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ABSTRACT

In this note, we show that if b > 1 is an integer, f(X) ∈ Q[X] is an integer valued
quadratic polynomial and K > 0 is any constant, then the b-adic number∑

n≥0

an

bf(n)
,

where an ∈ Z and 1 ≤ |an| ≤ K for all n ≥ 0, is neither rational nor quadratic.
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Introduction

There are many studies dealing with criteria to decide, from their base b expansions,
the irrationality or transcendence of real numbers. For example, it is an easy ap-
plication of Ridout’s Theorem in Diophantine approximations that a number of the
form ∑

n≥0

an

bun

is transcendental whenever b > 1 is an integer, an are integers which are bounded,
(un)n≥0 is a sequence of positive integers with lim infn un+1/un > 1 and an 6= 0 for
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infinitely many n. A stronger result appears in [2], where it is shown that if (un)n≥0

is a sequence of positive integers such that the estimate

#{n ≤ x : un < x } < cxδ (1)

holds for large enough values of x, where c is some constant, then∑
n≥0

1
2un

(2)

cannot be algebraic of degree smaller than 1/δ. In particular, if estimate (1) holds
for a sequence of δ tending to zero, then the number shown at (2) is transcendental.
While the above result is too weak to allow one to decide if

z =
∑
n≥0

1
2n2

is quadratic or not, in [2] it is shown that most binary digits of z2 are 0 and therefore
z is not quadratic (the stronger assertion that z is fact transcendental follows from
known results about about the transcendence of values of theta functions at algebraic
arguments, as is shown in [3, 5]). In this note, we generalize the above result in two
ways: by replacing n2 with any quadratic polynomial which is integer valued, and by
allowing arbitrary coefficients subject to the restriction that they are bounded and
nonzero.

In what follows, for a positive integer n we write τ(n) for the number of divisors
of n. For a real number x > 1 we write log x for the natural logarithm of x. We use
p to denote a prime number. We use the Vinogradov symbols � and �, as well as
the Landau symbols O, o, and �, with their regular meanings. Recall that A � B,
B � A, and A = O(B) are all equivalent and mean that |A| ≤ c|B| holds with some
positive constant c, and that A � B means that both A � B and B � A hold.
Finally, A = o(B) means that the ratio A/B tends to zero. All implied constants
may depend on the given data.

1. The main result

Our main result is the following:

Theorem 1.1. Let b > 1 be an integer, f(X) be an integer valued quadratic polyno-
mial with positive leading term and K > 1 be any real number. Then the number

z =
∑
n≥0

an

bf(n)
(3)

is not algebraic of degree ≤ 2 provided that an ∈ Z is such that 1 ≤ |an| ≤ K holds
for all positive integers n.
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Since the number which appears in the title of this article is

.2222 . . .− .101001000 . . . =
2
9
−

∑
k≥0

1
10k(k+3)/2+1

,

we get that this number is not rational or quadratic. We point out that it is not
known whether this number is transcendental. (See also [1] where a base 3 variant of
this number appears.) We also mention that Duverney [4] proved that if q ≥ 2 is an
integer, then ∑

n≥0

1
qn(n+1)/2

is neither rational nor quadratic, which is a particular instance of our Theorem 1.1.

2. The proof

The proof of our Theorem 1.1 uses some elements from [7], although it is somewhat
easier.

We begin by simplifying the problem. Replacing n by n+n0 where n0 is any fixed
positive integer, we may assume that an 6= 0 for all n ≥ n0. Multiplying z by bf(0),
we may assume that f(0) = 0. Let

Uz2 + V z + W = 0 (4)

be an equation with integer coefficients U , V , W , not all zero. Let us prove that
U 6= 0. Indeed, if U = 0, then V 6= 0 because otherwise U = V = W = 0. Replacing
z by V z+W (which can be done by replacing a0 by V a0 +W , an by V an for all n > 0
and K by K(|V | + |W |)), it follows that it suffices to show that z 6= 0. However, if
z = 0, we then get the equation

An

bf(n)
= − an+1

bf(n+1)
−

∑
m≥n+2

am

bf(m)
, (5)

where An is an integer. Since f(n + 1) − f(n) is a linear polynomial with positive
leading term which is integer valued, it follows that f(n + 1)− f(n) ≥ n + c where c
is a constant. Equation (5) now shows that

|An| �
1

bf(n+1)−f(n)
� 1

bn
,

which for large n implies that An = 0. Using again equation (5) we deduce that

an+1

bf(n+1)
= −

∑
m≥n+2

am

bf(m)
,
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which, by the same argument as above, leads to

|an+1| �
1

bf(n+2)−f(n+1)
� 1

bn
,

which is impossible for large n because |an+1| ≥ 1.
We may therefore assume that U 6= 0. The above equation (4) is equivalent to

(Uz + V )2 + (4UW − V 2) = 0.

By replacing z by Uz +V (which can be done by replacing a0 by Ua0 +V , an by Uan

for all n > 0 and K by K(|U |+ |V |)), it follows that it suffices to show that z2 /∈ Z.
Let d = gcd{ f(n) | n ≥ 0 }. By replacing f(x) by f(x)/d and b by bd, it follows that
we may assume that d = 1. Since d = 1 and f(0) = 0, it follows that we may write
f(X) = aX(X + 1)/2 + bX, where a = f(2)− f(1) ∈ Z \ {0}, b = 2f(1)− f(2) ∈ Z,
a and b are coprime if a is odd and a/2 and b are coprime if a is even. The relation
z2 ∈ Z is equivalent to ∑

n≥0

cn

bn
∈ Z, (6)

where
cn :=

∑
(u,v)

f(u)+f(v)=n

auav.

We observe that n = f(u) + f(v) if and only if

4an + (a + 2b)2 = (au + av + a + 2b)2 + (au− av)2.

Thus, if we denote by r2(n) the number of ways of writing n as a sum of two squares
of integers, we have cn � r2(4an + (a + 2b)2). Furthermore, it is known that if

n =
k∏

i=1

pαi
i

is the prime factorization of n, then r2(n) = 0 if there exists j ∈ {1, . . . , k} such that
pj ≡ 3 (mod 4) and αj is odd, and

r2(n) ≤ { (u, v) ∈ Z2 : u2 + v2 = n } = 4
∏

1≤i≤k
pi≡1 (mod 4)

(αi + 1) ≤ τ(n),

otherwise. In particular, cn � τ(4an + (a + 2b)2). We shall prove the theorem only
when a is odd, and we will indicate how to adapt the proof when a is even. Our
strategy will be to prove that Theorem 1.1 is a consequence of the following lemma.
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Lemma 2.1. For a positive real number x we write t(x) := log x, m(x) := bt(x)1/3c
and s(x) := bt2(x)c. There exists an infinite set A of positive integers n such that the
following properties hold.

(i) 1 ≤ |cn| � 1,

(ii) cn±i = 0 for all i = 1, . . . ,m(n),

(iii) τ(4a(n + i) + (a + 2b)2) < exp(t(n)1/4) for all i = 1, . . . , s(n).

Let us start by showing that, as claimed, in case a is odd Theorem 1.1 is a
consequence of this lemma. Suppose, hence, Lemma 2.1 proved. For n ∈ A write
equation (6) as ∑

m<n

cm

bm
∈ −

∑
m≥n

cm

bm
+ Z.

By condition (ii) of Lemma 2.1, the above equation leads to an equation of the form

Bn

bn−m(n)
=

cn

bn
+

∑
n+m(n)≤m≤n+s(n)

cm

bm
+

∑
m>n+s(n)

cm

b
,

where Bn is an integer. Clearly, by condition (iii) of Lemma 2.1, we have∑
n+m(n)≤m≤n+s(n)

cm

bm
�

∑
n+m(n)≤m≤n+s(n)

τ(4am + (a + 2b)2)
bm

� s(n) exp(t(n)1/4)
bn+m(n)

<
1

bn+
m(n)

2

,

where the last inequality above holds for large n. Once m is large, we have that
τ(4am + (a + 2b)2) < m; hence,∑

m>n+s(n)

cm

bm
�

∑
m>n+s(n)

τ(4am + (a + 2b)2)
bm

<
∑

m>n+s(n)

m

bm

� n

bn+s(n)
<

1

bn+
m(n)

2

,

where the last inequality holds for large values of n. Thus, for large n ∈ A, we have

Bn

bn−m(n)
=

cn

bn
+ O

(
1

bn+
m(n)

2

)
. (7)

Using the fact that |cn| � 1 (see (i) of Lemma 2.1), the above relation shows that

|Bn| �
1

bm(n)
,
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and since Bn is an integer, it follows that Bn = 0 for large n. This together with
equation (7) leads to

cn = O
( 1

bm(n)/2

)
,

which is impossible for large n because by (i) of Lemma 2.1 we have that cn is a
nonzero integer.

It remains to prove Lemma 2.1.

Proof of Lemma 2.1. Let g(X, Y ) ∈ Q[X, Y ] be the quadratic polynomial given by
g(X, Y ) = (2aX + 2b)2 + a2(2Y + 1)2. We recall the following result from [6].

Theorem 2.2. Let P (X, Y ) ∈ Z[X, Y ] be a polynomial of degree two of the form

P (X, Y ) = AX2 + BXY + CY 2 + DX + EY + F

with gcd(A,B,C, D, E, F ) = 1, irreducible in Q[X, Y ], which represents arbitrarily
large odd numbers and depends essentially on two variables. Then

(i)
x

log x
�

∑
p≤x

p=P (r,s)

1,

if ∆ = AF 2−BEF + CE2 + (B2− 4AC)G = 0 or ∆1 = B2− 4AC is a perfect
square,

(ii)
x

(log x)3/2
�

∑
p≤x

p=P (r,s)

1,

otherwise.

One checks now immediately that

g(X, Y ) = (4a2)X2 + (4a2)Y 2 + (8ab)X + (4a2)Y + (4b2 + a2)

satisfies all the conditions (i) of the above Theorem 2.2. Let

C(x) := { p > x : p prime, p = g(r, s) for some r, s ∈ Z>0}.

It then follows that for large enough x, we have #C(x) � x/ log x. Of the primes in
C(x), only a subset C1(x) of cardinality O(x1/2) satisfies that |r− s| ≤ n0 + 1 + 2|b/a|
and 2r ≤ 1 + 2|b/a|. Thus, we may look only at the primes p ∈ C(x) \ C1(x). Such
primes satisfy the conditions |r − s| > n0 + 1 + 2|b/a| and 2r > 1 + 2|b/a|.

If we restrict our attention to such primes, we see that the integer r − s takes
the same sign in a subset C2(x) of them with #C2(x) � x/ log x. We will assume
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that r > s, for the case r < s can be dealt with in a similar way. Setting u = r + s
and v = r − s − 1, we note that both u and v are positive integers greater than
n0, au + av + a + 2b = 2ar + 2b and au − av = a(2s + 1). Thus, p = g(r, s) =
(au + av + a + 2b)2 + (au − av)2. Therefore, if we set n(p) = (p − (a + 2b)2)/4a for
the primes p ∈ C2(x), we have that n(p) = f(u) + f(v). We now show that for most
primes in C2(x), the two pairs (u, v) and (v, u) with u and v constructed as above are
the only ones such that n(p) = f(u) + f(v).

Since p is prime, it follows that the only integer solutions (α, β) of the equation
p = α2 + β2 are (α, β) = (±λ,±ν), where λ = 2ar + 2b and µ = a(2s + 1). We
may hence assume that au1 + av1 + a + 2b = ε1λ and au1 − av1 = ε2µ, where
ε1, ε2 ∈ {±1}. When (ε1, ε2) ∈ { (1, 1), (1,−1) }, we get (u1, v1) = (u, v) and (v, u),
respectively, which are already accounted for. When (ε1, ε2) = (−1,−1), we get
au1 + av1 + a + 2b = −2ar − 2b, therefore u1 + v1 = −2r − 1 − 2b/a, which is
impossible because the right hand side of this equation is negative and the left hand
side of it is positive, while when (ε1, ε2) = (−1, 1), we get u1 = s− r− 2b/a, which is
again negative because r − s is positive and > 2b/a. Thus, for the primes p ∈ C2(x),
the corresponding numbers n(p) satisfy that cn(p) = 2auav, and since both u and
v are larger than n0, it follows that cn(p) fulfills (i) of Lemma 2.1. We now show
that most of the numbers n(p) constructed from the primes p ∈ C2(x) fulfill both (ii)
and (iii) of Lemma 2.1 when x is large.

For (ii), it suffices to show that p ± 4ai is not a sum of two squares for
i = 1, . . . , bt(x)1/3c. Fix a number i. If p ± 4ai is a sum of two squares, then it
either is coprime to all primes q > t2(x) which are congruent to 3 modulo 4, or it is
divisible by the square of one such prime.

For every prime number q let

ρ(q) =

{
2, if t2(x) < q < x and q ≡ 3 (mod 4),
1, otherwise.

By Brun’s Sieve, the number Ni of primes p ∈ C2(x) such that p+4ai is free of primes
q > t2(x) which are congruent to 3 modulo 4 is

Ni � x
∏
q<x

(
1− ρ(q)

q

)
� x log log x

(log x)3/2
,

and the same is true for p−4ai. On the other hand, the number N ′
i of primes p ∈ C2(x)

such that p + 4ai < x + 4a log x < 2x is a multiple of q2 for some q > t2(x), certainly
does not exceed

N ′
i ≤

∑
q>t2(x)

2x

q2
� x

t2(x)
<

x log log x

(log x)3/2
,

and the same is true for p − 4ai. If we let i vary from 1 to bt(x)1/3c, we get that
the number M of primes p ∈ C2(x) such that n(p) does not satisfy condition (ii) of
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Lemma 2.1, verifies

M ≤ 2
∑

i≤t(x)1/3

(Ni + N ′
i) �

xt(x)1/3 log log x

(log x)3/2
=

x log log x

(log x)7/6
.

Since #C2(x) � x/ log x, we get that for most of the primes p ∈ C2(x), the num-
ber n(p) satisfies (ii) of Lemma 2.1. Finally, we will take care of condition (iii) of
Lemma 2.1. Since #C2(x) � x/ log x and there are O(x/ log2 x) primes p ≤ x/ log x,
we may assume that every prime p in C2(x) satisfies p > x/ log x. When p ∈ C2(x),
we have that the inequality

√
x <

x

log x
< p + 4ai < x + 4at2(x) < 2x

holds for all i ≤ t2(x). Fix a value for i. Since∑
n<2x

τ(n) = O(x log x),

it follows that only O(x log x exp(−(0.5 log x)1/4)) primes p < x can exist such that

τ(p + 4ai) > exp
(
(log(p + 4ai))1/4

)
> exp((0.5 log x)1/4) (8)

holds. Summing over i, we get that only O(x(log x)3 exp(−(0.5 log x)1/4)) primes
p < x can exist such that inequality (8) holds for some positive integer i ≤ t2(x). Since
this last function is o(x/ log x), and our set C2(x) of primes satisfies #C2(x) � x/ log x,
it follows that for most of the primes p ∈ C2(x), the number n(p) satisfies both
conditions (ii) and (iii) of Lemma 2.1. Putting n(p) in A for such primes p ≤ x and
letting x tend to infinity, we complete the proof of the lemma.

We end with some indications about how to proceed in the case in which a is even.
The proof in such case is similar to the one we have just described for a odd. Only the
polynomial g(X, Y ) is different. For example, when a/2 and b are of different parities,
then n = f(u)+f(v) if and only if an+(a/2+b)2 = (a(u+v+1)/2+b)2+(a(u−v)/2)2.
We may then take g(X, Y ) = (aX + b)2 + (a(2Y + 1)/2)2, and setting u = r + s and
v = r − s − 1, one checks easily that ar + b = a(u + v + 1)/2 + b and a(u − v)/2 =
a(2s + 1)/2. Hence, an + (a/2 + b)2 = (a(u + v + 1)/2 + b)2 + (a(u− v)/2)2 whenever
an + (a/2 + b)2 = g(r, s). Finally, when a/2 and b are both odd, we then have
an/2 + ((a + 2b)/4)2 = (au/2 + (a + 2b)/4)2 + (av/2 + (a + 2b)/4)2 and we may take
g(X, Y ) = (aX/2 + (a + 2b)/4)2 + (aY/2 + (a + 2b)/4)2. In both cases above, one
checks that condition (i) from the statement of Theorem 2.2 is fulfilled and so the
previous argument extends in these cases as well.
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3. Remarks

It can be seen that the number shown at (3) is irrational under the weaker condition
that an 6= 0 for infinitely many n. It is probably true that the number shown at (3)
is not quadratic under this weaker condition either, but we could not find a proof of
this fact. It can also be seen that the present proof of Theorem 1.1 shows that our
result remains also valid if instead of an remaining bounded we impose the condition
that an does not grow too fast with respect to n. (For example, the conclusion of
Theorem 1.1 remains true when |an| stays smaller than a fixed power of log n.) Our
proof also shows that ∑

n perfect power

an

bn
,

where an satisfy the hypothesis from the statement of Theorem 1.1 is not algebraic
of degree at most 2. (For this, note that if x is large, then there are at most O(x5/6)
positive integers n < x which are a sum of two perfect powers but not a sum of two
squares.) A similar method can be used to show that∑

n powerful

an

bn
,

where an satisfy again the hypothesis from the statement of Theorem 1.1 is not
algebraic of degree at most 2, but we shall provide the details of such an argument
with a different occasion.

More generally, one can ask if it is true that given a polynomial f(X) ∈ Q[X]
which is integer valued and of degree d ≥ 3 then

z =
∑
n≥0

an

bf(n)

is not algebraic of degree smaller than d whenever |an| ≤ K assuming either an 6= 0
for all n or just for infinitely many of them. We do not know how to deal with such
problems.
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