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ABSTRACT

In this paper we present constructions of real hypersurfaces with many simple
singularities and deduce an asymptotical optimal existence result for hypersur-
faces corresponding to T-smooth germs of the equisingular stratum. We proceed
along the lines of [7] where analogous results were shown for the complex case.

Key words: simple singularities, real hypersurfaces, patchworking method.

2000 Mathematics Subject Classification: 14J17, 14J70.

Introduction

In [7] the existence of complex hypersurfaces in Pn = CPn with many simple isolated
singularities (i.e., ADE singularities) was studied. If S1, . . . , Sr are simple singular-
ity types, it was shown that there exists a function R(d) ∈ O(dn−1) depending on
S1, . . . , Sr and n, such that the condition

r∑
i=1

kiµ(Si) ≤
dn

n!
−R(d) (1)

is sufficient for the existence of a reduced hypersurface W ⊂ Pn of degree d having ki

isolated singular points of the prescribed type Si, i = 1, . . . , r, as its only singularities.
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2005, 18; Núm. 2, 455–464

455
ISSN: 1139-1138



Eric Westenberger Real hypersurfaces with many simple singularities

Furthermore, the germ of the equisingular stratum is T-smooth at W , i.e., smooth of
the expected codimension

∑r
i=1 µ(Si) in the linear system |OPn(d)|. Note that (1) is

asymptotically optimal for hypersurfaces corresponding to T-smooth germs.
In this paper, we extend this result to real hypersurfaces in RPn. If S is a set

of (complex) ADE singularity types, then we write SR for the set of corresponding
real singularity types including pairs of complex conjugate points. For example if
S = {A1}, then SR consists of three types: real nodes with real tangents, isolated
nodes, and pairs of complex conjugate nodes. If S̄ denotes the type of a pair of
complex conjugate singular points of type S, we put µ(S̄) = 2µ(S).

We prove that if S is a finite set of (complex) ADE singularity types, and S1, . . . , Sr

∈ SR, then the condition

r∑
i=1

kiµ(Si) ≤
dn

n!
−R(d), R(d) ∈ O(dn−1), (2)

is sufficient for the existence of a real, reduced hypersurface W ⊂ RPn of degree d
having ki isolated singular points of type Si, i = 1, . . . , r, no other singular points,
and corresponding to a T-smooth germ.

Notice that condition (2) is again asymptotically optimal.

1. Real topological singularity types

Throughout this article W denotes a (real or complex) hypersurface having only
isolated singularities.

Let us recall some definitions and notions (see [3, 5]).

Definition 1.1. Let W1,W2 ⊂ Pn be reduced hypersurfaces, and let z1, z2 be isolated
singular points of W1, respectively W2.

(i) The germs (W1, z1), (W2, z2) are called topologically equivalent if there exists a
local homeomorphism ϕ : (Pn, z1) → (Pn, z2) mapping (W1, z1) to (W2, z2).

If W1,W2 are defined by real polynomials, then we define

(ii) If z1, z2 ∈ RPn then the germs are called topologically equivalent over R, if the
homeomorphism ϕ from (i) is equivariant with respect to complex conjugation.

(iii) If z1, z̄1 and z2, z̄2 are pairs of conjugate imaginary singular points of W1, re-
spectively W2, then the multi-germs (W1; z1, z̄1) and (W2; z2, z̄2) are called topo-
logically equivalent over R if there is a local equivariant homeomorphism of
multi-germs analogous to (i), (ii).

We call the equivalence classes topological types, respectively real topological types.
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Let us recall the classification of real, simple hypersurface singularities. This list
can be found in several references, for example [8]. The following table lists the
possible types of real, simple plane curve singularities.

Type Normal form (real) branches
A+

2k−1 (k ≥ 1) x2 + y2k 0
A−2k−1 (k ≥ 1) x2 − y2k 2
A2k (k ≥ 1) x2 + y2k 1
D+

2k (k ≥ 2) y(x2 + y2k−2) 1
D−

2k (k ≥ 2) y(x2 − y2k−2) 3
D2k+1 (k ≥ 2) y(x2 + y2k−1) 2
E6 x3 + y4 1
E7 x(x2 + y3) 1
E8 x3 + y5 1

Since all simple singularities have corank not bigger than 2, the higher dimensional
simple singularities are by the real splitting lemma equivalent to

f(x1, x2)± x2
3 ± · · · ± x2

n, (3)

where f is one of the normal forms from the table above. Notice however that for
example x3 + y5 + z2 ∼ x3 + y5 − z2, hence not all the possible normal forms in (3)
yield in fact different types.

The following list shows all different types of simple surface singularities.

Type Normal form (real) branches
A1a x2 + y2 + z2 0
A1c x2 + y2 − z2 2
A2k−1a (k ≥ 2) x2 + y2k + z2 0
A2k−1b (k ≥ 2) x2 − y2k + z2 2
A2k−1c (k ≥ 2) x2 − y2k − z2 2
A2ka (k ≥ 1) x2 + y2k + z2 1
A2kb (k ≥ 1) x2 + y2k − z2 1
D2ka (k ≥ 2) y(x2 + y2k−2) + z2 1
D2kb (k ≥ 2) y(x2 − y2k−2) + z2 3
D2k+1a (k ≥ 2) y(x2 + y2k−1) + z2 2
D2k+1b (k ≥ 2) y(x2 + y2k−1)− z2 2
E6a x3 + y4 + z2 1
E6b x3 + y4 − z2 1
E7 x(x2 + y3) + z2 2
E8 x3 + y5 + z2 1
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2005, 18; Núm. 2, 455–464



Eric Westenberger Real hypersurfaces with many simple singularities

Definition 1.2. Let (W, z) ⊂ (Cn, z) be an isolated hypersurface singularity locally
defined by f ∈ C{x} = C{x1, . . . , xn}. Assume that f is analytically equivalent to

g(x1, x2) + x2
3 + · · ·+ x2

n.

Then we define the ideal Ies(W, z) ⊂ C{x} to be

Ies(g) + 〈x3, . . . , xn〉,

where Ies(g) is the equisingular Tjurina ideal ([2]).
The equisingular Tjurina number of (W, z) is defined by

τ es(W, z) := τ es(g) := dimC(C{x}/Ies(g)).

Recall that for an ADE singularity S the equisingular Tjurina number τ es(S) is
equal to the Milnor number µ(S).

Let us introduce the real equisingular stratum. For details we refer to [2, 3, 5].

Definition 1.3. Given real types S1, . . . , Sr of corank ≤ 2, let

V n
d (S1 + . . . + Sr) ⊂ |ORPn(d))|

be the (locally closed) space of all reduced hypersurfaces W ⊂ RPn of degree d having
r isolated singular points z1, . . . , zr of types S1, . . . , Sr as their only singularities. We
call V n

d (S1 + . . . + Sr) the real equisingular stratum.
The germ of V n

d (S1 + . . .+Sr) at a hypersurface W (or, by abuse of notation, the
hypersurface itself) is called T -smooth if it is smooth and of the expected dimension(

d + n

n

)
− 1−

r∑
i=1

τ es(Si).

Note that we have to require that the corank is ≤ 2 since we use the topological
type, which does not behave well in higher dimensions (cf. [4]).

We start by making a few general remarks concerning real singularity types:

(i) The real equisingular stratum is locally the real part of the complex equisingular
stratum. This implies in particular that if the complex ES-stratum is T-smooth,
then the real stratum is also T-smooth (cf. [3]).

(ii) The real topological type S of a real curve singularity is determined by the
(µ(S) + 1)-jet of a defining equation (cf. [1]).

(iii) For unibranched singularities, the real topological type is uniquely determined
by the complex type since their resolution tree is a chain. For other singularities
the real type depends not only on the multiplicity sequence, but also on the
position of the infinitely near points (cf. [3]).
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We recall the definition of the number αreg
n (S) from [7]:

Definition 1.4. Fix n ≥ 2, and let S be a set of some real topological singularity
types. Then we define Areg

n (S) to be the set of all α ∈ R such that there exists a
function R(d) ≤ βdn−1 with β > 0, depending only on n, α, and S, with the property:

If for some subset {S1, . . . , Sr} ⊂ S and positive integers k1, ..., kr, the
relation

r∑
i=1

kiτ
es(Si) ≤ α · dn −R(d)

holds true, then there is a real hypersurface W ∈ V n
d (k1S1 + · · · + krSr)

corresponding to a T -smooth germ.

Put αreg
n (S) = supAreg

n (S).

2. Patchworking real singular hypersurfaces

We construct hypersurfaces with prescribed singularities via the patchworking method
for singular hypersurfaces [6]. We apply it as described in [7].

Let us briefly recall the necessary definitions and statements.

Definition 2.1. For ∆ ⊂ Rn
+ compact, denote by P(∆) ⊂ R[x] the space of all real

polynomials with monomials corresponding to integral points of ∆.
If F =

∑
ω∈∆∩Zn aωxω ∈ P(∆) and ∆+ ⊂ ∆ put

F∆+ :=
∑

ω∈∆+∩Zn

aωxω.

If F ∈ P(∆) and ∆+ ⊂ ∆, put

P(∆,∆+, F ) := {G ∈ P(∆) | F∆+ = G∆+}.

Definition 2.2. Let F ∈ R[x1, . . . , xn] be a polynomial of degree d with only isolated
singular points z1, . . . , zr in (C∗)n and whose Newton polytope ∆ has dimension n.
If ∆+ is a union of faces of ∂∆, then we call the triple (∆,∆+, F ) transversal if the
natural map

P(∆,∆+, F ) −→
r⊕

i=1

OPn,zi/Ies(W, zi)

is surjective, where W is the hypersurface defined by F .

The following remark justifies the name of “transversality” (cf. [6]).

459 Revista Matemática Complutense
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Remark 2.3. Let F ∈ C[x] be as in Definition 2.2 and let d ≥ deg(F ). Denote
by Md(F ) ⊂ C[x]≤d the germ at F of the equisingular stratum corresponding to the
singularities of F in (C ∗)n. Then a triple (∆,∆+, F ) as in Definition 2.2 is transversal
if and only if for d � 0 the intersection

Md(F ) ∩ P(∆,∆+, F ) ⊂ C[x]≤d

is transversal.

Notation 2.4. Let ∆1∪. . .∪∆N be a polyhedral subdivision of a convex polytope ∆.
If Γ is an orientation of the dual graph of the subdivision, define ∆k,+, k = 1, . . . , N ,
to be the union of those facets of ∆k which “go into” ∆k with respect to Γ, i.e.,
∆k,+ = ∪(j,k)∈Γ∆j ∩∆k ⊂ ∂∆k.

Theorem 2.5 (Patchworking of singular hypersurfaces). Assume we are given

• a convex subdivision ∆ = ∆1 ∪ . . .∪∆N of a convex polytope ∆ of dimension n,

• real polynomials F1, . . . , FN such that

(a) Fk has Newton polytope ∆k and only isolated singular points in (C∗)n,
k = 1, . . . , N ,

(b) Fk is peripherally nonsingular (PNS), i.e., for all faces σ ⊂ ∆k, the trun-
cation Fσ has no singular points in the torus (C∗)n, k = 1, . . . , N ,

• subsets ∆k,+ ⊆ ∂∆k given by an orientation of the dual graph of the subdivision
without oriented cycles (in the sense of Notation 2.4), such that the triples
(∆k,∆k,+, Fk) are transversal for k = 1, . . . , N .

Then there exists a real polynomial F ∈ P(∆) such that there a bijection between
the set of singular points of F in (C∗)n and the disjoint union of the singular points
of F1, . . . , FN in (C∗)n and the corresponding singular points have the same real topo-
logical type.

Proof. See [6].

The following theorem is the real counterpart of the stabilization theorem proven
in [7].

Theorem 2.6. Let n > 2, and let S be a set of real topological singularity types
of corank ≤ 2 and with supS∈S τ es(S) < ∞. For S ∈ S, let fS ∈ R{x1, . . . , xn−1}
be a representative of this singularity. Let S̃ be the set of real types defined by the
polynomials

fS ± x2
n, S ∈ S.

Then

αreg
n (S̃) ≥

αreg
n−1(S)

n
.

Furthermore, if αreg
n−1(S) ∈ Areg

n−1(S), then αreg
n−1(S)/n ∈ Areg

n (S̃).
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Proof. For complex hypersurfaces the theorem was shown in [7]. The adoption to the
real case is simple. If f(x1, . . . , xn−1) is a real PNS polynomial of degree d−1 having
only isolated singular points. Then we consider the real polynomials

F±(x1, . . . , xn) = ±(xn − f − 1)2 − f2 − 2f = 0,

which satisfy the same properties as in the complex case and cover the two appearing
real types. Then we proceed as in [7].

Note that pairs of imaginary points are kept during this construction.

3. Constructing curves with many real simple singularities

We shall proceed as in [7] and show that we can find polynomials defined over the
real numbers with the desired singularity. After that we will deal with the existence
of pairs of imaginary singular points.

3.1. Polynomials with one (or two) simple singularities

In the case of Aµ-singularities, we use the quadrangles

∆Aµ
= Conv{ (1, 0), (0, 1), (0, 2), (µ, 1) },

where Conv(A) ⊂ R2 denotes the convex hull of the finite set A ⊂ Z2. Furthermore,
let ∆+ = [(0, 2), (0, 1)] ∪ [(0, 1), (1, 0)], where for P,Q ∈ Z2, [P,Q] is the line segment
connecting P and Q.

Lemma 3.1. Let µ ≥ 1, ∆ = ∆Aµ
.

(i) If µ = 2k, then there exists an open ball B ⊂ P(∆+) such that for all b ∈ B
there exists a PNS polynomial f ∈ P(∆,∆+, b) such that the complex curve
defined by f has a real Aµ-singularity as its only singular point in (C∗)2, and
the triad (∆,∆+, f) is transversal.

(ii) If µ = 2k−1, then there exist open balls B± ⊂ P(∆+) such that for all b± ∈ B±
there exist PNS polynomials f± ∈ P(∆,∆+, b±), such that the complex curve
defined by f± has a real A±µ -singularity as its only singular point in (C∗)2, and
the triads (∆,∆+, f±) are transversal.

Proof. If S = Aµ we consider the polynomials

f(x, y) = ay2 − 2y ·Q(x) + cx, ac 6= 0, deg Q = µ, Q(0) 6= 0,

as in the proof of [7, Lemma 4.1]. For a singular point (α, β) ∈ (C∗)2 of f to be of
type Aµ, we choose a branch of

√
acx in a neighborhood of x = α, and demand that

Q(x)−
√

acx = (x−α)µ+1ϕ(x), with a function ϕ(x) holomorphic in a neighborhood
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of x = α (cf. [7]). If we choose B such that acx > 0 around α, we can solve this
system over the real numbers as in [7].

Furthermore, the sign of Q(0) determines the choice of the branch of
√

acx and
hence, if µ = 2k − 1, the corresponding real type A+

2k−1 or A−2k−1.

For the Dµ-singularities we use the rectangles

∆Dµ := Conv{(0, 0), (µ, 0), (µ, 2), (0, 2)},

and ∆+ = [(0, 0), (0, 2)] ∪ [(0, 0), (µ, 0)].

Lemma 3.2. Let µ ≥ 4, ∆ = ∆Dµ
.

(i) If µ = 2k− 1, then there exists an open ball B ⊂ P(∆+) such that for all b ∈ B
there exists a PNS polynomial f ∈ P(∆,∆+, b) such that the complex curve
defined by f has a real Dµ-singularity as its only singular point in (C∗)2, and
the triad (∆,∆+, f) is transversal.

(ii) If µ = 2k, then there exist open balls B± ⊂ P(∆+) such that for all b± ∈ Bi

there exist PNS polynomials f± ∈ P(∆,∆+, b±), such that the complex curve
defined by f± has a real D±

µ -singularity as its only singular point in (C∗)2, and
the triads (∆,∆+, f±) are transversal.

Proof. We consider the polynomials

f(x, y) = (x− α1)(x− α2)
(
y2 · P (x)− 2y ·Q(x) + R(x)

)
.

If we assume that all roots of R are real, then we can solve the system appearing in
the proof of [7, Lemma 4.2] over the real numbers. Since we require that

PR−Q2 = c · (x− α1)µ−2(x− α2)µ−2,

we see that the type depends on the sign of c if µ = 2k. But in this case the sign of c
is determined by the sign of P (0) · R(0) −Q2(0), which implies that both types can
be constructed.

Remark 3.3. Real polynomials with the Newton polytopes

∆E6 = Conv{(0, 0), (4, 0), (0, 3), (4, 3)},
∆E7 = Conv{(1, 0), (3, 0), (3, 4), (2, 5), (0, 5), (0, 1)},
∆E8 = Conv{(0, 0), (4, 0), (0, 4), (4, 4)},

and two real E6, respectively E7, respectively E8, singularities were already con-
structed in [7].
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3.2. Pairs of complex conjugate singularities

We apply the following simple

Lemma 3.4. Let ∆ ⊂ R2
+ be a Newton polytope and let f ∈ P(∆) be a polynomial

having singular points z1, . . . , zr ∈ (R∗)2 of complex types S1, . . . , Sr as its singular
points in (C∗)2 with zi = (xi, yi) and xi < 0.

(i) The polynomial F (x, y) = f(x2, y) has r pairs of complex conjugate points of
type S1, . . . , Sr.

(ii) Let T : Z2 → Z2 be defined by T (i, j) = (2i, j) and assume that the triple
(∆,∆+, f) is transversal, where ∆+ is a union of faces of ∆. Then the triple
(T (∆), T (∆+), F ) is also transversal.

Proof. (i) is clear.
For (ii) notice that transversality is equivalent to the fact that the coefficients of

integral points of ∆ \ ∆+ can be defined as smooth functions of the coefficients on
∆+ ∩ Z2 (cf. [7]).

3.3. Application of the patchworking method

The volumes of the Newton polytopes from Lemmas 3.1, 3.2, 3.4 and Remark 3.3 are
always equal to the sum of Milnor numbers of the singular points of the constructed
polynomials. Thus, we obtain

Proposition 3.5. Let {S1, . . . , Sr} be a finite set of real, simple singularity types,
and let m = supi=1,...,r{µ(Si)}. If

r∑
i=1

kiµ(Si) ≤
1
2
d2 −md− 3

then there exists a real curve C ⊂ RP2 of degree d with ki singularities of type Si, for
i = 1, . . . , r, and no further singular points. Moreover, the real equisingular stratum
is T-smooth at C.

Proof. Apply Lemmas 3.1, 3.2, 3.4 and Remark 3.3 exactly as in [7, Corollary 4.4] to
obtain the result.

Corollary 3.6. If S is a finite set of real, simple singularity types, then

αreg
n (S) =

1
n!

.
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[1] V. I. Arnol’d, S. M. Gusĕın-Zade, and A. N. Varchenko, Singularities of differentiable maps.
Vol. II, Monographs in Mathematics, vol. 83, Birkhäuser Boston Inc., Boston, MA, 1988.
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