac{n}{d}\right]}$ is a Sylow *r*-subgroup of $S_{[\frac{n}{d}]}$. (ii) $|\operatorname{GL}(n,q)|_2 = \prod_{i=1}^{n} (q^i - 1)_2$. Let $n = 2n_1$ for some integer n_1 , then we have

$$\prod_{i=1}^{n} (q^{i} - 1)_{2} = \prod_{j=0}^{n-1} (q^{2j+1} - 1)_{2} \prod_{j=1}^{n_{1}} (q^{2j} - 1)_{2} =$$

$$= 2^{n/2} \prod_{j=1}^{n/2} (q^{2j} - 1)_{2} = 2^{n/2} \prod_{j=1}^{n/2} (2j)_{2} (q+1)_{2} =$$

$$= 2^{n} (q+1)_{2}^{n/2} \prod_{j=1}^{n/2} j_{2} = 2^{n} (q+1)_{2}^{n/2} (n/2)! = (2^{2} (q+1)_{2})^{n/2} ((n/2)!)_{2}.$$

Revista Matemática Complutense 2005, 18; Núm. 2, 329-338

Hence if n is even and $q \equiv 3 \pmod{4}$, then a Sylow 2-subgroup of $\operatorname{GL}(n,q)$ is isomorphic to $D \wr T$ where D is a Sylow 2-subgroup of $\operatorname{GL}(2,q)$ and T is a Sylow 2-subgroup of the symmetric group $S_{n/2}$.

(iii) We have

$$|\operatorname{GL}(n,q)|_{2} = \prod_{i=1}^{n} (q^{i}-1)_{2} = \prod_{\substack{i \leq n \\ i \text{ odd}}} 2 \prod_{\substack{i \leq n \\ i \text{ even}}} (q^{i}-1) =$$
$$= 2^{n} \prod_{\substack{i \leq n \\ i \text{ even}}} i_{2}(q+1)_{2} = 2 \cdot 2^{n-1} \prod_{\substack{i \leq n \\ i \text{ even}}} i_{2}(q+1)_{2}$$

Hence, if n is odd and $q \equiv 3 \pmod{4}$, then a Sylow 2-subgroup of $\operatorname{GL}(n, q)$ is isomorphic to $Z_2 \times S \leq \operatorname{GL}(1, q) \times \operatorname{GL}(n - 1, q) \leq \operatorname{GL}(n, q)$, where S is a Sylow 2-subgroup of $\operatorname{GL}(n - 1, q)$. The Sylow r-subgroups of S_n will be discussed in section 4. \Box

Combining Lemma 2.1 and Lemma 2.2 we have

Lemma 2.4. Let r and p be distinct primes, $q = p^a$. Define $d = o(q + r\mathbb{Z})$ where $q + r\mathbb{Z} \in (\mathbb{Z}/r\mathbb{Z})^*$, then we have

- (i) $r \mid q^i 1$ iff $d \mid i$.
- (ii) If $d \mid i$ and either $r \neq 2$, or r = 2 and $q \equiv 1 \pmod{4}$, then $(q^i 1)_r = (\frac{i}{d})_r (q^d 1)_r$.
- (iii) If $d \mid i, r = 2$, and $q \equiv 3 \pmod{4}$, then

$$(q^{i}-1)_{r} = \begin{cases} 2, & \text{if } i \text{ is odd,} \\ i_{2}(q+1)_{2}, & \text{if } i \text{ is even.} \end{cases}$$

Remark 2.5. For $\operatorname{GL}(n,q)$ there are obviously subgroups of the orders calculated above. $\operatorname{GL}(n,q)$ contains the group of the monomial matrices $M \cong Z_{q-1} \wr S_n$. So in the case $r \mid q-1$, M contains a Sylow r-subgroup. In general, set $d = o(q + r\mathbb{Z})$ and write $n = n_0d + n_1$ for integers n_0 , n_1 with $0 \leq n_1 < d$, then we have a canonical embedding of $\operatorname{GL}(n_0d,q)$ into $\operatorname{GL}(n,q)$ as follows. Let V be a vector space of dimension n over $\operatorname{GF}(q)$ and write $V = V_0 \oplus V_1$ where $\dim V_0 = n_0d$, $\dim V_1 = n_1$, so, if $H = \operatorname{GL}(V_1) \times \operatorname{GL}(V_0)$, then $C_H(V_0) \cong \operatorname{GL}(V_1) = \operatorname{GL}(n_1,q)$ and $C_H(V) \cong$ $\operatorname{GL}(V_0) = \operatorname{GL}(n_0d,q)$. Further, if W is a vector space of dimension n_0 over $\operatorname{GF}(q^d)$, then W is also a vector space over a subfield $\operatorname{GF}(q) \subseteq \operatorname{GF}(q^d)$ of dimension n_0d , hence we have a canonical embedding $\operatorname{GL}(W) \subseteq \operatorname{GL}(V)$ or $\operatorname{GL}(n_0,q^d) \subseteq \operatorname{GL}(n_0d,q)$. So we get a sequence of embeddings $\operatorname{GL}(n_0,q^d) \subseteq \operatorname{GL}(n_0d,q) \subseteq \operatorname{GL}(n_0d+n_1,q) = \operatorname{GL}(n,q)$, and $\operatorname{GL}(n_0,q^d)$ contains a monomial group $M^* \cong Z_{q^d-1} \wr S_{n_0}$ which contains, as we have shown above, a Sylow r-subgroup.

> Revista Matemática Complutense 2005, 18; Núm. 2, 329–338

3. The Sylow *r*-subgroups of Sp(2n, q)

To describe the Sylow r-subgroups of Sp(2n, q) we prove the following Lemmas.

Lemma 3.1. Let r and p be distinct primes, $q = p^a$ and r odd, then

- (i) $\operatorname{Sp}(2n,q)$ contains canonically a subgroup H isomorphic to $\operatorname{GL}(n,q)$.
- (ii) If d is odd, then r does not divide the index of H in $\operatorname{Sp}(2n,q)$, where $d = o(q+\mathbb{Z})$, $q + \mathbb{Z} \in (\mathbb{Z}/r\mathbb{Z})^*$.
- (iii) Any canonically embedded GL(n,q) contains a Sylow r-subgroup of Sp(2n,q).

Proof. (i) Consider a symplectic base with respect to which the inner product matrix is $\begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$. Then the subgroup

$$H = \left\{ \begin{bmatrix} g & \\ & (g^t)^{-1} \end{bmatrix}, \quad g \in \operatorname{GL}(n, q) \right\}$$

is contained in the corresponding symplectic group $\mathrm{Sp}(2n,q).$

The index of H in Sp(2n,q) is

$$\frac{q^{n^2}\prod_{i=1}^n (q^{2i}-1)}{q^{\binom{n}{2}}\prod_{i=1}^n (q^i-1)} = q^{n(n+1)/2} \prod_{i=1}^n (q^i+1).$$

(ii) Assume that $r \mid q^{n(n+1)/2} \prod_{i=1}^{n} (q^i+1)$. This implies that $r \mid q^i+1$ for some $1 \leq i \leq n$, so $r \mid q^{2i} - 1$. This means that $q^{2i} \equiv 1 \pmod{r}$, thus $d \mid 2i$. As d is odd, this implies that $q^i \equiv 1 \pmod{r}$. Hence $r \mid q^i+1$ and $r \mid q^i-1$, thus $r \mid 2$, a contradiction.

(iii) As $r \nmid [\operatorname{Sp}(2n,q) : H]$, then H contains a Sylow r-subgroup and the Sylow r-subgroups of $\operatorname{GL}(n,q)$ have been determined in section 2.

Remark 3.2. If $n = n_1 + n_2$, then $\operatorname{Sp}(2n, q)$ contains a canonically embedded subgroup $\operatorname{Sp}(2n_1, q) \times \operatorname{Sp}(2n_2, q)$. This can be seen as follows. If V_1 and V_2 are symplectic spaces, then $V_1 \oplus V_2$ can be turned into a symplectic space, such that V_1 and V_2 are orthogonal. Let β_i be a symplectic form on V_i , i = 1, 2. Define a symplectic form β on $V_1 \oplus V_2$ by $\beta(v_1 + v_2, v'_1 + v'_2) = \beta_1(v_1, v'_1) + \beta_2(v_2, v'_2)$ where $v_i, v'_i \in V_i$. At the same time, this defines an embedding of $\operatorname{Sp}(V_1) \times \operatorname{Sp}(V_2)$ into $\operatorname{Sp}(V_1 \perp V_2)$. Here $V_1 \perp V_2$ denotes that V_1 and V_2 are orthogonal by the action

$$(v_1, v_2)^{(g_1, g_2)} = (v_1^{g_1}, v_2^{g_2})$$

where $v_1 \in V_1$, $v_2 \in V_2$, and $g \in \operatorname{Sp}(V_1)$, $g_2 \in \operatorname{Sp}(V_2)$. So we have a canonical embedding $\operatorname{Sp}(2n_1, q) \times \operatorname{Sp}(2n_2, q) \subseteq \operatorname{Sp}(2(n_1 + n_2), q)$. Repeating this process we get an embedding

$$\operatorname{Sp}(2n_1,q) \times \operatorname{Sp}(2n_2,q) \times \cdots \times \operatorname{Sp}(2n_k,q) \subseteq \operatorname{Sp}(2(n_1+n_2+\cdots+n_k),q),$$

for any $n_i \neq 0$. We have also an embedding $\operatorname{Sp}(2n,q)^k \subseteq \operatorname{Sp}(2nk,q)$.

Revista Matemática Complutense 2005, 18; Núm. 2, 329–338

M. I. AlAli/C. Hering/A. Neumann

The following Lemma is an immediate consequence of the above remark.

Lemma 3.3. Let W be a symplectic space, and assume that W can be written as an orthogonal direct sum of $V_1 \perp V_2 \perp \cdots \perp V_k$ of subspaces V_i all of the same dimension. Let H be the stabilizer of $\{V_1, V_2, \ldots, V_k\}$ in Sp(W), then $H \cong$ Sp (V_1) $\wr S_k$.

Lemma 3.4. Let r and p be distinct primes, $q = p^a$. Let $d = o(q + r\mathbb{Z})$ where $q + r\mathbb{Z} \in \mathbb{Z}_{r-1}$. If d is even, then

$$|\operatorname{Sp}(2n,q)|_r = (q^d - 1)_r^{\left[\frac{2n}{d}\right]} \left(\left[\frac{2n}{d}\right]! \right)_r$$

Proof. Let d = 2t for some integer t. Then

$$|\operatorname{Sp}(2n,q)|_r = \prod_{i=1}^n (q^{2i} - 1)_r = \prod_{\substack{i=1\\d|2i}}^n (q^2i - 1)_r = \prod_{\substack{i=1\\t|i}}^n (q^{2i} - 1)_r$$

By setting i = tj we have

$$\prod_{i=1\atop t\mid i}^{n} (q^{2i-1})_r = \prod_{j=1}^{\left[\frac{n}{t}\right]} (q^{dj} - 1)_r.$$

By Lemma 2.4, we obtain

$$\begin{split} \prod_{j=1}^{\left[\frac{n}{t}\right]} j_r (q^d - 1)_r &= (q^d - 1)_r^{\left[\frac{n}{t}\right]} \prod_{j=1}^{\left[\frac{n}{t}\right]} j_r = (q^d - 1)_r^{\left[\frac{n}{t}\right]} \left(\left[\frac{n}{t}\right]! \right)_r = \\ &= (q^d - 1)_r^{\left[\frac{2n}{d}\right]} \left(\left[\frac{2n}{d}\right]! \right)_r. \end{split}$$

Theorem 3.5. Let r be an odd prime, $r \neq p$, $q = p^a$, and $d = o(q + r\mathbb{Z})$. Then the following hold:

- (i) If d is odd, then any canonically embedded GL(n,q) contains a Sylow r-subgroup of Sp(2n,q).
- (ii) If d is even, d = 2t for $1 \le t \le n$ and n = at + b for $0 \le b < t$, then any canonically embedded subgroup $\operatorname{Sp}(2t,q) \wr S_a \times \operatorname{Sp}(2b,q)$ contains a Sylow r-subgroup of $\operatorname{Sp}(2n,q)$ which is isomorphic to $Z_{(q^t-1)_r} \wr T$, where T is a Sylow r-subgroup of S_a .

Proof. (i) It follows from Lemma 3.1.

(ii) It is an immediate consequence of Lemma 3.3 and Remark 2.5.

Revista Matemática Complutense 2005, 18; Núm. 2, 329–338

We are left with the remaining case r = 2, which will be settled by the following theorem.

Theorem 3.6. The Sylow 2-subgroups of Sp(2n,q) are $D \wr T$ where D is a Sylow 2-subgroup of Sp(2,q) = SL(2,q), T is a Sylow 2-subgroup of S_n , and q is odd.

Proof. By Lemma 2.4, we obtain

$$|\operatorname{Sp}(2n,q)|_2 = \prod_{i=1}^n (q^{2i} - 1)_2 = \prod_{i=1}^n i_2(q^2 - 1)_2 = (q^2 - 1)_2^n (n!)_2.$$

So we have an orthogonal decomposition subgroup $\operatorname{Sp}(2,q) \wr Sn \leq \operatorname{Sp}(2n,q)$. Hence the Sylow 2-subgroups of $\operatorname{Sp}(2n,q)$ are as in the Theorem. \Box

4. The Sylow r-subgroups of the symmetric group S_n

To complete the description of the Sylow r-subgroups of GL(n,q) and Sp(2n,q), we investigate the Sylow r-subgroups of S_n . The following results are useful.

Lemma 4.1. Let r and p be different primes. If n = pm + r, $0 \le r < p$. Then $(n!)_p = p^m([\frac{n}{p}]!)_p$.

Proof. We have the identities

$$(n!)_p = \prod_{i=1}^n i_p = \prod_{j=1}^{\left[\frac{n}{p}\right]} (jp)_p = \prod_{j=1}^{\left[\frac{n}{p}\right]} pj_p = p^{\left[\frac{n}{p}\right]} \prod_{j=1}^{\left[\frac{n}{p}\right]} j_p = p^{\left[\frac{n}{p}\right]} (\left[\frac{n}{p}\right]!)_p. \qquad \Box$$

Corollary 4.2. A Sylow p-subgroup of S_n is isomorphic to $Z_p \wr T$, where Z_p is a Sylow p-subgroup of S_p and T is a Sylow p-subgroup of S_m .

Theorem 4.3. If T_n is a Sylow p-subgroup of S_n , then $T_n = Z_p \wr (Z_p \wr (Z_p \wr T_{[n/p^3]}))$. (It is a recursive relation.)

Proof. Let S_n act on a set Ω of size n. Let n = pm + r, where $0 \le r < p$. Consider a partition of Ω by the sets A_1, A_2, \ldots, A_m , Γ , where $|A_i| = p$ and $|\Gamma| = r$. We have that $\Omega = \bigcup_{i=1}^m A_i \cup \Gamma$ is a disjoint union. The stabilizer of this partition in S_n is $H = (S_p \wr S_m) \times S_r$, which contains a subgroup $S = Z_p \wr T$ where Z_p is a Sylow p-subgroup of S_p and T is a Sylow p-subgroup of S_m . By changing the orders we see that if T_n is a Sylow p-subgroup of S_n , then $T_n = Z_p \wr T_{[n/p]}$ where $T_{[n/p]}$ is a Sylow p-subgroup of $S_{[n/p]}$, and $T_{[n/p]} = Z_p \wr T_{[[n/p]/p]} = Z_p \wr T_{[n/p^2]}$. Hence $T_n = Z_p \wr (Z_p \wr T_{[n/p^2]}) = Z_p \wr (Z_p \wr (Z_p \wr T_{[n/p^3]}))$. It is a recursive relation. \Box

Revista Matemática Complutense 2005, 18; Núm. 2, 329–338

5. A question

What are the conditions on r and q that force the Sylow r-subgroups of GL(n,q) to be maximal nilpotent? To answer this question we prove the following theorem.

Theorem 5.1. Let r, p be two distinct primes, $d = o(q+r\mathbb{Z})$ where $q+r\mathbb{Z} \in (\mathbb{Z}/r\mathbb{Z})^*$. Suppose that n = md+k, $0 \le k < d$, and R is a Sylow r-subgroup of $\operatorname{GL}(n,q)$. If R is maximal nilpotent, then $n \equiv 0, 1 \pmod{d}$ and $q^d - 1 = r^i$ for some positive integer i. Proof. Let S be a Sylow r-subgroup of $\operatorname{GL}(d,q)$. By Schur's Lemma S is cyclic and $|S| = (q^d - 1)_r$. If R is a Sylow r-subgroup of $\operatorname{GL}(n,q)$, then $R = S \wr T$ where T is a

Sylow *r*-subgroup of S_m .

In a matrix form,

$$S = \left\{ \begin{bmatrix} x_1 & & & \\ & x_2 & & \\ & & \ddots & \\ & & & x_m & \\ & & & & I \end{bmatrix} \middle| \begin{array}{c} x_i \in S \\ x_i \in S \\ \end{array} \right\},$$

where x_i is a $d \times d$ matrix and I is the identity $k \times k$ matrix. Now we prove that $C_{\mathrm{GL}(n,q)}(R)$ is contained in R if R is maximal nilpotent.

Let $x \in C_{\mathrm{GL}(n,q)}(R)$. This implies that $\langle R, x \rangle$ is again nilpotent. Since R is maximal nilpotent, it follows that $R = \langle R, x \rangle$. Thus $x \in R$. It is obvious that all elements

where K is any $k \times k$ matrix and $x \in C_{\mathrm{GL}(d,k)}(S)$, are contained in $C_{\mathrm{GL}(n,q)}(R)$. So if R is maximal nilpotent, all these elements must be contained in R. Finally, set

$$U = \left\{ \begin{bmatrix} x & & & \\ & x & & \\ & & \ddots & \\ & & & x \\ & & & & K \end{bmatrix} \middle| x \in C_{\mathrm{GL}(d,q)}(S), \quad K \in \mathrm{GL}(k,q) \right\}.$$

Then $U \leq C_{GL(n,q)}(R)$. So, if R is maximal nilpotent, this implies $U \leq R$ and hence U must be a r-group. Thus $|U| = |C_{GL(d,q)}(S)| |GL(k,q)| = (q^d - 1)|GL(k,q)|$ must be a power of r. Thus $d^q - 1 = r^i$ and $|GL(k,q)| = r^j$, this implies, k must be at most 1, hence k = 0 or 1, which means $n \equiv 0, 1 \pmod{d}$.

Revista Matemática Complutense 2005, 18; Núm. 2, 329–338

Acknowledgements. The authors are grateful to Hans J. Schaeffer for his helpful discussions.

References

- M. Aschbacher, *Finite group theory*, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986.
- [2] R. Carter and P. Fong, The Sylow 2-subgroups of the finite classical groups, J. Algebra 1 (1964), 139–151.
- [3] C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2) 7 (1955), 14–66.
- [4] R. Ree, On some simple groups defined by C. Chevalley, Trans. Amer. Math. Soc. 84 (1957), 392–400.
- [5] A. J. Weir, Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p, Proc. Amer. Math. Soc. 6 (1955), 529–533.

Revista Matemática Complutense 2005, 18; Núm. 2, 329–338