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ABSTRACT

This paper deals with approximation numbers of the compact trace operator of
an anisotropic Besov space into some Ljp-space,

trr s By (R™) — Lp(T), s>0, 1<p<oo,

where I is an anisotropic d-set, 0 < d < n. We also prove homogeneity estimates,
a homogeneous equivalent norm and the localization property in Bp;".

Key words: anisotropic function spaces, fractals, approximation numbers, traces.

2000 Mathematics Subject Classification: 46E35, 42B35, 42C40.

1. Introduction

The theory of the anisotropic spaces has been developed from the very beginning
parallel to the theory of isotropic function spaces. We refer in particular to the
Russian school and works of S. M. Nikol’skii, O. V. Besov, V. P. II'in [1, 11].

Let 1 <p < oo and (s1,...,s,) be an n- tuple of natural numbers. Then

is the classical anisotropic Sobolev space on R™. It is obvious that unlike in case of
the usual (isotropic) Sobolev space (s; = --- = s,,) the smoothness properties of an
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element from W;-%(R™) depend on the chosen direction in R™. The number s, defined

by
1 1,1 1
Lol by,
s n\sy Sn
is usually called the mean smoothness, and a = (a1, ..., a,),
s S
a] = —y...,0p = —
S1 Sn

characterizes the anisotropy. Similar to the isotropic situation the more general
anisotropic Bessel potential spaces (fractional Sobolev spaces) H,“(R"), where
1<p< oo, s€Randa=(a,...,a,) is a given anisotropy, fit in the scales of
anisotropic Besov spaces B;." (R™), and anisotropic Triebel-Lizorkin spaces Fot (R™),
respectively. It is well known that this theory has a more or less complete counterpart
to the basic facts (definitions, description via differences and derivatives, elemen-
tary properties, embeddings for different metrics, interpolation) of isotropic spaces
By, (R™) and Fj (R"). We shall use the Fourier-analytical definition of B,.*(R"),

F3:(R"), where any function f € S’(R") is decomposed in a sum of entire analytic

functions (¢; f)" and this decomposition, measured in ¢, and L, (R™), respectively, is
used to introduce the spaces. This concept goes back to [15,16], see [13, chapter 4].

Our main aim in the present paper is to prove an anisotropic counterpart to the
isotropic results, see [21].

As a first goal of this paper we define the anisotropic d-set as follows:

Let 0 < d < mn, a an anisotropy. Then I' C R" is called an anisotropic d-set if
there exists a positive Radon measure p with supp u =I" and

w(B (v, 7)) ~r%, 0<r<1,

where B%(y,r) = {y € R": |y — |, < r} is an anisotropic ball and v € T
We study the existence and properties of the trace operator trr,

trr s BSA(R™) < L,(T) (1)

where T is an anisotropic d — set. It turns out that trp according to (1) exists if, and
is compact if
s n I 1 1
S 2T c oo, S = =1, (2)
! p P
J€Ng

where p; = sup,,czn 1(Q,,), and Qf,, are rectangles centered at 277%m and with
side length 27991 ... 277 If we can strengthen (2) by
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then one obtains for the approximation numbers a; of the compact operator trp
according to (1)

n n n—d
*ZS> )
p p

ar(trr : BLO(R™) < Ly(T)) ~ kG975,

as in the isotropic case, see [21]. In order to show the above result we prove, in
addition, some important properties of spaces By,*(R"), with 0 < p < 00, 0 < g < o0,
and s > n(% - 1) I which might be of self-contained interest:

(i) We obtain the homogeneity estimate

IF(R) | By (RM)]| < cR*™7 || f | Byt (R™)]

pa
for all f € B;*(R") and R > 1.
(ii) We show that

o0

R ) ) 1/q
1o F)Y 1 Lol + ( S 23 (g ) |Lp||q)

j=—00
and
© ) . 1/q
1| Lol + ( S o) (gt ) |Lp||q>
j=—o00

are equivalent quasi-norms in B,;*(R™).

(iii) Finally we prove the localization property of By:*(R™), that is

i(s—m 1/;0 s.a n a Ss,a n
2B Jenl?) IS B RN~ 157 Byt (R,
kezZm™

where

i)=Y af@UTV @ —25;)), e €C, jeN,
kezm

and f is a product of one-dimensional functions

FRO(w — 28,)) = [ fn(259%% (3 — 2927 ).

m=1

The plan of the paper is the following. In the second section we give the definition
and some important properties of anisotropic Besov spaces. In section 3 we introduce
the anisotropic d-set and we formulate our main result. In the last section we collect
the proofs and give a description of the wavelet frames according to [9].
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2. Anisotropic Besov spaces

2.1. General notation

As usual, R™ denotes the n-dimensional real Euclidean space, N the collection of all
natural numbers, Ny = NU{0}, C stands for the complex numbers, and Z"™ means the
lattice of all points in R™ with integer-valued components. We use the equivalence
“~7 in p(x) ~ ¥(x) always to mean that there are two positive numbers ¢; and co
such that

crp(x) < (z) < cpp(x)

for all admitted values of x, where ¢, 1 are non-negative functions. If a € R then

a4 :=max(a,0). Let & = (a1,...,a,) € Nj be a multi-index, then
ol =a1 4+ -+ apn, al=al-a,l, a € Ny,
the derivatives D® have the usual meaning, x® means z® = z{'-- -z~ for x =

(x1,...,2n) € R" and oy = a1y1 + - -+ anyn, 7 € R™, stands for the scalar product
in R™.

Given two quasi-Banach spaces X and Y, we write X — Y if X C Y and the
natural embedding of X in Y is continuous. All unimportant positive constants will
be denoted by ¢, occasionally with additional subscripts within the same formula. We
shall mainly deal with function spaces on R"; so for convenience we shall usually
omit the “R™” from their notation, if there is no danger of confusion.

2.2. Definitions

Let a = (ay,...,a,) be a fixed n-tuple of positive numbers with a; + -+ + a, = n,
then we call a an anisotropy. We shall denote apin = min{a; : 1 < i < n} and
max = max{a; : 1 <i<n} Ifa=(1,...,1) we speak about the “isotropic case”.

The action of ¢ € [0,00) on z € R" is defined by the formula
t'c = (t"wq,. ..t xy). (3)

For ¢t > 0 and s € R we put t*%z = (+*)%. In particular we write =%z = (t~1)%x and
27Jagy = (277)ag.

Definition 2.1. An anisotropic distance function is a continuous function v : R™ — R
with the properties u(z) > 0 if z # 0 and u(t®x) = tu(x) for all t > 0 and all z € R™.

Remark 2.2. Tt is easy to see that u) : R™ — R defined by

ur(z) = @x)/ (4)

is an anisotropic distance function for every 0 < A < o0, ug is usually called the
anisotropic distance of = to the origin, see [13, 4.2.1]. It is well known, see [3, 1.2.3]
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and [22, 1.4], that any two anisotropic distance functions v and u’ are equivalent (in
the sense that there exist constants ¢, ¢’ > 0 such that cu(x) < u/'(z) < du(z) for all
2 € R™) and that if u is an anisotropic distance function there exists a constant ¢ > 0
such that u(z +y) < c(u(x)+u(y)) for all z,y € R™. We are interested to use smooth
anisotropic distance functions. Note that for appropriate values of A\ one can obtain
arbitrary (finite) smoothness of the function uy from (4), cf. [3, 1.2.4]. A standard
method concerning the construction of anisotropic distance functions in C*°(R™\{0})
was given in [14].

For z = (z1,...,2,) € R™, & # 0, let |z|, be the unique positive number ¢ such
that ) )
xl xn _
t2a1 +”'+t2an =1

and let |0|, = 0; then |-|, is an anisotropic distance function in C*°(R™ \ {0}), see
[22, 1.4/3,8]. Plainly, |z|, is in the isotropic case the Euclidean distance of x to the
origin.

Before introducing the function spaces under consideration we need to recall some
notation. By & we denote the Schwartz space of all complex-valued, infinitely dif-
ferentiable and rapidly decreasing functions on R™ and by &’ the dual space of all
tempered distributions on R"™. Furthermore, L, with 0 < p < oo, stands for the usual
quasi-Banach space with respect to the Lebesgue measure, quasi-normed by

11200 = ([ 1f@ras) "

with the obvious modification if p = co. If ¢ € S then

5(6) = (Fo)(€) = (2m) "2 / e o(z) dz, €€ R, (5)

n

denotes the Fourier transform of . As usual, ¢ or ¢ stands for the inverse Fourier
transform, given by the right-hand side of (5) with 4 in place of —i. Here x£ denotes
the scalar product in R”. Both F and F~! are extended to S’ in the standard way.
Let ¢ € S be such that

plx)=1 if |z|o <1 and suppp C {zeR" : |z|, <2}, (6)
and for each j € N let
a o —ja (—j+1)a n
@ (w) == p(277%) — ¢(2 z), = €R" (7)

Then the sequence (@?)?‘;O , with g = ¢, forms a smooth anisotropic dyadic resolu-

tion of unity, cf. [13, 4.2]. Let f € &', then the compact support of w?f implies by

the Paley-Wiener-Schwartz theorem that (¢ f )V is an entire analytic function on R".

301 Revista Matemdatica Complutense
2006: vol. 19, num. 2, pags. 297-321



Erika Tamdsi Anisotropic Besov spaces and approximation numbers of traces on fractals

Definition 2.3. Assume 0 < p < 00, 0 < ¢ < 00, s € R, a an anisotropy, and (go?-)‘;';o
a smooth anisotropic dyadic resolution of unity. Then

o R 1/q
B — {f €S 7182, = (Zwmo;f)v |Lp|Q) < oo} )
j=0

(with the usual modification if ¢ = c0).

Note that there is a parallel definition for spaces of type Fj:, 0 < p < oo,
0 < ¢ £ 00, s € R, a an anisotropy, when interchanging the order of {,- and L,-quasi-
norms in (8). It is obvious that the quasi-norm (8) depends on the chosen system
(¢§)jen,, but not the space B,;* (in the sense of equivalent quasi-norms); therefore
we omit in our notation the subscript ¢ in the sequel. It is well-known that B
are quasi-Banach spaces (Banach spaces if p > 1 and ¢ > 1), and, as in the isotropic
case, S — Bp.' — &’ for all admissible values of p, ¢, s, see [17, 2.3.3]. If s € R and
0 <p<o0,0<gq<oothen S isdense in By, see [3, 1.2.10; 22, 3.5]. Note that
we indicated the only (formal) difference to the isotropic counterparts of (8) by the
additional superscript at the smooth anisotropic dyadic resolution of unity (go‘});?';o.

Remark 2.4. A systematic treatment of the theory of (isotropic) B5, (and F, ) spaces
may be found in the monographs [17-20]; see also [4,12]. A survey on the basic results
for the (anisotropic) spaces By;* (and Fj;?) is given in [10, 2.1-2.2; 13, 4.2.1-4.2.4].
In addition to the literature mentioned in our introduction we essentially rely on [7,8]
in the sequel.

For convenience, in case of p = g we shall stick to the notation
s,a __ ms,a
By* =B, where 0<p<oo, seR,

in the sequel.

2.3. Properties

Our aim is to prove some new and important properties of anisotropic Besov spaces
and thus to complement results in [2,7,13]. This also serves as preparation for our
main results in section 3.

Let ¢ € S as in section 2.2. In particular we have (6). We extend the definition of
¢§ from (7) to all integers j. It should be noted that 4§ has now a different meaning
as in 2.2, i.e., for f € &’ then we have that

f=whH"+ Z(cpgf)v (convergence in S”). 9)

e}
Jj=1

As usual, let o, = n(% —1)+, 0<p<oo.
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Theorem 2.5. Let 0 < p < o0, 0< g < o0, s> 0, and a an anisotropy, then

. o ) R 1/q
1o F)¥ | Ll + ( S o) (g ) |Lp||Q) (10)
j=—00
and
0o A ) 1/q
1| Ll + ( S o) (gt f)” |Lp||Q> (1)
j=—o00

> > > J— Y y y S,a
(modification if ¢ = o) are equivalent quasi-norms in By

Remark 2.6. The quasi-norms of type (10), (11) have a continuous counterpart. We
introduce p®(t) = p(t*¢) — ©((2t)?¢) where t > 0. Then the counterpart of (10)
reads as follows:
Let 0 <p <o0,0< qg< 00, s> 0, and a an anisotropy, then
OO —s a i dt\1/q
1 1Ll + ( / 9 (o () )Y | Lyl T ) (12)
(modification if ¢ = 00) is an equivalent quasi-norm in By

The proof is given in section 4.1. Now we can extend the well-known homogeneity
estimate for Bj, (see [L7, Prop. 3.4.1]) to anisotropic spaces.

Proposition 2.7. Let 0 < p < 00, 0 < ¢ < 00, s > 0, and a an anisotropy. There
exists a constant ¢ > 0 such that for all R > 1,

IF(R) I Bl < cRT | I Bl for all f € Byt (13)

q q

The proof of this proposition is contained in section 4.2.

Our next aim is to extend the localization property, see [4, 2.3.2], to anisotropic

spaces.
Let 2%, = 2779 with k € Z" and j € N. Let f € &’ with

suppf C Qf ={xz €R" : x = (x1,22,...,%,), |T|a <b} (14)
where b > 0 and b < (2% + 1). Let

fi@) =" af@Ut @ —af,), o €C, jeN (15)

kezn

where f is a product of one-dimensional functions,

n
FRUTVYz —a5)) = [ @V (2 — 277" k) (16)
m=1
and fi(y) =+ = fu(y) where y € R.
303 Revista Matemdatica Complutense
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Theorem 2.8. Let s > 0,, 0 < p < 00, a an anisotropy and 0 < b < i(Q“"““ +1).
There exist two constants ¢’ > 0 and ¢’ > 0 such that for all f € By® with supp f C
Qp and all j € N and all f given by (15)

j(s—2 p s,a a s,a
By < PR (Y Jal?) CIFIBy < A B ()
kezm

We prove this result in section 4.3.

3. Traces and approximation numbers

3.1. General measures

Let p be a positive Radon measure in R™ with compact support
I'=suppp, 0<pR")<oo, [I|=0, (18)

where |I'| is the Lebesgue measure of I'. For 1 < p < oo we denote by L, (I") = L,(T, p)
the usual complex Banach space , normed by

12l = ([ 5@ Puan) = ([1reputan) .

Since p is Radon, S(R™) | I is dense in L, (T"). If ¢ € S then trr ¢ = ¢ |I" makes sense
pointwise. If 1 < p < 00, 0 < ¢ < 0o and s > 0 then the embedding trr By,* — L,(I')
must be understood as follows: there exists a positive number ¢ > 0 such that for any
peSs,

[trr | Lp(D)|| < clle | Byl

Since § is dense in B for 0 < p, ¢ < oo this inequality can be extended by completion
to any f € Bp* and the resulting function is denoted by trr f and the independence
of trp f from the approximating sequence is shown in the standard way.

In the sequel, we only consider the case p = q. We proceed in a way similar
o [21], dealing with the isotropic case. Let Qf,, be the rectangles in R™ with side

length 27791, ... ,277% and centered at 277%m where m € Z™ and j € Ny. Let
#j = sup Q) J € No. (19)
mezLn

Proposition 3.1. Let
1
l<p<oo, —-4+—==1, s>0.
p

Let v be the Radon measure in R™ with

I’ =supp p compact, 0 < p(R"™) <oo, |I|=0, (20)
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and

Z 2_jp/(s_%)u§l_l < oo where p; = sup u(Q%,,). (21)
€N, meLn

Then
trr : B;’“(R”) — L,(I) (22)

exists and is compact. Furthermore there is a constant ¢ (depending on p and s) such
that for all measures p with (20), (21),

-

[[trr|| < C(Z 2—jp’(s—%)u§,/_1) s (23)

J€Ng

The result above is the anisotropic version of [21, Proposition 3]. The proof can
be found in section 4.5.

In the following we recall the concept of approximation numbers. Let A and B be
two Banach spaces and let T' € L(A, B). Then for any k € N the kth approximation
number ay(T) of T is given by

ap(T)=inf{||T = L| : L€ L(A,B), rankL <k}, (24)

where rank L is the dimension of the range of L. These numbers have various prop-
erties given in the following lemma.

Lemma 3.2. Let A and B be two Banach spaces and let T, S € L(A, B).
@) IT)| = a1(T) > a(T) > --- > 0.

(ii) For alln,m €N,

amin—1(S +T) < am(S) + an(T).
(ili) For alln,m €N, and R € L(B,C)

Amin—1(RT) < am(R)an(T).

(iv) an(T) =0 <= rankT < n.

This is a well-known result and can be found for instance in [4, 1.3.1] and [5, II].
Let T = trr according to Proposition 3.1. We strengthen (21) by

DOE A ATAENE a i AN S 1 (25)

j=J

where only the cases s < % are of interest, otherwise (25) is always satisfied.
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Proposition 3.3. Let

1 1
I<p<oo, —4+—==1 s>0.
p D

Let 1 be a Radon measure in R™ with (20) and (25). Let ar = ai(trr) be the approxi-
mation numbers of the compact operator trr in (22). There are two positive numbers
c and ¢ such that

a1
Gegns < 277670 T € Ny, (26)
where 2™ is always assumed to be a natural number.

We prove the proposition in section 4.6.

3.2. Anisotropic d-sets in R™

We consider special measures ;1 and assume I' = supp p for some measure according
to section 3.1, in particular with (18), now. Let again a = (aq,...,a,) be a given
anisotropy.

Definition 3.4. Let 0 < d < n. Then I' C R" is called an anisotropic d-set if
w(B(y,7)) ~r?  0<r<1, (27)

where B(y,r) ={y € R": |[y—7|s <r}and ye€T.

In the following proposition we prove the existence of anisotropic d-sets.

Proposition 3.5. For every 0 < d < n there exists an anisotropic d-set.

Remark 3.6. One can show that our definition for the anisotropic d-set is a general-

ization of Farkas’ definition in [8, 3.1].

3.3. Main assertion

We are now prepared to formulate our main result.
Theorem 3.7. Let the anisotropic d-set T and p be given according to (27), and

1 1 —d
0<d<n, 1<p<oo, =—+—=1, 223>ni.
p P p p

Let ay, = ai(trr) be the approximation numbers of the compact operator trr according
0 (22). Then there exist numbers ¢, > 0 so that for all k € N

kG775 < ag(trr : BYYR") — Ly(T)) < kG975, (28)
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Remark 3.8. Let T' be the anisotropic d-set considered in [8, 3.1], see Remark 3.6.
Farkas proved in this situation that

—d
TR

ex(trr : Bpig R™) — Ly, () ~ Ck_g

where 0 < p1,p2,q < 0o, and & > 0. Letplngzquands:é—i—”Tjd. Then

er(trr : BYY(R™) — Ly(T)) ~ cka (G275,

So we have the same results for the entropy and approximation numbers in the special
case p; = p2 which is not surprising, but cannot be expected for p; # ps.

In view of the isotropic result [21, Theorem 2, Remark 9], if we restrict the out-
come [21] to the classical example of a compact d-set with 0 < d < n, then we have
the same result like in the anisotropic setting.

4. Proofs

4.1. Proof of Theorem 2.5

Proof. We closely follow the proof in [18, 2.3.3] for the isotropic case.
Step 1. We prove that (10) is an equivalent quasi-norm in By 1t is sufficient
to show that there exists a constant ¢ > 0 such that

15 H)Y 1 Lol < 2777 (0 f)Y | Ll =5 €N, (29)

holds, because we need to prove that

1 4 A 1/q .
(3 2 1Lde) < eleh” L,

j=—oc0

and this is satisfied if (29) is true. For those j’s we have that % (z) = ¢f(x)p(r) by
the support condition (6) and (7) with —j € N, and hence

1G5 /)Y 1 Lol = 105 () ))Y I Ly
< el @ I Lelll(0f) | Lyll, = min(1,p), (30)

where the inequality comes from the Fourier multiplier assertion for entire analytic
functions, ||[F~'MFf|Ly|| < |[F~'M | Lg|l||f | Lp|l where p = min(1,p), proved in
[17, Proposition 1.5.1]. Elementary calculations show that ¢f(z) = 2/"¢o(2’“z) such
that [|@%|L,|| = 2795 [[@o(27%) [ L,|| < 2777H™ as ay + -+ + a, = n. By (30) we
thus have that

15 F)Y 1Ll < 277G (0f)V | L |

and we obtain (29) since o}, = n(L — 1).
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Step 2. We prove that (11) is an equivalent quasi-norm in B;;*. By our assump-
tion s > 0, we may assume that (9) converges not only in &', but also, say almost
everywhere in R™. Then we have

R o0 . 1/p
V1Ll < cll o)V ol + C(le(wﬁf)v |Lp||P) (31)

j=1

if 0 < p < 1 and a corresponding estimate if 1 < p < oco. Now (10) and (31) prove that
(11) can be estimated from above by c||f | B;.*||. We consider the converse inequality.
Because f is a regular distribution we have a.e. that

()Y (@) = f@) + (1= () ) (@) = fl2) + (11 HOTANEOE
7=0
By the above-mentioned Fourier multiplier assertion we have
R > . 1/p
)Y 1) < el 2yl + ¢ S5 1 2P (32)
j=0

if0<p<1anda Corresponding estimate if 1 < p < co. Now (10) and (32) prove
that ||f | By (11). O

4.2. Proof of Proposition 2.7

Proof. We closely follow the proof in [4, Prop. 2.3.1] for the isotropic case. Let ¢ = ¢
be the same function as in (7). We have by (12)

L 1/q
19150+ ([ o wenY L) (33)
0
is an equivalent quasi-norm on Bp:*. Elementary calculation shows that

() f(R)()Y (@) = @) f(R) (@) R
= (Y (t(R))f () (Ra). (34)

also in the anisotropic case, where a1 + - - - + a, = n. From (33), with f(Rz) in place
of f(z), and (34) we obtain

OO —sq —1 q a
IR Bl < ellF R Lyl +ea ([ 001 () F R | Ly )
_n s_n e s _ dt\1/a
<R L) +eRF ([ ) E L)
and from here follows (13) for R > 1, ¢1,¢2,¢3 > 0 and s > 0. O
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4.3. Proof of Theorem 2.8
Proof. Step 1. At first we prove the left-hand side of (17). By (15) we have

fa( (j+1)a r) = Z cpf(x —2%), ¢, €C, jeN, (35)

kezn
where f € By® and (14) is true. We would like to show that

| 3 enrc =21y (Z\cw) s By (36)

kezn
We use the characterization of B, via local means; see [7, 4.4]. Recall notation (3).
Let k € C* so that suppk C B* ={y € R" : |y|, <1} and

W) = [ K@t )y, >0 (37)

Let ko € C*° such that supp kg C B, and s; > max(s,op,) + op. Then

o0

1/p
Iko(L, 1) Lyl + (Z 2 k(27 /)| Lpnp)

Jj=1

/1

is an equivalent quasi-norm in Bj“; see [7, 4.4]. We insert (35) in (37) and obtain

k(t, 3 cmf(~—2“m))(x) :/n k(y)( 3 cmf(:c—i—t“y—Q“m)) dy

mezn mezn
= Z cm/ flx —2%m + ty) mdy
mezn "
= Z emk(t, f)(z —2%m)
mezn

and it follows

| > st —2my) By
mezZn
oot 5 st -2m) 1]

mezn

(e
~ (X teal) p(nkou,f)wpn v (iwwumw,fmpnp) )

mezZm™

< (2 tel?) 1By

mezn"

=

]k: ncmf(- —2%m) |L,)Hp>

meZ

=
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Now the left-hand side of inequality of (17) is an easy consequence of Proposition 2.7,
(35) and (36):

121 Byl < 20| ST (- - 20m) | B

mezZ"

(s—n l/p s,a
< (9ils /p)( Z |Cm|p) ||f|Bp’ B

Step 2. In this step we prove the right-hand side of (17). For this we would like
to use the localization property given in [4, 2.3.2] if n = 1 and for the functions

fix(x) = Z emfRUTDag — 29y ¢, €C, ja€eN,
meZ

where f € S'(R). By [4, 2.3.2/4] we know that there exist two constants ¢/ > 0 and
¢ > 0 such that for all f € By,

. . _1 1/p .
I Byl < 290D (Mlenl”) TILI By < P Byl (38)
keZ
as for n = 1 isotropic and anisotropic results coincide. For the functions f]a given

in (15) we use the Fubini property of B;%; see [2, 6.], i.e.,

177 [ By (R™)]|

e ST s s Bty ) | B (R | LR, (39)
m=1
where @' = (z1,.. ., Tm—1,Tmil,- .-, Tn) and S, = i By (15) and (16)
£ (@1, Tty Tmgts -5 ) | By (R) ||,
= S e, k) [ 3 e o] 1B ®)|
km=—00 kezn—1 Tom

where k = (k1,. .., km—1,Kkm+1,-- -, ky) and

f=fi@@UtVag, —oaupy... g, (UFDamorg ) amoaf )

% fm+1(2(j+1)a’”“$m+1 — 9@m+t1 km+1) . fn(2(.j+1)anx1 _ 9an kn)

1 . . .
Let di,, = (3 1z |al?) /P and without restriction of generality we may assume
lm=km
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that dj,, > 0. We have that

||ff(ai1,...,xm,l,-,xm+1,...7xn) |B;m(R)|

oo . c .
> @Oy — k)| Y dy,, SR f | By ()
kyp=—00 kezn-1 m

Tm

(40)

Tm

Let ¢, = C“”dki’“") and by (40) we get that

||f]q(xla <oy Im—1, 5 Tm+41, - - - 7:E7l) |B;m(R)||Tm

oo

S i @ 2k [ S 6] 1By (R)

kpm=—00 kezn—1

| Y af]| X k@I, — 2 k) | By (R)

kezn—1 km=—00

LT

(41)

By (41),
||||f_7a(x15 s Im—1," Tm41, - - - 73371) | B;m(R)”JCm |LP(RTL71)|

x!

[ Z c‘kﬂ H Z diy, frn(20FDam g — 207 k,,) | By (R)
km=—00

kezn—1

| Lp(R")

Tm z/

Z di... fm(2(j+1)amxm — 2% k) |B;m (R)

kp=—00
> afIL,®EY)| . (42)
kezn—1 ’

Note that

| X anneEn| =( X ) "2

kezn—1 kezn-1
X ||f1 e fm—lfm-‘,—l o fn | Lp(Rnil)Hx" (43)

(Recall that —(a; + -+ 4+ am—1+ a@my1 + -+ + an) = a;n, — n.) Now we use (38) for
the spaces B, (R) and by (42), (43)

HHfJa(:Ela e Tm—1," Tm41, - - - 7xn) | B;m (R)

Tm

X

Tm

Ly(R"™1)]

x!

_ oo 1/p
> cl2jam(5m*%) ( Z ‘dkm p) Hfm ‘ B;m (R)| .
kp=—00
1
I am—n _ P n—
X 21’( )( Z |Ck|p) Hfl"'fm—l'fm-‘,—l"'fn'Lp(R 1)||ac’~ (44)
kezn—1
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On the other hand,

(£ (£ 5 - (Em)" w

kyp=—00 m=—00 [EZL"
Im=km

and

(3 )= (2 )"

kezr—t kezn—1 ko
1 1/p
- K( > |C(k1,.4.,kn)\p) > 1. (46)
™ Cpezn—t
> di,,

By (44), (45) and (46) and s, - a,, = s, we conclude
H”fja(xlv e Tm—1, " Tm41, - - - 71'?1) | B;m (R)Hfbm ‘ LP(RH71)|

— 1/p s
> VD (S k) | By (R,

keznr
X ”fl e fnz—l : fm+1 o fn | LP(RH71)||$/

— 1p ) -
> 2D (Y Jal) Tflfae e fal By R, | LR
kezn

x!

. (a7)

By (47) and the Fubini property (39) we obtain the right-hand side of inequality
of (17)

i(s_m Up _
LByl = 2D (3 Jenl?) ST e Sl By (R, | Lp(R )

x!

kezn m=1
roj(s—12) P p $,a (TN
> VD (Y k) T IAB R -
keZn

4.4. Wavelet frames

In the sequel we describe wavelet frames which are an effective instrument to estimate
approximation numbers. This will be needed in our proofs below. Let k£ be a non-
negative C'*° function in R" with

suppk C{y €R" : |yl <27, y; >0}, (48)

for some J € N, and
Z kE(x—m)=1, zeR™

mezn
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Recall that 2% = 27" .. 2P where z = (21,...,2,) € R” and 8 € NZ, and put

K (x) = (277%)Pk(z) >0, xz€R™ [eNp.

Let
weS, suwppwC (-m,m)", w@) =1 if |z, <2,
and let \BloTaB
1819
WP (z) = z2ﬂ)nﬁ!x5w(x) for zeR", p[eNg,
and

O(2)= > W) (m)e ™, zeR", BeN,
meZL™

where |B] = B1+ -+ B, and 8! = G1!... 8, and a8 = a1 01 + - - + anfn. Let @p be
a C* function in R™ with

(@) =1 if fela<1 and @o(@) =0 if ol >3,

(\}

and let ¢(x) = po(z) — ¢o(2%z). Then

3 ‘bg(zfm), if =0,
@Im(ﬂ?) = @B ja g -
(2% —m), ifjeN,

are analytic wavelets where the father wavelets @g(x) and the mother wavelets @ﬁ/l(x)
are given by their inverse Fourier transforms

(PF)V(E) = @o(©)Q°(€), € eR™,
(@5)V(€) = ()% (€), € eR™
For the sequence
A={N €C:jeNy, meZ", BeN;},

se€R,0<p<oo,and o > 0, we put

||)\|b;’9|| — (Z i Z 29aﬂp+j(s—n/p)p|)\§?m|z>)l/p. (49)

BENE j=0 meZn

For f € L,(R"™),
Nonlf)=2" | f@)2, (@), jENo, meZ', fENG.

We make use of the following wavelet characterization.
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Theorem 4.1 ([9, Theorem 2.1]). Let 0 < p < 00, s > 0, where g, = n(% — 1)y,

0> 0, and a an anisotropy. Then f € S is an element of By if, and only if, it can
be represented as

f=3 i Y N F(@w—m), zeR" (50)

BENT j=0 meZn
with ||\ ]05¢|| < oo, absolute convergence being in Ly a1 Furthermore,
P (1,p)
1f 1Byl ~ inf [|A[ 03],

where the infimum is taken over all admissible representations (50). In addition, any
J € By® can be optimally represented by

F=Y35 N.(HE @2 —m), (51)
BENE j=0 mezZn
with
I1f 1 Bl ~ IACF) | b5 (52)

Remark 4.2. In the sequel we shall stick to the notation

kp(x) =k (2%0 —m), BeN], jeNo, meZ (53)

4.5. Proof of Proposition 3.1

We closely follow the ideas in [21].

Proof. Step 1. We prove the existence of (22) like in the isotropic case, see [20, The-
orem 9.3, Corollary 9.8; 21, Prop. 2]. In our case we use the anisotropic local means
and the equivalent norm in anisotropic function spaces, see [8, 2.2]. In comparison
with [20, Theorem 9.3] we need only a special case where u = v = p’ and 0 = —s.
On the other hand, the existence of trr can also be shown by similar arguments as
presented below.

Step 2. Let f € By* be given by (51), (52). (We use the notation (53).) For
any fixed # € Nj we have

DD IRVRULAING ESS DoRrATERPIN]

j=0mezn j=0 meznr
= B Ié; 1/p
<> ([ X WuOP k@)
j=0 YR mezn
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<3 (S NP / N @)t "

§j=0 mezn
SCZMJ(ZP\ )l/p
mez"

where we used the boundedness of k and (19). We apply the Holder inequality, recall
that 1% + ﬁ =1, and so we can continue

>y Afm(f)kmep(F)H

7=0 mezn
e st bl 1/p/ . n 8 1/p
gc’(Ejz—J"‘é—pij) (2l () L (54

j=0 J,m

We choose g > 0. Then it follows by (49) and (52) that

1/p’
— (22 =) ) 1F1 B2 (55)

where ¢’ is independent of p. This proves (23).
Step 3. We prove that trp is compact. Let B € N, J € N, [af] = max{r € Z :
r < af}, and let trf"] be given by

wB = Y SN (R (56)

[aB]<B j<JmeZ™

where again f € B, is given by (51),(52) and where the sum Zmezn is restricted
to those m € Z™ such that the rectangles Qf,, have a non-empty intersection with I'.
For given § > 0 and suitably chosen g > 0 it follows by the above arguments for
J € By® having norm of at most 1 that

Itre =t ") f [ Ly (D))

<o D 27 ) e 3 2 (Yo e R ) e

[aB]>B [aB]<B j>J

see (49) and (54), (55). By (21) we find for any given £ > 0 sufficiently large num-
bers B and J such that
[trr — trp|| < e.

Then trr is compact, as trf /" are finite rank operators. O
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4.6. Proof of Proposition 3.3

Proof. Note that (25) implies (21), thus by Proposition 3.1 the operator trr is com-
pact. We refine (56) by

wlf= 3 Y SN, JeN, (59)

[aB]<J j<J—[aB] mEL™

where again f € By ® is given by (51), (52) and the last sum has the same meaning
as the last sum in (56). As p is a measure in R we have that

(J—K)n

i < 2 py, K <J, (59)

also in the anisotropic case. (Recall that a; +---+a, = n.) Let § > 0 be sufficiently

large. By (59) we obtain for f € B;* having norm of at most 1 in analogy to (57)
that

BN, 4
It =) f | Ly (D) < 27 e Y 2‘5“5( >, (“)uf)

[aB]<J j>J—[apB]
<2 ie Y QféaﬁZ—(J—[aﬁ])(s—%)ﬂé_[am
[aB]<J
< 62—6J+CM§27J(57%) Z g-baf+aB(s—2)+ap 2
[aB]<J
< 0'2_‘](3_%)/1? (60)

In the second estimate we used assumption (25) and in the next one (59). For the
rank of tr{ we have the estimate

rank(tri) < ¢ Z gn(J=labl) < @on,
[aB]<J

This proves (26). O

4.7. Proof of Proposition 3.5

Proof. For simplicity we prove this proposition for the case n = 2. If n > 2 this can
be done in a similar way.

We use the well-known mass distribution procedure to construct a measure p
with the desired properties. We refer to [19, ch. 4] for details. Let @ = [0,1]? be
the closed cube with side-length 1, we take the affine contractions (A4,,)N_; on R2
which map the unit square to the rectangles (A,,Q)~_, with side-lengths 7% and r¢2
where 0 < a; < ag and a; + as = 2 as in figure 1, so that they are disjoint and
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1
a3 ------ —
o ------ —
, k a1
: E a2
:
:
a3 ------ —
0 1
Figure 1

w(A,Q) = N~1. Furthermore we have Nr? = N|A,,Q| < 1. Let

N
AQ=(AQ)' = | 4n@. (4Q)° =0,
(AQ)" = A((AQ)").

The sequence of sets is monotonically decreasing and by [6, Theorem 8.3]

I = (AQ)* = ((AQ)* = lim (AQ)*

keN

is the uniquely determined fractal generated by the contractions (4,,)N_;. But on

the other hand we assume that p(A,,Q) = ¢, where m = 1,..., N, and from here we
get that d = ‘lﬁ)gg ]X‘ If 0 < d < 2 then it follows by elementary geometrical reasoning
that one can finds (sufficiently small) numbers r > 0 and suitably chosen natural

numbers N € N with the desired properties. O

4.8. Proof of Theorem 3.7

Proof. Step 1. First we prove the right-hand side of the estimate (28) in Theorem 3.7.
Again we use the wavelet expansion (51), (52). For fixed 8 € Nj we put

wf =5 SN (KD,

JjENg mezZ™
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and

wf =30 ST AR, (61)

FI<JImezLr

where the second sum has the same meaning as the last sum in (56). By the same
reasoning as in (58) and (60) but now for fixed 3 we have for f € B;** with norm of
at most 1,

J _ n_g 1

(6xf — e | Ly (T) | < 29982795

By Definition 3.4 there exists a constant ¢ > 0 independent of j € No with u(Q5,,NI')
< ¢279% and we obtain that

(g = ) f] Ly(D)]| < 27027 G275,
In definition (24) put L = tr?"], T = t1rlg7 and note that for j € Ny,

rank( ZF A f)kfm) < 274, (62)

meZ"

Thus we obtain by (61) that

rank(trF’J) < CZ 2id < /974,
Jj<J

Then (62) implies that there are two positive numbers ¢ and ¢ such that
Aupra(trl) < /2700097 (5=9)9=T5 (63)

For k € N there are numbers J,, € N such that

27kd Uk with Jy < Jp <o < T < (64)
inserted in (63) this leads to
ao(tr?) < 270987k (=95 (65)

Let e > 0, for given k € N we apply (65) to kg € N with kg ~ 275%k. Then it follows
by the additivity property of approximation numbers and from (65) that

ack(t1) < Y ag, (tr])

BeNp
< Z 27§a52J,€ﬁ(%—s)(275a5k)—;
BeEND
<Gy 3 9B

BEND

< C///2Jk(%—s)k—%
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for € > 0 small. We used s < 7, such that Ji, (3 —s) < Ji(3 — s). Finally (64)
implies
ack(tr?) < MpaG9p

and so we finished the proof of the right-hand side of the estimate (28).

Step 2. To verify the left-hand side of the estimate (28) we closely follow the
argument in [21, 4.4] for the isotropic case. Let J € N and ¢ > 0 be suitably chosen
numbers such that there are lattice points

Vil = 20=i=Ny  with mez”, 1=1,.. ., M; where M; ~ 2Jd
with
dist(v;;,T) <277 and disjoint anisotropic balls  B*(v,;,c2771).

With k as in (48) we put for j € N,

M;
F@) =3 2 TR @ — 1)), cieC, xR (66)
=1

Then we obtain by Theorem 2.8

M;
1671330 ~ 208 (i)
=1

1 M; 1
P p
lel”) = (E le|”>
=1

and

172 Ly(D)| = (/FW(I)lpu(dm))l/p

v M; ) 1/p
~9—i(s=2) <Z|Cﬂ|p /F kP (27 (z — vj,z))u(dw)>
=1
M;

~ 2D (e |

=1 FmBa(’Y]"L,CQ_j)
o M 1/p
> 277597y <Z|cﬂ|1’> (67)
=1

using our assumption (27) in the last estimate. Hence

‘ 1/p
B2 — ’Vj,z))u(dw)>

jd

£ 1 Lp(@)]| > 277727 % i | f2|Bye| ~ 1. (68)
Now let T" be an arbitrary linear operator,

T: By L) with rankT < M; —1. (69)
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Then we can find a function f{' according to (66) with norm 1 in By® and T'f§ =0
Consequently, by (67) and (68),

sup{ [|(trp =T)f [ Lp(D)|| = [[f [ Byl ~ 1}
[[(trp =) f§" | Lp(D) |
= [l£5 | Lp(D)]l

> C2‘j(5_%)_j%_

[[tre =]

Y

As this is true for all T' according to (69), we obtain

ap, (trr) = inf{ [[trp =T : rank T < M;_4 }

> CQ—j(S—%)—j%.
For k € N there are numbers j; € N such that
2R ok with gy < gk, <o < g, <o

inserted in (68) we obtain

-

ap(trr) > 26~k > a3y

b

i.e., the left-hand side of the estimate (28). O
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