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Universidad Complutense

28040 Madrid — Spain

azagra@mat.ucm.es ferrera@mat.ucm.es

Received: December 12, 2005
Accepted: March 27, 2006

ABSTRACT

We show how an operation of inf-convolution can be used to approximate con-
vex functions with C1 smooth convex functions on Riemannian manifolds with
nonpositive curvature (in a manner that not only is explicit but also preserves
some other properties of the original functions, such as ordering, symmetries,
infima and sets of minimizers), and we give some applications.
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1. Introduction and main results

Smooth approximation is an old subject. Its importance lies on the fact that most
analytical tools for studying the properties of functions defined on a normed space or
on a Riemannian manifold require some degree of differentiability of the considered
functions. However, many functions which arise naturally from geometrical problems
on manifolds are only continuous (or even merely lower semicontinuous). One is thus
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tempted to approximate those functions by smooth functions to which one can apply
more powerful analytical methods and obtain some information about the behavior
of the approximations which will hopefully be shared with the original (nonsmooth)
functions.

The theory of convex functions is also an old subject which plays an important role
in many areas of mathematics. In Riemannian geometry it has been used, for instance,
in the investigation of the structure of noncompact manifolds of positive curvature
by Cheeger, Gromoll, Greene, Meyer, Siohama, Wu, and others, see [9–11, 13–15].
(Recall that a function f : M → R defined on a Riemannian manifold M is said to
be convex provided the function R 3 t 7→ f ◦ γ(t) ∈ R is convex for every geodesic γ
on M .) The existence of global convex functions on a Riemannian manifold has
strong geometrical and topological implications; for instance it is shown in [10] that
every two-dimensional manifold which admits a global convex function which is locally
nonconstant must be diffeomorphic to the plane, the cylinder, or the open Möbius
strip.

Along with the papers cited above and the references therein, we must mention
the important work of Bangert’s on convex sets and convex functions on Riemannian
manifolds, see [3–5]; he showed in particular that Alexandroff’s Theorem about almost
everywhere twice differentiability of convex functions on Rn can be extended to convex
functions on finite-dimensional Riemannian manifolds (providing as well a smart proof
of Alexandroff’s theorem on Rn).

The aim of the present paper is to study to what extent one of the most useful
methods for regularizing convex functions on normed spaces, namely that of infimal
convolution, can be successfully used in the setting of Riemannian manifolds.

Let us first have a quick look at the three main methods (that is, partitions of
unity, integral convolution with a sequence of mollifiers, and inf and sup convolution
formulae) that are used in normed spaces to approximate continuous functions by
smooth functions, and see how they can be adapted to the case when one wants to
regularize a convex function f defined on a Riemannian manifold M .

Partitions of unity are useless in this setting because, even in the case when
M = Rn, they do not preserve convexity of the function f .

The integral convolution with a sequence of mollifiers reveals itself as the perfect
tool when M = Rn, because the integral convolution of a convex function f with any
integrable function g with compact support, that is,

f ∗ g(x) =
∫

Rn

f(x− y)g(y) dy,

is a convex function. In [12–14] Greene and Wu studied to what extent those inte-
gral convolutions with mollifiers can be used to regularize convex functions defined
on finite-dimensional Riemannian manifolds M (and applied this method to prove
several theorems about the structure of complete noncompact manifolds of positive
curvature). It turns out that this method works out in Riemannian manifolds only
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when the original function f is strictly convex. More precisely, let κ : R → R be a
nonnegative C∞ function with support in [−1, 1], constant on a neighborhood of 0
and satisfying

∫
Rn κ(‖x‖)dx = 1, and let us define the functions

ϕε(p) =
1
εn

∫
v∈TMp

f(expp(v))κ
(
‖v‖p

ε

)
dµp,

where dµp is the measure on the tangent space TMp obtained from the Riemannian
metric of M . Greene and Wu showed that if f : M → R is a convex function defined
on an n-dimensional Riemannian manifold M and K is a compact subset of M ,
then there exists an open neighborhood of K and an ε0 > 0 such that the functions
ϕε : U → R defined above are C∞ smooth, converge to f uniformly on K as ε → 0,
and are approximately convex in the sense that

lim inf
ε→0

(
inf

d2

dt2
ϕε(γ(t))

∣∣∣
t=0

)
≥ 0,

where the infimum is taken over all geodesics γ(t) parameterized by arc length and
with γ(0) ∈ K.

Now, a C∞ function ϕ : M → R is called strictly convex if its second derivative
along any geodesic is strictly positive everywhere on the geodesic. A (not necessarily
smooth) function f : M → R is then said to be strictly convex provided that for every
p ∈M and every C∞ strictly convex function ϕ defined on a neighborhood of p there
is some ε > 0 such that f−εϕ is convex on the neighborhood. With this terminology,
the above result implies that if f : M → R is strictly convex then for every compact
subset K of M there exists a sequence of strictly convex C∞ functions ϕn = ϕεn such
that f = limn→∞ ϕn uniformly on K.

However, as Greene and Wu pointed out, this method cannot be used when f is not
strictly convex, and the problem of approximating (not necessarily strictly) convex
functions by smooth convex functions on Riemannian manifolds is open. That is
one main limitation of the integral convolution technique on Riemannian manifolds.
Another drawback of this method is the fact that it does not apply to functions defined
on infinite-dimensional manifolds (even in the case when M is the Hilbert space).

We are left with the third method: infimal convolution. It is well known that if
f : X → R∪{+∞} is a lower semicontinuous convex function defined in X = Rn or in
any infinite-dimensional reflexive Banach space (such as, for instance, the separable
Hilbert space), then the inf-convolution formula

fk(x) := inf
y∈X

{f(y) + k‖x− y‖2},

where ‖·‖ is any equivalent norm in X whose dual norm is LUR, defines a sequence
of C1 smooth convex functions fk which converge to f as k → +∞ (uniformly on
bounded sets if f is uniformly continuous on bounded sets). We refer to [19] for a
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survey on the inf-convolution operation on Banach spaces. In fact, a clever combi-
nation of inf- and sup-convolutions allows one to show that if f is a (not necessarily
convex) function which is uniformly continuous on bounded sets of a superreflexive
Banach space then f can be approximated by C1 smooth functions with uniformly
continuous derivatives uniformly on bounded sets; this was shown first by Lasry and
Lions [18] in the case when X is the Hilbert space and then by Cepedello-Boiso [7,8]
for any superreflexive Banach space X.

In this situation it is natural to ask whether infimal convolution formulae can be
used to regularize convex functions defined on Riemannian manifolds (either finite
or infinite-dimensional). That is the question we try to address in this paper. Let
us describe the main results that we will show in the following sections. If M is a
complete Riemannian manifold and d is the geodesic distance on M , for any function
f : M → R ∪ {+∞}, and for λ > 0 we define the function

fλ(x) = inf
y∈M

{
f(y) +

1
2λ
d(x, y)2

}
for every x ∈ M . In section 2 we collect some general properties of fλ that do not
depend on the geometry ofM and that we will need to use later in our proofs. We show
for instance how the inf defining fλ(x) can be restricted to a suitable ball B(x, rx), and
then use the estimates on the radius rx to show that limλ→0+ fλ(x) = f(x) pointwise
whenever f(x) < +∞, and that if f is uniformly continuous on bounded sets then
fλ converges to f uniformly on bounded sets. We also see that fλ has the same
inf and the same set of minimizers as f does, and that fλ has the same symmetry
properties as f (that is, if T : M → M is an isometry and f(Tz) = f(z) for all z,
then fλ(Tz) = fλ(z) for all z).

In section 3 we assume that f : M → R∪{+∞} is a convex function and we study
under what conditions on M the functions fλ are convex and C1 smooth. It turns out
that some assumptions on the geometry of M are necessary in order that the fλ be
convex and C1 smooth (see Example 5.4 below); in particular we must require that
the distance function d : M ×M → R, (x, y) 7→ d(x, y), be uniformly locally convex
on bounded sets near the diagonal (see Definition 3.3 below). Under this assumption
we prove that the functions fλ are convex and C1 smooth on any given bounded
subset B of M , for all λ small enough. Moreover, if the distance d is convex on all
of M ×M then the fλ are convex and C1 smooth on all of M for all λ > 0.

In section 4 we study the question as to which manifolds satisfy the above techni-
cal assumption that d is uniformly locally convex on bounded sets near the diagonal
(resp. convex on M ×M). First, we show that for every Riemannian manifold with
nonpositive sectional curvature, and with the property that the convexity radius func-
tion of M is strictly positive on bounded sets (such is the case, for instance, of all
complete finite-dimensional Riemannian manifolds), the distance d : M ×M → R
is uniformly locally convex on bounded sets near the diagonal. Secondly, we note
that, for every Cartan-Hadamard manifold (that is, every simply connected complete
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Riemannian manifold of nonpositive sectional curvature), the distance d is convex on
all of M×M . By combining these facts with the results of sections 2 and 3 we obtain,
in the finite-dimensional case (see Corollary 4.4 below):

If M is a complete finite-dimensional Riemannian manifold with sectional
curvature K ≤ 0 and f : M → R is a convex function, then, for every
bounded open convex set U with compact closure U , there exists λ0 > 0
such that the functions fλ : M → R are convex and C1 smooth on U for
all λ ∈ (0, λ0). Moreover,

(i) fλ converges to f uniformly on U .

(ii) fλ ≤ f for all λ > 0.

(iii) fλ has the same inf and the same set of minimizers as f .

(iv) fλ has the same symmetries as f (that is, if f is invariant with respect
to an isometry T : M →M , then so is fλ).

And, in the case of a Cartan-Hadamard manifold (either finite-dimensional or
infinite-dimensional, see Corollary 4.5 below):

If M is a Cartan-Hadamard manifold and f : M → R ∪ {+∞} is a
lower-semicontinuous convex function, then the functions fλ : M → R are
convex and C1 smooth on all of M for all λ > 0. Moreover,

(i) If f is uniformly continuous on bounded sets then fλ converges to f
uniformly on bounded sets.

(ii) fλ ≤ f for all λ > 0.

(iii) fλ has the same inf and the same set of minimizers as f .

(iv) fλ has the same symmetries as f .

Finally, in section 5 we consider some corollaries and applications of the above
results. We show that if C is a closed convex subset of a Cartan-Hadamard manifold
then the distance function to C, x 7→ d(x,C) = inf{d(x, y) : y ∈ C}, is C1 smooth
on M \C and the function x 7→ d(x,C)2 is C1 smooth and convex on all of M . We also
note that this result is not true for Riemannian manifolds of positive curvature such
as the 2-sphere, and therefore the results of section 3 cannot be extended to manifolds
of positive curvature. Another consequence is that every closed convex subset of a
Cartan-Hadamard manifold can be approximated by C1 smooth convex bodies of M .
Lastly, we note that if M is a Cartan-Hadamard manifold and f : M → R∪ {+∞} is
convex and lower-semicontinuous, then the function

u(t, x) := inf
y∈M

{
f(y) +

1
2t
d(x, y)2

}
for t > 0, u(0, x) = f(x)
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is the unique viscosity solution to the following Hamilton-Jacobi partial differential
equation: {

∂u(t,x)
∂t + 1

2

∥∥∂u(t,x)
∂x

∥∥2

x
= 0,

u(0, x) = f(x),

where u : [0,∞)×M → R.

2. General properties

Throughout the paper, for a function f : M → R ∪ {+∞}, we define

fλ(x) = inf
y∈M

{
f(y) +

1
2λ
d(x, y)2

}
.

The following Proposition shows how, under certain conditions, the infimum defin-
ing fλ can be localized on a neighborhood of the point x.

Proposition 2.1 (Localization). Let M be a Riemannian manifold, f : M → R ∪
{+∞} a function satisfying that f(x) ≥ − c

2 (1 + d(x, x0)2) for some c > 0, x0 ∈ M .
Let x ∈M be such that f(x) < +∞. Then, for all λ ∈ (0, 1

2c ) and for all ρ > ρ̄, where

ρ̄ = ρ̄(x, λ, c) :=
(
λ

2f(x) + c(2d(x, x0)2 + 1)
1− 2λc

)1/2

,

we have that
fλ(x) = inf

y∈B(x,ρ)

{
f(y) +

1
2λ
d(x, y)2

}
.

Proof. Since

d(y, x0)2 ≤ (d(y, x) + d(x, x0))2 ≤ 2(d(x, y)2 + d(x, x0)2),

we have that
c(d(x, y)2 + d(x, x0)2) ≥

c

2
d(y, x0)2,

hence

− c
2
− c

2
d(y, x0)2 +

1
2λ
d(x, y)2 ≥ 1

2λ
d(x, y)2 − cd(x, y)2 − cd(x, x0)2 −

c

2
,

that is

− c
2

(
1 + d(y, x0)2

)
+

1
2λ
d(x, y)2 ≥

(
1
2λ

− c

)
d(x, y)2 − cd(x, x0)2 −

c

2
. (1)

Now, for any given η > 0, if we set

r = r(x, λ, c, η) :=
(
λ

2f(x) + 2η + c(2d(x, x0)2 + 1)
1− 2λc

)1/2

,
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by using (1) we obtain that, for every y ∈M with d(y, x) > r,

f(y) +
1
2λ
d(x, y)2 ≥ − c

2
(1 + d(y, x0)2) +

1
2λ
d(x, y)2

≥
( 1

2λ
− c

)
d(x, y)2 − cd(x, x0)2 −

c

2

≥
( 1

2λ
− c

)(
λ

2f(x) + 2η + c(2d(x, x0)2 + 1)
1− 2λc

)
− cd(x, x0)2 −

c

2
= f(x) + η > fλ(x),

which implies that

inf
d(y,x)>r

{
f(y) +

1
2λ
d(x, y)2

}
> fλ(x),

hence
fλ(x) = inf

d(y,x)≤r

{
f(y) +

1
2λ
d(x, y)2

}
.

Finally, since
lim
η→0

r(x, λ, c, η) = ρ̄(x, λ, c),

it is clear that for every ρ > ρ̄ we can find η > 0 small enough so that

ρ = ρ(x, λ, c) > r(x, λ, c, η) > ρ̄(x, λ, c),

and therefore, from the above argument we deduce that

fλ(x) = inf
d(y,x)≤ρ

{
f(y) +

1
2λ
d(x, y)2

}
.

Next we state several interesting properties of this inf-convolution operation, such
as preservation of order and symmetry properties of the original function. We put off
studying the conditions under which convexity is preserved until the next section.

Proposition 2.2. Let M be a Riemannian manifold, f : M → R∪{+∞} a function.
We have that:

(i) fλ ≤ f for all λ > 0.

(ii) If 0 < λ1 < λ2 then fλ2 ≤ fλ1 .

(iii) inf fλ = inf f and, moreover, if f is lower semicontinuous then every minimizer
of fλ is a minimizer of f , and conversely.

(iv) If T is an isometry of M onto M , and f is invariant under T (that is,
f(Tz) = f(z) for all z ∈M), then fλ is also invariant under T , for all λ > 0.
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Proof. (i) and (ii) are obvious.

(iii) Note that

inf
x∈M

fλ(x) = inf
x∈M

inf
y∈M

{
f(y) +

1
2λ
d(x, y)2

}
= inf

y∈M
inf

x∈M

{
f(y) +

1
2λ
d(x, y)2

}
= inf

y∈M
f(y).

Since fλ ≤ f it is then obvious that every minimizer of f is a minimizer of fλ as well.
Conversely, assume that f is lower semicontinuous, let x0 be a minimizer of fλ, that
is, fλ(x0) = infy∈M fλ(y) = infy∈M f(y), and let us see that f(x0) = infy∈M f(y).
Choose {xn}n∈N ⊂M so that f(xn) + 1

2λd(x0, xn)2 ≤ fλ(x) + 1
n ; then we have

0 ≤ 1
2λ
d(x0, xn)2 ≤ fλ(x0) +

1
n
− f(xn) ≤ fλ(x0) +

1
n
− inf

y∈M
f(y) =

1
n
→ 0,

hence (xn) converges to x0, and since f is lower semicontinuous we get

f(x0) ≤ lim
n
f(xn) ≤ lim

n

(
fλ(x0) +

1
n

)
= fλ(x0) = inf

y∈M
fλ(y) = inf

y∈M
f(y)

and x0 is a minimizer of f .

(iv) We have that

fλ(Tx) = inf
y∈M

{
f(y) +

1
2λ
d(Tx, y)2

}
= inf

y∈M

{
f(Ty) +

1
2λ
d(Tx, Ty)2

}
= inf

y∈M

{
f(Ty) +

1
2λ
d(x, y)2

}
= inf

y∈M

{
f(y) +

1
2λ
d(x, y)2

}
= fλ(x).

Now we apply Proposition 2.1 to show that, under natural continuity assumptions
on f , the regularizations fλ converge to the original function f as λ goes to 0.

Proposition 2.3 (Convergence). Let M be a Riemannian manifold, f : M → R ∪
{+∞} a function satisfying that f(x) ≥ − c

2 (1 + d(x, x0)2) for some c > 0, x0 ∈ M ,
and consider

fλ(x) = inf
y∈M

{
f(y) +

1
2λ
d(x, y)2

}
for 0 < λ < 1/2c.

(i) Assume that f is uniformly continuous on bounded subsets of M . Then limλ→0 fλ

= f uniformly on each bounded subset of M .

(ii) Assume that f is continuous on M . Then limλ→0 fλ = f uniformly on compact
subsets of M .
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(iii) Assume that f is uniformly continuous and bounded on all of M . Then limλ→0 fλ

= f uniformly on M .

(iv) In general, if f is only assumed to be lower semicontinuous, we have that
limλ→0 fλ(x) = f(x) for every x ∈M with f(x) < +∞.

Proof. (i) According to Proposition 2.1, for every x ∈M , λ ∈ (0, 1/2c), ρ > ρ̄(x, λ, c),
we have that

fλ(x) = inf
d(x,y)≤ρ

{
f(y) +

1
2λ
d(x, y)2

}
.

Fix R > 0. As is easily shown, a uniformly continuous function on a Riemannian
manifold is bounded on bounded sets, hence we can find k > 0 so that |f(x)| ≤ k for
all x ∈ B(x0, 2R).

For any given ε > 0, by uniform continuity of f , there exists δ > 0 such that if
y, x ∈ B(x0, 2R) and d(x, y) ≤ δ then |f(x) − f(y)| ≤ ε/3. We can assume δ < R.
Now, since

lim
λ→0+

(
λ

2k + c(2R2 + 1)
1− 2cλ

)1/2

= 0,

there is λε > 0 such that if 0 < λ < λε then

0 < ρ(x, λ, c) ≤
(
λ

2k + c(2R2 + 1)
1− 2cλ

)1/2

< δ

for all x ∈ B(x0, R), and therefore

fλ(x) = inf
d(y,x)≤δ

{
f(y) +

1
2λ
d(y, x)2

}
for all x ∈ B(x0, R), λ ∈ (0, λε). But, since fλ ≤ f for all λ, this really means that

fλ(x) = inf
y∈Ax

{
f(y) +

1
2λ
d(y, x)2

}
,

where
Ax :=

{
y ∈ B(x, δ) : f(y) +

1
2λ
d(y, x)2 ≤ f(x)

}
.

By the definition of inf, we can take yx ∈ Ax such that

fλ(x) +
ε

3
≥ f(yx) +

1
2λ
d(yx, x)2.

Then, bearing in mind that yx ∈ Ax ⊆ B(x, δ) ⊆ B(x0, 2R) when x ∈ B(x0, R), we
get

|f(x)− fλ(x)| = f(x)− fλ(x) ≤ f(x)− f(yx)− 1
2λ
d(yx, x)2 +

ε

3
≤ |f(x)− f(yx)|+ ε

3
≤ ε

3
+
ε

3
< ε
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for all x ∈ B(x0, R), λ ∈ (0, λε). This shows that limλ→0+ fλ = f uniformly on
B(x0, R).

(ii) Let K be a compact subset of M . By compactness, it is easily seen that
for every ε > 0 there exists δ > 0 such that if x ∈ K, y ∈ M , and d(x, y) ≤ δ then
|f(x)− f(y)| ≤ ε/3. One can now repeat the above argument with the precaution of
always taking x ∈ K ⊂ B(x0, R), y ∈M , d(x, y) ≤ δ.

(iii) Choose k > 0 such that |f(x)| ≤ k for all x ∈ M . Let us first observe that
the infimum defining fλ can be restricted to the set {y ∈ M : d(y, x) ≤ 2

√
kλ} =

B(x, 2
√
kλ). Indeed, if d(y, x) > 2

√
kλ then

f(y) +
1
2λ
d(x, y)2 > −k + 2k = k ≥ f(x) ≥ fλ(x).

Next, for any given ε > 0, the uniform continuity of f provides us with
δ > 0 so that |f(y) − f(x)| ≤ ε/3 whenever d(x, y) ≤ δ. On the other hand, since
limλ→0+ 2

√
kλ = 0, there exists λε > 0 such that 0 < 2

√
kλ < δ for 0 < λ < λε.

Then, for any x ∈M , λ ∈ (0, λε) the infimum defining fλ(x) can be restricted to the
set Ax := {y ∈ B(x, δ) : f(y) + 1

2λd(x, y)
2 ≤ f(x)}. Now, the same estimations as

in (i) above show that |fλ(x)− f(x)| ≤ ε.

(iv) Fix x ∈M . Since f is lower semicontinuous we have f(x) ≤ lim infy→x f(y),
hence, for any given ε > 0, there exists δ > 0 so that

f(x)− f(y) ≤ ε

3

for all y ∈ B(x, δ). Now, since

lim
λ→0+

(
λ

2f(x) + c(2d(x, x0)2 + 1)
1− 2cλ

)1/2

= 0,

there is λε > 0 such that if 0 < λ < λε then

0 <
(
λ

2f(x) + c(2d(x, x0)2 + 1)
1− 2cλ

)1/2

< δ

and therefore
fλ(x) = inf

d(y,x)≤δ

{
f(y) +

1
2λ
d(y, x)2

}
for all λ ∈ (0, λε). But, since fλ ≤ f for all λ, this means

fλ(x) = inf
y∈Ax

{
f(y) +

1
2λ
d(y, x)2

}
,

where
Ax :=

{
y ∈ B(x, δ) : f(y) +

1
2λ
d(y, x)2 ≤ f(x)

}
.
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By the definition of infimum, we can take yx ∈ Ax such that

fλ(x) +
ε

3
≥ f(yx) +

1
2λ
d(yx, x)2.

Then we get

|f(x)− fλ(x)| = f(x)− fλ(x) ≤ f(x)− f(yx)− 1
2λ
d(yx, x)2 +

ε

3
≤ f(x)− f(yx) +

ε

3
≤ ε

3
+
ε

3
< ε

for all λ ∈ (0, λε). This shows that limλ→0+ fλ(x) = f(x).

3. Regularization of convex functions

In order to see that the operation f → fλ preserves convexity we will need to use the
following Lemmas.

Lemma 3.1. Let M be a Riemannian manifold, and F : M×M → R∪{+∞} a convex
function (where M × M is endowed with its natural product Riemannian metric).
Assume either that M has the property that every two points can be connected by a
geodesic in M , or else that F is continuous and M is complete. Then, the function
ψ : M → R defined by

ψ(x) = inf
y∈M

F (x, y)

is also convex.

Proof. Let γ : I → M be a geodesic. We have to see that the function t 7→ ψ(γ(t))
is convex, that is, for any t0, t1 ∈ I, and for any s ∈ [0, 1], ψ(γ(st1 + (1 − s)t0)) ≤
sψ(γ(t1)) + (1− s)ψ(γ(t0)). We may assume (up to an affine change of parameters)
that t0 = 0 and t1 = 1, so we have to show that ψ(γ(t)) ≤ tψ(x1) + (1 − t)ψ(x0),
where x0 := γ(0) and x1 := γ(1).

Fix an arbitrary t ∈ [0, 1]. For any ε > 0, by the definition of ψ, we can pick
y0, y1 ∈M so that

F (x1, y1) < ψ(x1) + ε and F (x0, y0) < ψ(x0) + ε. (2)

Let σ : J →M be a geodesic connecting y0 and y1. (If such σ does not exist then we
can use continuity of F and Ekeland’s approximate Hopf-Rinow type theorem to get
points ȳ0 and ȳ1 close enough to y0 and y1 so that (2) remains true when replacing
yj with ȳj , and a geodesic σ̄ connecting ȳ0 to ȳ1; the rest of the argument applies
without changes.) We can also assume that J = [0, 1], y0 = σ(0), y1 = σ(1).

It is clear that, because γ and σ are geodesics in M , the path t 7→ (γ(t), σ(t)) is
a geodesic joining the points (x0, y0) and (x1, y1) in the product manifold M ×M .
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Now, since t 7→ F (γ(t), σ(t)) is convex, we have that

ψ(γ(t)) = inf
y∈M

F (γ(t), y) ≤ F (γ(t), σ(t)) ≤ tF (x1, y1) + (1− t)F (x0, y0)

≤ t(ψ(x1) + ε) + (1− t)(ψ(x0) + ε) = tψ(x1) + (1− t)ψ(x0) + ε

and this holds for every ε > 0, hence we can conclude that ψ(γ(t)) ≤ tψ(x1) +
(1− s)ψ(x0).

Lemma 3.2. Let M be a Riemannian manifold with the property that any two points
of M can be joined by a minimizing geodesic, and let f : M → R ∪ {+∞} be a
convex function. Then, for every x0 ∈ M there exists a number c ≥ 0 such that
f(x) ≥ − c

2

(
1 + d(x, x0)2

)
for all x ∈M .

Proof. Choose ζ ∈ D−f(x0). For a given x ∈ M , let γ be a minimizing geodesic
connecting x0 to x, say γ(t) = expx0

(tv), t ∈ [0, d(x, x0)], for some v ∈ TMx0 with
‖v‖x0 = 1. Since f is convex we have f(expx0

(tv)) − f(x0) ≥ 〈ζ, tv〉x0 for every
t ∈ [0, d(x0, x)], and in particular

f(x)− f(x0) ≥ 〈ζ, d(x0, x)v〉x0 ≥ −‖ζ‖x0d(x0, x)‖v‖x0

= −‖ζ‖x0d(x0, x) ≥ −‖ζ‖x0(1 + d(x0, x)2),

and therefore

f(x) ≥ f(x0)− ‖ζ‖x0(1 + d(x0, x)2) ≥ − c
2
(1 + d(x0, x)2)

for all x ∈M if we put c = 2(‖ζ‖x0 + |f(x0)|).

It will be also useful to recall that every convex function f : M → R which is
locally bounded is continuous (in fact locally Lipschitz); a proof of this statement can
be found in [2, Proposition 5.2].

In order that fλ is convex whenever f is, we will have to require that the distance
function d : M ×M → R is convex on a band around the diagonal of M ×M . More
precisely, we will use the following.

Definition 3.3. Let M be a Riemannian manifold. We say that the distance function
d : M × M → R is uniformly locally convex on bounded sets near the diagonal
if, for every bounded subset B of M , there exists r > 0 such that d is convex on
B(x, r)×B(x, r), and the set B(x, r) is convex in M , for all x ∈ B).

Examples of manifolds satisfying this definition are the cylinder x2 +y2 = 1 in R3,
the Poincaré half-plane, or the subsets of R3 defined by z = 1/(x2 + y2) or z = xy.
In general, every complete finite-dimensional Riemannian manifold of nonpositive
sectional curvature meets this condition, as we will show in the next section.
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Proposition 3.4. Let M be a Riemannian manifold with the property that any two
points of M can be joined by a geodesic, and let f : M → R ∪ {+∞} be a lower-
semicontinuous convex function.

(i) Assume that f is bounded on bounded sets and that the distance function
d : M × M → R is uniformly locally convex on bounded sets near the diag-
onal. Then, for every bounded subset B of M there exists λ0 > 0 such that fλ

is convex on B for all λ ∈ (0, λ0).

(ii) Assume that the distance function d : M ×M → R is convex on all of M ×M .
Then fλ is convex on M for every λ > 0.

Proof. (i) We may well assume B = B(x0, R) for some x0 ∈ M , R > 0. Let r > 0
be small enough so that the function (x, y) 7→ d(y, x) is convex on B(x, 2r)×B(x, 2r)
and B(x, 2r) is convex for every x ∈ B(x0, R). Let k be a bound for f on B(x0, 2R).
We may assume 2r < R. We have that, for every z ∈ B(x0, 2R),

ρ̄(z, λ, k) :=
(
λ

2f(z) + k(1 + 2R2)
1− 2λk

)1/2

≤
(
λ

2k + k(1 + 2R2)
1− 2λk

)1/2

→ 0 as λ→ 0+

hence we can choose λ0 > 0 small enough so that ρ̄(z, λ0, k) < r for all z ∈ B(x0, 2R)
and therefore, according to Proposition 2.1, we have that, for every λ ∈ (0, λ0),

fλ(z) = inf
y∈B(z,r)

{
f(y) +

1
2λ
d(z, y)2

}
= inf

y∈B(x,2r)

{
f(y) +

1
2λ
d(z, y)2

}
whenever z ∈ B(x, r), x ∈ B(x0, R). Note that B(x, 2r), as a convex subset of
M , still has the property that any two of its points can be joined by a geodesic
inside B(x, 2r). Now, assuming 0 < λ < λ0, and fixing x ∈ B(x0, R), because the
function F (z, y) := f(y) + 1

2λd(z, y)
2 is jointly convex on B(x, 2r) × B(x, 2r), we

deduce from Lemma 3.1 that z 7→ fλ(z) = infy∈B(x,2r) F (z, y) is convex on B(x, r),
for all 0 < λ < λ0. Since x ∈ B(x0, R) is arbitrary this implies that fλ is convex on
B(x0, R), for every λ ∈ (0, λ0).

(ii) Here we can use Lemma 3.1 on all of M ×M with no need to localize the
infimum defining fλ(x), so it follows that fλ is convex for all λ > 0.

Remark 3.5. Note that in Case (2) of the above proposition we do not require con-
tinuity of the function f , so f is permitted to take the value +∞ at some points; in
particular we are allowed to take f to be the indicator function of a closed convex
subset C of M , that is

δC(x) =

{
0 if x ∈ C,
+∞ otherwise.
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Remark 3.6. An examination of the above proof and the statement of Lemma 3.1
reveals that, if one assumes that f is continuous and M is complete, it is not necessary
to require that every two points ofM can be connected by a minimizing geodesic inM .

The following proposition shows that the functions fλ are superdifferentiable at a
point x if d is differentiable on a suitable ball around x. We refer the reader to [2]
for the properties of viscosity subdifferentials on Riemannian manifolds; here we will
only make use of the very definition of the subdifferential and the superdifferential
sets of f : M → [−∞,∞], namely,

D−f(x) = { dϕ(x) : ϕ ∈ C1(M,R), f − ϕ attains a local minimum at x },

and

D+f(x) = { dψ(x) : ψ ∈ C1(M,R), f − ψ attains a local maximum at x },

the fact that f is differentiable at x if and only if D−f(x) 6= ∅ 6= D+f(x) (in which
case {df(x)} = D−f(x) = D+f(x)), and that a convex function f : M → R is
everywhere subdifferentiable [2, Theorem 5.3]

Proposition 3.7. Suppose that the infimum defining fλ(x) can be restricted to a
ball Bx = B(x, rx) of radius rx small enough so that the function y 7→ d(y, x)2 is
differentiable on Bx, and that this infimum is attained at a point yx ∈ Bx. Then fλ

is superdifferentiable at x, and

1
λ
d(x, yx)

∂

∂x
d(x, yx) ∈ D+fλ(x).

Proof. We have that

fλ(z)− fλ(x) ≤ f(yx) +
1
2λ
d(z, yx)2 − f(yx)− 1

2λ
d(x, yx)2

=
1
2λ
d(z, yx)2 − 1

2λ
d(x, yx)2,

so
fλ(z)− 1

2λ
d(z, yx)2 ≤ fλ(x)− 1

2λ
d(x, yx)2

for every z ∈ Bx, that is, fλ − 1
2λd(·, yx)2 attains a local maximum at x, hence fλ is

superdifferentiable at x, with d( 1
2λd(·, yx)2)(x) ∈ D+fλ(x).

Next we show that convex differentiable functions are automatically of class C1. In
this proof we will make use of the parallel transport of vectors along geodesics. Recall
that, for a given curve γ : I → M , numbers t0, t1 ∈ I, and a vector V0 ∈ TMγ(t0),
there exists a unique parallel vector field V (t) along γ(t) such that V (t0) = V0.
Moreover, the mapping defined by V0 7→ V (t1) is a linear isometry between the
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tangent spaces TMγ(t0) and TMγ(t1), for each t1 ∈ I. In the case when γ is a unique
minimizing geodesic joining the points γ(t0) = x and γ(t1) = y, we will denote this
mapping by Lxy, and we call it the parallel transport from TMx to TMy along the
geodesic γ. See [16] for general reference on these topics. The parallel transport
allows us to measure the length of the “difference” between vectors (or forms) which
are in different tangent spaces (or in duals of tangent spaces, that is, fibers of the
cotangent bundle), and do so in a natural way. Indeed, let γ be a minimizing geodesic
connecting two points x, y ∈ M , say γ(t0) = x, γ(t1) = y. Take vectors v ∈ TMx,
w ∈ TMy. Then we can define the distance between v and w as the number

‖v − Lyx(w)‖x = ‖w − Lxy(v)‖y.

(This equality holds because Lxy is a linear isometry between the two tangent spaces,
with inverse Lyx.) Since the spaces T ∗Mx and TMx are isometrically identified by
the formula v = 〈v, ·〉, we can obviously use the same method to measure distances
between forms ζ ∈ T ∗Mx and η ∈ T ∗My lying on different fibers of the cotangent
bundle.

It is also well known that the mapping y 7→ Lxy is well defined and continuous on a
neighborhood of each x ∈M , in the following sense: if (xn) converges to x in M then
expxn

(Lxxn
(v)) converges to expx(v) uniformly on the set { v ∈ TMx : ‖v‖x ≤ δ } for

some δ > 0 (a fact which we use at the end of the proof of the following proposition).

Proposition 3.8. Let M be a Riemannian manifold, and let f : M → R be a
differentiable convex function. Then f is of class C1 on M .

Proof. Assume that f is not C1, then there are ε > 0, a point x ∈M and a sequence
(xn) ⊂M converging to x such that

‖Lxnx[df(xn)]− df(x)‖x > 2ε

for all n ∈ N. Therefore, for every n ∈ N we can pick hn ∈ TMx with ‖hn‖x = 1 such
that

〈Lxnx[df(xn)]− df(x), hn〉x > 2ε for all n ∈ N.
Since f is differentiable at x, there exists δ > 0 so that

f(expx(tv))− f(x)− 〈df(x), tv〉x ≤ εt

for all v ∈ TMx with ‖vx‖ = 1 and |t| ≤ δ. On the other hand, by convexity of f , we
have

〈df(xn), tw〉xn
≤ f(expxn

(tw))− f(xn)

for all w ∈ TMxn with ‖w‖xn = 1 and |t| ≤ δ. By combining these inequalities we get

2εδ ≤ 〈Lxnx[df(xn)]− df(x), hn〉xδ = 〈Lxnx[df(xn)], δhn〉x − 〈df(x), δhn〉x
= 〈df(xn), δLxxn

hn〉xn
− 〈df(x), δhn〉x

≤ f(expxn
(δLxxn

hn))− f(xn) + f(x)− f(expx(δhn)) + εδ

= f(expxn
(δLxxn

hn))− f(expx(δhn)) + f(x)− f(xn) + εδ → 0 + 0 + εδ
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(by continuity of f , exp, and the parallel translation L), so we get that 2εδ ≤ εδ,
which is not possible.

Now we can prove that, under the same assumptions as in Proposition 3.4, if f is
convex then fλ is of class C1 for λ > 0 small enough.

Theorem 3.9. Let M be a Riemannian manifold and let f : M → R ∪ {+∞} be a
lower semicontinuous and convex function. Assume that every two points of M can
be connected by a minimizing geodesic in M .

(i) Suppose that f is bounded on bounded sets and that the distance function
d : M × M → R is uniformly locally convex on bounded sets near the diag-
onal. Then, for every bounded open convex subset B of M there exists λ0 > 0
such that fλ is a C1 smooth convex function on B, for all λ ∈ (0, λ0).

(ii) Suppose that the distance function d : M ×M → R is convex on all of M ×M .
Then fλ is a C1 smooth convex function on M , for every λ > 0.

Proof. (i) We can give an almost self-contained proof of this in the finite-dimensional
case, so let us first assume that dimM < +∞. We may also assume B = B(x0, R) for
some x0 ∈ M , R > 0. Since the injectivity radius x 7→ i(x) is a continuous positive
function, it is bounded below by a positive number on the compact subset B̄(x0, R)
of M . This implies that there exists r0 > 0 such that the function y 7→ d(x, y)2

is C1 smooth on B(x, r0) for every x ∈ B(x0, R). We can obviously assume that
r < r0 and repeat the argument of the proof of Proposition 3.4 to get a λ0 > 0
such that fλ is convex on B(x0, R) for all λ ∈ (0, λ0) and, moreover, that, for every
x ∈ B(x0, R), the infimum defining fλ(x) can be restricted to the ball B̄(x, r), which
is contained in B(x, r0) (so that, in particular, y 7→ d(y, x)2 is C1 smooth on B(x, r)).
Besides, this infimum is attained, because the involved functions are continuous and
the ball B̄(x, r) is compact. According to Proposition 3.7, we then get that fλ is
superdifferentiable at x, for every x ∈ B(x0, R), λ ∈ (0, λ0).

On the other hand, since fλ is convex on B(x0, R), we know that fλ is subdiffer-
entiable on B(x0, R) (see [2, Theorem 5.3]). That is, fλ is both subdifferentiable and
superdifferentiable at each point of B(x0, R), hence fλ is differentiable on B(x0, R)
(see [2, Proposition 4.6]). Since fλ is convex, Proposition 3.8 allows to conclude that
fλ is C1 smooth on B(x0, R) for each λ ∈ (0, λ0).

Let us now consider the case when dimM = +∞. Here we will use the following
result from [1]:

Theorem ([1, Theorem 3.3]). Let M be a connected, complete Riemannian manifold,
and let f : M → R be a continuous function, bounded below by a constant c. Then we
have that for every α > 0 the function

fα(x) = infy∈M{f(y) + αd(x, y)2}
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is bounded below by c, is Lipschitz on bounded sets, and satisfies

lim
α→+∞

fα(x) = f(x).

Moreover, for every x0 ∈M with ∂P fα(x0) 6= ∅, there is a y0 ∈M such that:

(a) Every minimizing sequence {yn} in the definition of fα(x0) converges to y0, and
consequently the infimum is a strong minimum.

(b) There is a minimizing geodesic γ joining x0 and y0.

(c) fα is differentiable at x0.

(d) Lx0y0 [dfα(x0)] ∈ ∂P f(y0).

Finally, if we assume that M is finite-dimensional (or, more generally, if we
assume that M can be infinite-dimensional but still has the property that every two
points of M are connected by a minimizing geodesic) then the same remains true of
every lower semicontinuous function f : M → ( − ∞,+∞] which is bounded below
by c.

Here ∂P denotes the proximal subdifferential introduced in [1], which has the
property that ∂P g(x) ⊆ D−g(x) and, for a convex g, in fact ∂P g(x) = D−g(x) 6= ∅
for all x.

Since fλ, being convex on B for all λ ∈ (0, λ0), satisfies ∂P fλ(x) = D−fλ(x) 6= ∅
for all x ∈ B, we can apply the above Theorem to get that fλ is differentiable at every
point x ∈ B, hence (by Proposition 3.8) of class C1 on B.

(ii) As in case (i), let us first give a self-contained proof for the finite-dimensional
case. If the distance function d : M × M → R is convex on all of M × M then
y 7→ d(y, x) is convex on M for all x ∈ M , which implies that the cut locus of x is
empty for every x ∈ M and that the function y 7→ d(y, x)2 is differentiable on all of
M for every x ∈ M . On the other hand, we claim that the infimum defining fλ(x)
is attained for every x ∈ M . Indeed, fix x ∈ M with f(x) < +∞. From the proof
of Lemma 3.2 we know that there exists c = cx ≥ 0 such that f(y) ≥ −cd(x, y) for
every y ∈M . Then we have

f(y) +
1
2λ
d(x, y)2 ≥ −cd(x, y) +

1
2λ
d(x, y)2 → +∞

if d(x, y) → +∞, so there exists R > 0 large enough so that if d(x, y) ≥ R then

f(y) +
1
2λ
d(x, y)2 ≥ f(x) ≥ fλ(x),

hence
fλ(x) = inf

y∈B̄(x,R)
{f(y) +

1
2λ
d(x, y)2},
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and now it is clear that this infimum is attained because f + 1
2λd(·, x)

2 is lower
semicontinuous and B̄(x,R) is compact.

Therefore, according to Proposition 3.7, fλ is superdifferentiable. Because fλ is
convex, this means that fλ is differentiable, hence C1 smooth on M , for all λ > 0.

In the infinite-dimensional case we only have to bear in mind that, according
to Proposition 3.4(2), fλ is convex on all of M , so the same proof as in case (i)
applies.

Remark 3.10. If one assumes that f is continuous and M is complete, it is not neces-
sary to require that every two points of M can be connected by a minimizing geodesic
in M .

4. Which manifolds do the above results apply to?

Let us say a few words about the manifolds satisfying the assumptions of Theorem 3.9.
The following theorem is a restatement of [17, Theorem IX.4.3, p. 257]

Theorem 4.1. Let M be a Riemannian manifold with seminegative sectional curva-
ture K ≤ 0, and U a convex open set. Let β1, β2 be disjoint geodesics in U , defined on
the same interval. Let αt : [a, b] → U be the unique geodesic joining β1(t) with β2(t),
and let `(t) = length(αt), that is, `(t) = d(β1(t), β2(t)). Then `′′(t) ≥ 0 for all t, and
in particular `(t) is a convex function.

From this theorem it is immediate to deduce that the above results on regular-
ization of convex functions apply to manifolds of seminegative sectional curvature, as
we next see.

Corollary 4.2. Let M be a Riemannian manifold with sectional curvature K ≤ 0.

(i) Suppose that M has a convexity radius function which is strictly positive on
bounded subsets of M . (Such is the case, for instance, of a complete finite-
dimensional Riemannian manifold M .) Then the distance function d is uni-
formly locally convex on bounded sets near the diagonal of M ×M .

(ii) Suppose that M is simply connected (which, together with the curvature as-
sumption, amounts to saying that M is a Cartan-Hadamard manifold). Then
the distance function d is convex on all of M .

Proof. (i) Let B be a bounded subset of M . Since the convexity radius function
x 7→ c(x) is bounded below on B by a number r > 0, we have that the open ball
B(x, r) is convex for every x ∈ B. Therefore, for every x ∈ B and for every pair of
disjoint geodesic segments β1, β2 : I := (a, b) →M contained in B(x, r), Theorem 4.1
tells us that the function t 7→ `(t) := d(β1(t), β2(t)) is convex. If β1, β2 are not disjoint
and neither of them is constant (in which case the result would be trivial) then we
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can only have the equality d(β1(t), β2(t)) = 0 for a unique t = t0, at which point the
function `(t) attains an absolute minimum, and Theorem 4.1 shows that `(t) is convex
on (a, t0) and on (t0, b). But a real function which is convex on (a, t0) and on (t0, b),
and which attains its minimum at t0, must in fact be convex on all of I = (a, b).

This proves that the distance function d is convex on B(x, r)×B(x, r), for every
x ∈ B, which in turn means that d is uniformly locally convex near the diagonal.

(ii) In a Cartan-Hadamard manifold M every ball is convex, and two distinct
geodesics in M can intersect in only one point (see [17, p. 259-261]), so the above
argument applies globally.

Remark 4.3. The assumption on curvature is necessary in order that d be uniformly
locally convex near the diagonal: it is easy to see that, for many disjoint nonconstant
geodesic segments β1 and β2 in the sphere S2, the function t→ d(β1(t), β2(t)) is not
convex. Indeed, the geodesics in the sphere are just the great circles, so we can take for
instance two distinct geodesic segments β1 and β2 : [−ε, ε] → S2 lying on two distinct
parallel meridians near the equator, parameterized in such a way that β1(0) and β2(0)
lie on the equator line and with the property that d(β1(t), β2([−ε, ε])) = d(β1(t), β2(t))
for all t ∈ [−ε, ε]. Then it is clear that the function

(−ε, ε) 3 t 7→ d(β1(t), β2(t))

attains a strict maximum at t = 0 and therefore it cannot be convex.
Furthermore, as we will see in the next section, an important consequence of

Theorem 3.9 fails in the sphere S2, so the assumption on the jointly convexity of the
distance function d : M ×M → R near the diagonal seems to be much more than a
mere technical requirement and is probably a necessary condition for the functions fλ

to be convex whenever f is.

We conclude with a corollary that sums up what the results we have shown tell
us in the case of a Riemannian manifold of nonpositive curvature.

When M is a complete finite-dimensional Riemannian manifold of nonpositive
curvature we have the following result. Recall that a convex function f on a finite-
dimensional Riemannian manifold M that only takes finite values is automatically
continuous (see [3]).

Corollary 4.4. Let M be a complete finite-dimensional Riemannian manifold with
sectional curvature K ≤ 0. Let f : M → R be a convex function. Then, for every
bounded open convex set U with compact closure U , there exists λ0 > 0 such that the
functions fλ : M → R, defined by

fλ(x) = inf
y∈M

{
f(y) +

1
2λ
d(x, y)2

}
,

are convex and C1 smooth on U for all λ ∈ (0, λ0). Moreover,

341 Revista Matemática Complutense
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(i) fλ converges to f uniformly on U .

(ii) fλ ≤ f for all λ > 0.

(iii) fλ has the same infimum and the same set of minimizers as f .

(iv) fλ has the same symmetries as f (that is, if f is invariant with respect to an
isometry T : M →M , then so is fλ).

Note that in this result we do not allow f to take infinite values. We are able
to deal with functions f : M → R ∪ {+∞} when we furthermore assume that M is
a Cartan-Hadamard manifold (that is, a simply connected Riemannian manifold of
nonpositive curvature), either finite or infinite-dimensional. Also recall that Cartan-
Hadamard manifolds enjoy the property that every two points can be connected by
a minimizing geodesic (see [17]).

Corollary 4.5. Let M be a Cartan-Hadamard manifold (either finite-dimensional
or infinite-dimensional). Let f : M → R ∪ {+∞} be a lower-semicontinuous convex
function. Then the functions fλ : M → R, defined by

fλ(x) = inf
y∈M

{
f(y) +

1
2λ
d(x, y)2

}
,

are convex and C1 smooth on all of M for all λ > 0. Moreover,

(i) fλ ≤ f for all λ > 0.

(ii) fλ has the same infimum and the same set of minimizers as f .

(iii) fλ has the same symmetries as f does.

(iv) If f is uniformly continuous on bounded sets fλ converges to f uniformly on
bounded sets.

5. Some applications

If X is a Hilbert space (or more generally a reflexive Banach space), it is well known
that for every closed convex subset C of X the distance function to C, that is, x 7→
d(x,C) is convex and C1 smooth away from C (even though C might not have a
smooth boundary), and, as a consequence, every such C can be approximated by
C1 smooth convex bodies. We next show how the results proved above allow us to
extend these two theorems to the class of Cartan-Hadamard manifolds (either finite or
infinite-dimensional), and we also note that this result completely fails in the sphere
S2: there are closed convex sets C of arbitrarily small diameter in S2 such that
x 7→ d(x,C) is not convex on any neighborhood of C.
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Corollary 5.1. Let C be a closed convex subset of a Cartan-Hadamard manifold.
Then the distance function to C, x 7→ d(x,C) = inf{ d(x, y) : y ∈ C } is C1 smooth
on M \ C and, moreover, the function x 7→ d(x,C)2 is C1 smooth and convex on all
of M .

Proof. Define f : M → R ∪ {+∞} by

f(x) =

{
0 if x ∈ C,
+∞ otherwise .

The function f is lower semicontinuous and convex on M . According to Theorem 3.9,
the function fλ : M → R,

fλ(x) = inf
{
f(y) +

1
2λ
d(x, y)2

}
= inf

{ 1
2λ
d(x, y)2 : y ∈ C

}
=

1
2λ
d(x,C)2,

is C1 smooth and convex on M for all λ > 0. By taking λ = 1/2 we get that the
squared distance function to C is C1 smooth and convex on M .

Definition 5.2. We say that a subset C of a Riemannian manifold M is a C1 smooth
convex body of M provided C is closed, convex, has nonempty interior, and ∂C is a
one-codimensional C1 smooth submanifold of M .

Corollary 5.3. Let C be a closed convex subset of a Cartan-Hadamard manifold, and
let U be an open subset of M with d(C,M \ U) > 0. Then there exists a C1 smooth
convex body D of M such that C ⊂ D ⊂ U .

Proof. Since d(C, ∂U) > 0 we can take r = 1
2d(C, ∂U) and define D = {x ∈ M :

d(x,C) ≤ r}. It is clear that C ⊂ D ⊂ U , and D happens to be a C1 smooth
convex body because x 7→ d(x,C)2 is C1 smooth and convex, and the derivative of
the function d(·, C)2 is nonzero at every point x ∈ M \ C. (A convex function has a
null derivative only at the points, if any, where it attains its minimum.)

The following example shows that Theorem 3.9 and the above corollaries are false
in general if we do not require that the manifold M has nonpositive sectional curva-
ture.
Example 5.4. Let M be the sphere x2 + y2 + z2 = 1 in R3 endowed with its usual
Riemannian metric. Let C be a closed geodesic segment of diameter less than a
number 2ε with 0 < ε < 1/2. For instance, with the notation of Remark 4.3, we can
take C = β2 ([−ε, ε]). Then it is easy to see that the function d(·, C)2 defined on M
by

d(x,C)2 = inf
y∈C

d(x, y)2,

is not convex on any open neighborhood of C. Indeed, if we consider the geodesic
segment β1 : [−ε, ε] → S2 as in Remark 4.3 then we have that

t 7→ d(β1(t), C)2 = d(β1(t), β2(t))2
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has a strict maximum at t = 0, hence it is not convex. Since β1 can be taken to be
arbitrarily close to C = β2 ([−ε, ε]) this implies that d(x,C)2 is not convex on any
open neighborhood of C.

This example shows that Corollary 5.1 fails in M (hence so does Theorem 3.9).

Finally, it should be noted that there is a strong link between the regularization
method we have just presented and the following Hamilton-Jacobi partial differential
equation:

(∗)

{
∂u(t,x)

∂t + 1
2

∥∥∂u(t,x)
∂x

∥∥2

x
= 0,

u(0, x) = f(x),

where u : [0,∞) ×M → R, f : M → R ∪ {+∞}. If we assume that M is a finite-
dimensional Cartan-Hadamard manifold and f is convex and lower-semicontinuous,
then the function

u(t, x) := inf
y∈M

{
f(y) +

1
2t
d(x, y)2

}
for t > 0, u(0, x) = f(x)

is the unique viscosity solution of (∗) (see [2] for the definition of viscosity solution
to Hamilton-Jacobi equations on Riemannian manifolds). This is not very difficult
to show directly. Alternatively, one can prove that Theorem 3.6 and section 7.2
of [6] remain true when Rn is replaced with a finite-dimensional Cartan-Hadamard
manifold.
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Sci. École Norm. Sup. (4) 12 (1979), no. 1, 47–84.

[15] D. Gromoll and W. Meyer, On complete open manifolds of positive curvature, Ann. of Math.
(2) 90 (1969), 75–90.

[16] W. Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de
Gruyter & Co., Berlin-New York, 1982.

[17] S. Lang, Fundamentals of differential geometry, Graduate Texts in Mathematics, vol. 191,
Springer-Verlag, New York, 1999.

[18] J.-M. Lasry and P.-L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math. 55
(1986), no. 3, 257–266.
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