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ABSTRACT

In this work the properties of Cartan subalgebras and weight spaces of finite

dimensional Lie algebras are extended to the case of Leibniz algebras. Namely,

the relation between Cartan subalgebras and regular elements are described,

also an analogue of Cartan’s criterion of solvability is proved.
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Introduction

The present work is devoted to the investigation of the Leibniz algebras, which were
introduced by J.-L. Loday in [10] and considered further in works [5–8,11].

In studying the properties of the homology of Lie algebras Loday noted that
if in the definition of an n-th chain the exterior product is changed by the tensor
product then in order to prove the derived property defined on chains it is sufficient
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that the algebra satisfies the Leibniz identity instead of antisymmetricity and Jacobi
identities. This motivated the introduction of Leibniz algebras, which are a “non skew-
symmetric” generalization of Lie algebras. For Leibniz algebras a natural problem
arises — to prove analogues of theorems from the theory of Lie algebras.

In the structure theory of finite dimensional Lie algebras it is known that an
arbitrary Lie algebra is decomposed into the direct sum of solvable and semisimple
parts. In Malcev’s work [12] it was shown that the description of solvable Lie algebras
is reduced to the description of nilpotent algebras.

Investigations of nilpotent Leibniz algebras [1–3] show that many nilpotent prop-
erties of Lie algebras can be extended to the case of nilpotent Leibniz algebras.

In the structure theory of Lie algebras the crucial role is played by Cartan sub-
algebras and the decomposition of algebras into weight (root) spaces with respect to
Cartan (or nilpotent) subalgebras.

In non-Lie Leibniz algebras the ideal generated by squares of elements of the
algebra is very important. It is easy to see that this ideal for such algebras is abelian
and non trivial.

In the present paper we consider a similar approach to the investigation of Cartan
subalgebras and weight spaces of Leibniz algebras.

1. Preliminaries

Definition 1.1. An algebra L over a field F is called Leibniz algebra if for any
x, y, z ∈ L the Leibniz identity

[x, [y, z]] = [[x, y], z] − [[x, z], y]

holds, where [·, ·] is a bilinear multiplication in L.

Note that if in L the identity [x, x] = 0 holds, then the Leibniz and Jacobi identities
coincide. Thus, Leibniz algebras are a “noncommutative” analogue of Lie algebras.

For an arbitrary algebra we define the sequences:

(i) L[1] = L, L[n+1] = [L[n], L[n]];

(ii) L1 = L, Ln+1 = [L1, Ln] + [L2, Ln−1] + · · · + [Ln−1, L2] + [Ln, L1].

Definition 1.2. An algebra L is called solvable if there exists m ∈ N such that
L[m] = 0.

An algebra L is called nilpotent if there exists s ∈ N such that Ls = 0.

For an arbitrary element x of L we consider the operator of right multiplication
Rx : L → L, where Rx(z) = [z, x]. The set R(L) = {Rx : x ∈ L } forms a Lie algebra
with respect to the operation of commutating, and the following identity holds:

RxRy − RyRx = R[y,x].

Revista Matemática Complutense
2006: vol. 19, num. 1, pags. 183–195

184



S. A. Albeverio/S. A. Ayupov/B. A. Omirov Cartan subalgebras, weight spaces. . .

From this identity it is easy to see that the solvability of the Lie algebra R(L) is
equivalent to the solvability of the Leibniz algebra L.

Further in this paper we will assume that all algebras, vector spaces and modules
are finite dimensional.

The following lemma gives the decomposition of a vector space into the direct sum
of invariant subspaces with respect to a linear transformation.

Lemma 1.3 (Fitting’s lemma). Let V be a vector space and A : V → V be a
linear transformation. Then V = V0A ⊕ V1A, where A(V0A) ⊆ V0A, A(V1A) ⊆ V1A

and V0A = { v ∈ V | Ai(v) = 0 for some i }, V1A =
⋂∞

i=1 Ai(V ). Moreover, A|V0A
is

a nilpotent transformation and A|V1A
is an automorphism.

Proof. See [9, chapter II, §4].

Definition 1.4. The spaces V0A and V1A are called respectively Fitting null compo-
nent and Fitting one component of the space V with respect to the transformation A.

Lemma 1.5. Let V be a vector space. And let A, B be linear transformations of V
such that

[· · · [[B,A], A], . . . , A
︸ ︷︷ ︸

k times

] = 0.

Then the Fitting components V0A, V1A of the space V with respect to A are also
invariant with respect to the transformation B.

Proof. See [9, chapter II, §4].

Let L be a nilpotent Leibniz algebra, then it is evident that the Lie algebra R(L)
is also nilpotent. Further we will use the following results:

Theorem 1.6. Let L be a nilpotent Lie algebra of linear transformations of a vector
space V and V0 =

⋂

A∈L V0A, V1 =
⋂∞

i=1 Li(V ). Then the subspaces V0 and V1

are invariant with respect to L (i.e., V0 and V1 are invariant with respect to every
transformation B from L) and V = V0 ⊕ V1. Moreover, V1 =

∑

A∈L V1A.

Proof. See [9, chapter II, §4].

Theorem 1.7. Let G be a split nilpotent Lie algebra of linear transformations of a
vector space M . Then G has a finite number of different weights, weight subspaces
are submodules of M , and M is decomposed into the direct sum of these modules.
Moreover, if M = M1 ⊕ M2 ⊕ · · · ⊕ Mr is an arbitrary decomposition of M into
the sum of subspaces Mi ( 6= 0), which are invariant with respect to G such that the
following conditions hold:

(i) for each i the restriction of A ∈ G on Mi has only one characteristic root αi(A)
(of some multiplicity);
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(ii) if i 6= j, then there exists A ∈ G such that αi(A) 6= αj(A);

then the maps A → αi(A) are weights and Mi are weight subspaces.

Proof. See [9, theorem 7, page 43].

Proposition 1.8. Let ℵ be a Lie algebra of linear transformations of a vector space
over a field of zero characteristic, G be the radical (solvable) of the algebra ℵ and
R be the radical of the associative algebra ℵ∗. Then ℵ ∩ R consists of all nilpotent
elements of the radical G and [G,ℵ] ⊆ R. (R is considered as a nilpotent radical of
the associative algebra ℵ∗.)

Proof. See [9, chapter II].

2. Cartan subalgebras of finite dimensional Leibniz algebras

Let I be a nilpotent subalgebra of a Leibniz algebra L and L = L0 ⊕ L1 be the
Fitting decomposition of the algebra L with respect to the nilpotent Lie algebra
R(I) = {Rx | x ∈ I } of transformations of the vector space L according to theo-
rem 1.6.

The set l(I) = {x ∈ L | [x,I] ⊆ I } is called left normalizator of the subalgebra I

in the algebra L.
The set r(I) = {x ∈ L | [I, x] ⊆ I } is called right normalizator of the subalgebra I

in the algebra L.

Definition 2.1. A subalgebra I of a Leibniz algebra L is called Cartan subalgebra if
the following two conditions are satisfied:

(i) I is nilpotent;

(ii) I coincides with the left normalizator of I in the algebra L.

Since in the Lie algebras case we have antisymmetricity, the sets l(I) and r(I)
obviously coincide. For a Cartan subalgebra of the Leibniz algebra we have only
l(I) ⊆ r(I). It is easy to see that if I contains the ideal generated by squares of
elements of the algebra L, then we have l(I) = r(I). In non-Lie Leibniz algebras the
non coincidence of these sets in general follows from the following example.

Example 2.2. Let L be the Leibniz algebra defined by the following multiplication:

[x, z] = x, [z, y] = y, [y, z] = −y, [z, z] = x,

where {x, y, z } is the basis of L and omitted products are equal to zero. Then
I = {x − z} is the Cartan subalgebra of the algebra L, but r(I) = {x, z}.

Proposition 2.3. A nilpotent subalgebra I of a Leibniz algebra L is a Cartan subal-
gebra if and only if I coincides with L0 in the Fitting decomposition of the algebra L
with respect to R(I).

Revista Matemática Complutense
2006: vol. 19, num. 1, pags. 183–195

186



S. A. Albeverio/S. A. Ayupov/B. A. Omirov Cartan subalgebras, weight spaces. . .

Proof. Firstly, we note that l(I) ⊆ L0. In fact, if x ∈ l(I) then [x, h] ∈ I for any
h ∈ I. Since the subalgebra I is nilpotent, there exists k ∈ N such that

[· · · [[x, h], h], . . . , h
︸ ︷︷ ︸

k times

] = Rk
h(x) = 0,

this implies that x ∈ L0, i.e., l(I) ⊆ L0. Since I ⊆ l(I) we have I ⊆ L0.
Suppose that I ⊂ L0 (I 6= L0). By theorem 1.6, the space L0 is invariant with

respect to R(I) and the restriction of the operator Rh on L0, where h ∈ I, is nilpotent.
Moreover, I is an invariant subspace of the space L0 with respect to R(I). Thus, we
obtain the induced Lie algebra Ī of linear transformations which acts on the non null
space L0/I. Since these transformations are nilpotent then by a version of Engel’s
theorem we have that Ī(x + I) = 0̄, where x + I a non zero vector. It means that the
condition [x, h] ∈ I is verified for any h ∈ I; therefore x ∈ l(I) and x 6∈ I, so I 6= l(I).
Thus, I ⊂ l(I) if and only if ℑ ⊂ L0, and the assertion is proved.

Proposition 2.4. Let I be a nilpotent subalgebra of a Leibniz algebra L, and let
L = L0 ⊕L1 be the Fitting decomposition of the algebra L with respect to R(I). Then
L0 is a subalgebra and [L1, L0] ⊆ L1.

Proof. Let h ∈ I, a ∈ L0. Then there exists k ∈ N such that

[· · · [a, h], h], . . . , h]
︸ ︷︷ ︸

k times

= 0.

From this we have [· · · [[Ra, Rh], Rh], . . . , Rh] = (−1)kR[···[a,h],h],...,h] = 0. From this
relation and lemma 1.5 it follow that the Fitting subspaces L0Rh

and L1Rh
of the

algebra I which correspond to the endomorphism Rh are invariant subspaces with
respect to Ra. Since L0 =

⋂

h∈I
L0Rh

and L1 =
⋂

h∈I
L1Rh

, then Ra(L0) ⊆ L0 and
Ra(L1) ⊆ L1. And since a is an arbitrary element in L0, we obtain [L0, L0] ⊆ L0 and
[L1, L0] ⊆ L1.

Definition 2.5. An element h of L is called regular if the dimension of the Fitting null
component of the Leibniz algebra L with respect to Rh is minimal. This dimension
is called the rank of the algebra L.

The set Z(L) = {x ∈ L | [L, x] = 0 } will be called right annihilator of the
algebra L. It is easy to see that the dimension of the Fitting null component of a
linear transformation A is equal to the order of the zero root of the characteristic
polynomial of its transformation.

Therefore an element h is regular if and only if the order of the zero characteristic
root for Rh is minimal.

Note that in the Lie algebras case the linear transformation Rh is degenerated
since [h, h] = 0 for any h, and therefore the rank of the Lie algebra is greater than
zero.
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The following lemma shows that in the Leibniz algebras case the rank is also
greater than zero.

Lemma 2.6. Let L be a Leibniz algebra. Then operator Rx is degenerated for any x
in L.

Proof. Suppose that the algebra L is a non Lie algebra. And suppose that there
exists a non zero x in L such that Rx is not degenerated. Then [L, x] = L and
therefore, there exists a non null element y of algebra L such that [y, x] = x. Since
Iann = ideal〈 [a, a] | a ∈ L 〉 ⊆ Z(L), then it is easy to see that {x, y, [x, y] } 6⊂ Iann.

Let the dimension of the algebra L be equal to n. Put x1 := y, x2 := x, x3 :=
[x2, x2], . . . , xn+1 := [xn, x2]. Since the operator Rx is not degenerated we have
xi 6= 0 for any i = 3, . . . , n + 1 and every xi is contained in Iann. Let us show that
the system {x1, x2, . . . , xn+1 } is linearly independent.

The elements x1 and x2 are linearly independent. In fact, otherwise y = βx, where
β is different from zero. Then x = [y, x] = β[x, x] = β[x, [y, x]] = β2[x, [x, x]] = 0, and
we obtain contradiction with a condition x 6= 0.

Suppose that α1x1+α2x2+· · ·+αn+1xn+1 = 0 for appropriate αi, i = 1, . . . , n+1.
Multiplying this equation from the left hand side by the element x2, we obtain
α1[x2, x1] + α2x3 = 0. Since [x2, x1] does not belong to the ideal Iann, unlike x3,
then α1 = α2 = 0. Consider the equation α3x3 + α4x4 + · · · + αn+1xn+1 = 0, which
we can rewrite in the following form: α3[x2, x2] + α4[x3, x2] + · · · + αn+1[xn, x2] =
Rx(α3x2 + α4x3 + · · · + αn+1xn) = 0. And again using the fact that Rx is non de-
generated we have that α3x2 + α4x3 + · · ·+ αn+1xn = 0. Since x2 does not belong to
the ideal Iann, unlike α4x3 + · · · + αn+1xn, we have α3 = 0. Continuing similarly we
obtain that α4 = α5 = · · · = αn+1 = 0, i.e., the system {x1, x2, . . . , xn+1 } is linearly
independent. This is in contradiction with the dimension of the algebra L.

The following theorem establishes relations between regular elements of Leibniz
algebra and Cartan subalgebras.

Theorem 2.7. Let L be a Leibniz algebra over a infinite field F and a be a regular
element of L. Then the Fitting null component I of algebra L with respect to Ra is a
Cartan subalgebra.

Proof. Let L = I ⊕ R be a Fitting decomposition of L with respect to Ra. As it
will shown below one may assume without loss of generality that the one-generated
subalgebra 〈a〉 is nilpotent. Then by proposition 2.4 we have that I is a subalgebra
and [R,I] ⊆ I. Now we prove that any transformation Rb|I, where b ∈ I, is nilpotent.
Otherwise, let b ∈ I be an element such that Rb|I is not nilpotent. Choose a basis in
L consisting of bases of I and R. The matrix of Rh, h ∈ I, in this basis has the form
(

(ρ1) 0
0 (ρ2)

)

, where (ρ1) is the matrix of Rh|I and (ρ2) is the matrix of Rh|R.

Let A =
(

(α1) 0
0 (α2)

)

and B =
(

(β1) 0
0 (β2)

)

be the matrices of Ra and Rb, re-

spectively. Since (α2) is not degenerated we have det(α2) 6= 0. By hypothesis,
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the matrix (β1) is not nilpotent. Therefore if l = rankL then dim I = l and the
characteristic polynomial of the matrix (β1) is not divisible by λl. Let λ, µ, ν be
algebraic independent variables and let P (λ, µ, ν) be the characteristic polynomial,
i.e., P (λ, µ, ν) = det(λ1 − µA − νB) = det(λ1 − (µA + νB)). Then the equality
P (λ, µ, ν) = P1(λ, µ, ν)P2(λ, µ, ν), where Pi(λ, µ, ν) = det(λ1 − µ(αi) − ν(βi)) =
det(λ1 − (µ(αi) + ν(βi))) holds. As it was noted above the polynomial P2(λ, 1, 0) =
det(λ1 − (α2)) is not divisible by λ and the polynomial P1(λ, 0, 1) = det(λ1 − (β1))
is not divisible by λl. Therefore the greatest degree of λ on which the polynomial
P (λ, µ, ν) can be divided is λl′ , where l′ < l. Since the field F is infinite, we can
choose µ0 and ν0 such that P (λ, µ0, ν0) is not divisible by λl′+1. Put c := µ0a + ν0b,
then the characteristic polynomial det(λ1−Rc) = det(λ1−µ0A−ν0B) = P (λ, µ0, ν0)
is not divisible by λl′+1. Therefore the order of zero root for Rc will be equal to l′ < l.
But a is a regular element. Thus, for any b ∈ I the operator Rb|I is nilpotent. Using
now Engel’s theorem [4] we obtain that I is a nilpotent Leibniz algebra. Let L0 be a
Fitting null-component of the algebra L with respect to R(I). Since I is the Fitting
null component of the transformation Ra, then L0 ⊆ I. Indeed, when a ∈ I we have
that L0 =

⋂

b∈I
L0Rb

⊆ L0Ra
.

Let a 6∈ I. Then ak 6= 0 for any k ∈ N . Consider the following elements:

a1 := a, a2 := [a, a], . . . , an+1 := [[[a, a], a], . . . , a]
︸ ︷︷ ︸

n + 1 times

= 0

where n = dimL. These elements are not equal to zero but linearly dependent, i.e.,
there exists a non trivial linear combination

α1a1 + α2a2 + · · · + αn+1an+1 = 0.

Let α1 6= 0, then using the fact that ai ∈ Iann = ideal〈 [x, x] | x ∈ L 〉 for any
2 ≤ i ≤ n + 1, we obtain that a1 ∈ Iann ⊆ Z(L) and consequently a2 = 0, i.e., we
have a contradiction with the condition a2 6= 0. Thus, α1 = 0.

Let k be the minimal number, such that αk 6= 0. Then αkak + · · ·+αn+1an+1 = 0
and therefore for the element t = αka1 + · · · + αn+1an+1−k we have that

[[[t, t], t], . . . , t]
︸ ︷︷ ︸

k times

= 0

and Rt = αkRa, i.e., t is a regular element and L0Ra
= L0Rt

= I. On the other hand,
L0 ⊇ I for any nilpotent subalgebra I. In fact, L0 =

⋂

b∈I
L0Rb

and if h ∈ I then

[[[h, b], b], . . . , b]
︸ ︷︷ ︸

s times

= 0

for any b ∈ I (here s is the index of nilpotence of the algebra I) thus h ∈ L0

and L0 = I. Using proposition 2.3 we obtain that I is a Cartan subalgebra, which
completes the proof of the theorem.
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Another useful remark about regular elements and Cartan subalgebras is the fol-
lowing: if a Cartan subalgebra contains a regular element a, then I is uniquely defined
by the element a as Fitting null component of the algebra L with respect to Ra, i.e.,
I = L0Ra

.

In fact, if we denote L0Ra
by R then it is evident that I ⊆ R, since I is nilpotent.

(If h ∈ I then using the nilpotence of I and from a ∈ I we have [[[h, a], a], . . . , a] = 0
and then h ∈ L0Ra

= R.)

On the other hand, from theorem 1.6 we have that R is nilpotent. And if I 6= R

then there exists z ∈ R \ I. If [z,I] ⊆ I, since I is a Cartan subalgebra, we have
z ∈ I, a contradiction.

Therefore for any z ∈ R \ I we have [z,I] 6⊂ I. Then there exist l1, l2, . . . , lk ∈ I

such that [[[z, l1], l2], . . . , lk] ∈ R\I and [[[z, l1], l2], . . . , lk] 6= 0, i.e., R is not nilpotent,
also a contradiction. Therefore I = R.

From this it follows that two Cartan subalgebras having the same regular element
coincide.

For the Leibniz algebra L, we consider the natural homomorphism ϕ into the
factor algebra LLie, where LLie = L/Iann

Proposition 2.8. Let L be a complex finite dimensional Leibniz algebra. Then the
image of a regular element of the algebra L by a homomorphism ϕ is a regular element
of the Lie algebra LLie.

Proof. Let a be a regular element of the algebra L. We shall prove that the element
ā = a + Iann will be a regular element of the Lie algebra LLie. Suppose the opposite,
i.e., ā = a + Iann is not a regular element. Let b̄ = b + Iann be any regular element of
the Lie algebra LLie and a − b 6∈ Iann.

Since Iann is an ideal, then for any x ∈ L we have Rx(Iann) ⊆ Iann. It means that
the matrix of the transformation Rx has the following block form

Rx =

(
X, 0
Zx, Ix

)

in the basis { e1, e2, . . . , em, i1, i2, . . . , in } of L, where { i1, i2, . . . , in } is the basis
of Iann. Here X is the matrix of the transformation Rx|{ e1,e2,...,em } and IX is the
matrix of the transformation Rx|Iann .

Let

Ra =

(
A, 0
Za, Ia

)

, Rb =

(
B, 0
Zb, Ib

)

be the matrices of the transformations Ra and Rb respectively.

Let k (respectively k′) be the order of the characteristic zero root of the matrix
A (respectively B) and s and s′ be the orders of the characteristic zero root of the
matrices Ia and Ib, respectively. Then we have k′ < k, s < s′.
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Put

U =
{

y ∈ L \ Iann
∣
∣
∣ Ry =

(
Y, 0
Zy, Iy

)

and Y has the order

of the characteristic zero root less than k
}

,

V =
{

y ∈ L \ Iann
∣
∣
∣ Ry =

(
Y, 0
Zy, Iy

)

and Iy has the order

of the characteristic zero root less than s + 1
}

.

Since b ∈ U and a ∈ V these sets are non empty.
Let us show that the set U is an open subset of the set L \ Iann in the Zariski

topology.
Let Y have the order of the characteristic zero root less than k. Then Y k has the

rank greater than n − k. It means that there exists a non-zero minor of the order
n − k + 1. In other words, there exists a non-zero polynomial of structural constants
of the algebra L, hence the set U is open in the Zariski topology in the subset of the
set L \ Iann.

One can similarly prove that the set V is open in L \ Iann. It is not difficult to
check that the sets U and V are dense in L \ Iann. Therefore, there exists an element
y ∈ U ∩ V such that Y has the order of characteristic zero root less than k and Iy

has the order of the characteristic zero root less than s + 1. Thus, for this element y
the order of characteristic zero root is not greater than k + s− 1, i.e., the rank of the
algebra L is less than k + s and we obtain a contradiction to the assumption that ā
is not a regular element of the Lie algebra LLie.

Let L be a Leibniz algebra with a basis { e1, e2, . . . , en } over a field F . Let
ξ1, ξ2, . . . , ξn be independent variables and let P = F (ξ1, ξ2, . . . , ξn) be the field of
rational functions of ξi. We construct an extension of P putting LP = Pe1 + Pe2 +
· · · + Pen.

The following definition and its comments are step by step modifications of the
Lie algebras case and they are included for the sake of completeness.

Definition 2.9. An element x =
∑n

i=1 ξiei of the algebra LP is called a generic
element of the algebra L and the characteristic polynomial fx(λ) of the transformation
Rx in LP is called characteristic polynomial of the Leibniz algebra L.

If we take the basis { e1, e2, . . . , en } of LP then [ei, x] =
∑n

j=1 ρijej , where i =
1, . . . , n and ρij are homogenous functions of degree 1 with respect to ξk. Then

fx(λ) = det(λ1 − Rx) = λn − τ1(ξ)λ
n−1 + τ2(ξ)λ

n−2 − · · · + (−1)lτn−l(ξ)λ
l, (*)

where τi(ξ) are homogenous polynomials of degree i in the variables ξi, ξ = {ξ1, . . . , ξn}
and τn−l(ξ) 6= 0, where τn−l+k(ξ) = 0 for k > 0. Since x 6= 0 and Rx is a degenerated
operator, it follows that l > 0 and detRx = 0.
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The value of the characteristic polynomial on an arbitrary element a =
∑n

i=1 αiei

of the algebra L is obtained by specialization of ξi = αi, i = 1, . . . , n in equation (*).
Therefore it is evident that the order of zero root of the characteristic transformation
Ra is not less than l. On the other hand, if F is an infinite field then, since the
polynomial τn−l(x) is different from zero in the polynomial algebra Φ[ξ1, ξ2, . . . , ξn],
we can choose ξi = αi such that τn−l(α) 6= 0. Then the transformation Ra for the
element a =

∑n
i=1 αiei has exactly l characteristic roots which are equal to zero and

therefore a is regular. Thus in the case of an infinite field the element a is regular
if and only if τn−l(α) 6= 0. In this sense “almost all” elements of the algebra L are
regular (i.e., they form an open set in Zariski topology).

The above statement depends on the choice of the basis (e). However, it is
easy to observe what happens when we pass to another basis (f1, f2, . . . , fn), where
fi =

∑n
j=1 µijej . If η1, η2, . . . , ηn are independent variables then y =

∑n
i=1 ηifi =

∑n
i=1 ηiµijej . Therefore the characteristic polynomial fy(λ) is obtained from polyno-

mial fx(λ) by substitution ξj →
∑n

i=1 ηiµij in its coefficients.

3. Some properties of weight spaces of Leibniz algebras and

Cartan’s criterion of solvability

In order to define a weight module over a Leibniz algebra we need the definition of
the right representation of a Leibniz algebra.

Definition 3.1. A vector space M is said to be a right representation of a Leibniz
algebra L if an action: [·, ·] : M × L → M is defined, which satisfies the condition

[m, [x, y]] = [[m,x], y] − [[m, y], x]

for any x, y ∈ L, m ∈ M .

Note that this definition agrees with the definition of symmetric representation
in [10].

Observe that M has natural right L-module structure (in the Lie sense) and below
we shall think about M in that sense.

A map a → α(a) from an algebra L into the field F (α : L → F ) is called weight
of the right module M if there exists a non zero x ∈ M such that (a−α(a)1)k(x) = 0,
i.e., [x, (a − α(a)1)k] = 0 for some k ∈ N .

The set of vectors which satisfy this condition and the zero vector form the sub-
space Ma which is called weight subspace (weight subspace with the weight α) corre-
sponding to the weight α.

Let L be a Leibniz algebra and M be a weight subspace over the algebra L with
respect to the weight α. Then for each element x ∈ M one has [x, (a − α(a)1)k] = 0
if k is sufficiently large. Moreover, if dimM = n, then the polynomial (λ − α(a))n is
the characteristic polynomial of the endomorphism a. Therefore [x, (a−α(a)1)n] = 0
for any x ∈ M .
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Consider the contradredient (conjugated) right module M∗ over a Leibniz algebra
satisfying the condition

〈[x, a], y∗〉 + 〈x, [y∗, a∗]〉 = 0,

where x ∈ M , y∗ ∈ M∗, a∗ from representation which corresponds to the right module
M∗ and 〈x, y∗〉 denote the value of linear function y∗ at the vector x.

It is clear that 〈α(a)x, y∗〉 + 〈x, α(a)y∗〉 = 0.

Adding these equalities we obtain

〈[x, (a − α(a)1)], y∗〉 + 〈x, [y∗, (a∗ + α(a)1)]〉 = 0.

By repeating this procedure, we obtain the equality

〈[x, (a − α(a)1)k], y∗〉 + 〈x, [y∗, (a∗ + α(a)1)k]〉 = 0.

If k = n then [x, (a− α(a)1)n] = 0 for any x and thus 〈x, [y∗, (a∗ + α(a)1)n]〉 = 0.
Therefore [y∗, (a∗ + α(a)1)n] = 0 for any y∗ ∈ M∗. This shows that M∗ is a weight
module with the weight −α.

Thus, we have proved the following proposition.

Proposition 3.2. If M is a weight module over a Leibniz algebra with the weight α,
then the contradredient module M∗ is a weight module with weight −α.

Proposition 3.3. If M and R are weight modules over a Leibniz algebra with the
weight α and β respectively, then B = M ⊗ R is a weight module with weight α + β.

Proof. Proposition 3.3 is proved similarly as the corresponding proposition in the Lie
algebras case (see proposition 4, page 63 in [9]).

Definition 3.4. A nilpotent Leibniz algebra L of linear transformations is called a
split algebra if the characteristic roots of each element of A ∈ L is contained in the
basic field.

Let L be a Leibniz algebra, I be a nilpotent subalgebra and M be a left module
over L (and also over I).

Suppose that M = L and R(I) is a nilpotent split Lie algebra. From theorem 1.7
we have that L = Lα ⊕ Lβ ⊕ · · · ⊕ Lδ, where α, β, . . . , δ are maps from the sub-
algebra R(I) into F such that if xν ∈ Lν , then (Rh − ν(Rh)1)m(xν) = 0 for some
m = m(ν), where ν ∈ {α, β, . . . , δ }. The weights α, β, . . . , δ are called roots of the
algebra L with respect to the subalgebra I.

Proposition 3.5. [Lα, Lβ ] ⊆ Lα+β if α + β is a root of the Leibniz algebra L with
respect to R(I); otherwise [Lα, Lβ ] = 0.
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Proof. The elements of [Lα, Lβ ] have the form
∑

i[x
(i)
α , y

(i)
β ] where x

(i)
α ∈ Lα, y

(i)
β ∈ Lβ .

From the characteristic property of the tensor product of two spaces it follows that

there exists a linear map π : Lα ⊗ Lβ → [Lα, Lβ ] such that π
(∑

i x
(i)
α ⊗ y

(i)
β

)
=

∑

i

[
x

(i)
α , y

(i)
β

]
. We show that π is actually a homomorphism of R(I)-modules.

Let Rh ∈ R(I) then using the Leibniz identity we obtain the following chain of
equalities:

Rh(xα ⊗ yβ) = Rh(xα) ⊗ yβ + xα ⊗ Rh(yβ)

= [xα, h] ⊗ yβ + xα ⊗ [yβ , h] → [[xα, h], yβ ] + [xα, [yβ , h]]

= Rh([xα, yβ ]).

On the other hand, the image of the element xα ⊗ yβ under the homomorphism π
is [xα, yβ ]. So, we prove that [Lα, Lβ ] is a homomorphic image of the module Lα⊗Lβ .
Moreover, Lα ⊗Lβ is a weight module with the weight α+β. But from the definition
it is clear that the homomorphic image of the weight module with the weight β is
either 0 or a weight module with the weight β.

Let L be a finite dimensional Leibniz algebra over an algebraically closed field F
and I be a nilpotent subalgebra of L. Let L = Lα ⊕Lβ ⊕· · ·⊕Lδ be a decomposition
of module L into the direct sum of weight submodules with respect to I.

Suppose that I is a Cartan subalgebra. Then it is not difficult to see that I = L0,
where L0 is the root module corresponding to the root 0.

We have also the equality [L,L] =
∑

[Lα, Lβ ], where the sum is taken over all
roots α, β. From this we obtain L0 ∩ L2 = I ∩ L2 =

∑
[Lα, L−α], where summation

is made over all α, such that −α is also a root (in particular α = 0).

Definition 3.6. The form f(a, b) = tr(RaRb) for a, b ∈ L is called the Killing form
of the Leibniz algebra L.

A bilinear form f(a, b) on L satisfying the condition

f([a, c], b) + f(a, [b, c]) = 0

is called an invariant form on L.

The following equalities show that the Killing form is an invariant form on Leibniz
algebra:

f([a, c], b) + f(a, [b, c]) = tr(R[a,c]Rb) + tr(RaR[b,c])

= tr([Rc, Ra]Rb + Ra[Rc, Rb])

= tr((RcRa − RaRc)Rb + Ra(RcRb − RbRc))

= tr(RcRaRb − RaRbRc) = tr[Rc, RaRb] = 0.

Note that if f(a, b) is the Killing form then the set

L⊥ = { z ∈ L | f(a, z) = 0 for any a ∈ L }
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is an ideal of the algebra L.

Theorem 3.7. Let L be a Leibniz algebra over an algebraically closed field of zero
characteristic. Then L is solvable if and only if tr(RaRa) = 0 for any a ∈ L2.

Proof. The necessity. In proposition 1.8 put ℵ := R(L), then it is clear that the Lie al-
gebra R(L) is also solvable and therefore [R(L), R(L)] ⊆ R. And since [R(L), R(L)] =
R(L2) we have that for any a ∈ L2 the operator Ra is nilpotent, therefore tr(RaRa) = 0
for any a ∈ L.

The sufficiency. If we apply Cartan’s criterion for Lie algebras [9] for algebra R(L)
and consider L as R(L)-module, we obtain the solvability of the Lie algebra R(L), but
as we noted in section 1 it is equivalent to the solvability of Leibniz algebra L.
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