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ABSTRACT

We present a direct proof of a known result that the Hardy operator Hf(x) =
1
x

R x

0
f(t) dt in the space L2 = L2(0,∞) can be written as H = I − U , where

U is a shift operator (Uen = en+1, n ∈ Z) for some orthonormal basis {en}.
The basis {en} is constructed by using classical Laguerre polynomials. We
also explain connections with the Euler differential equation of the first order
y′− 1

x
y = g and point out some generalizations to the case with weighted L2

w(a, b)
spaces.

Key words: Hardy inequality, Hardy operator, Laguerre polynomials, isometry, Lebes-
gue spaces, basis in L2 space, weighted L2

w(a, b) spaces.
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Introduction

The Hardy averaging operator H, defined by Hf(x) = 1
x

∫ x

0
f(t)dt, is important in

analysis, differential equations and mathematical physics. Therefore a better under-
standing of the structure of the Hardy operator seems to be important. Moreover,
the operator I −H has remarkable mapping properties, i.e., we have the equality

‖(I −H)f‖L2 = ‖f‖L2 for all f ∈ L2, (1)
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and this isometry in L2 yields also when H is replaced by the dual operator H∗,
defined by H∗f(x) =

∫∞
x

f(t)
t dt (see [1], and for the weighted case [2]).

In section 1 of this paper we will show that if we take the characteristic function
of the unit interval e0 = χ(0,1), then the sequence en = (I −H)ne0, n = 0,±1,±2, . . .
forms an orthonormal basis in L2(0,∞) and therefore the operator I − H is a shift
isometry in L2(0,∞) (see Theorem 1.1). Moreover, the sequence {en} can be ob-
tained by using some simple transformations from the classical Laguerre polynomials.
Theorem 1.1 was earlier proved by Brown-Halmos-Shields [1] but we will give here a
direct proof. Our proof is based on an adaptation of known results concerning the
Laguerre polynomials.

In section 2 we will discuss connections between the operator I−H and the Euler
differential equation

y′(x)− 1
x

y(x) = g(x), y(0) = 0, x > 0. (2)

The idea is that if (I − H)f = g or f = (I − H)−1g, then y(x) =
∫ x

0
f(t) dt is a

solution of (2) and therefore (1) implies that, in fact, we have the equality

‖y′‖L2 = ‖g‖L2 ,

which for the system modelled by (2), can be interpreted as a remarkable precise
information between input and output data.

Finally, in section 3 we prove some generalizations of Theorem 1.1) (see Theo-
rems 2.1 and 3.3), point out some consequences of these results and give some con-
cluding remarks.

1. Laguerre polynomials and a representation formula for the
Hardy operator

Let Ln = Ln(x) (n ≥ 0) be a sequence of Laguerre polynomials (for the information
concerning Laguerre polynomials see, e.g., [6, pp. 295–302]). The polynomials Ln can
be defined as algebraic polynomials such that

(i) L0 ≡ 1, Ln(x) is a polynomial of degree n,

(ii) {Ln} is an orthonormal system in L2 = L2(0,∞) with respect to the measure
e−x dx: ∫ ∞

0

Lm(x)Ln(x)e−x dx = δm,n,

where δm,n is the Kronecker delta, that is, δm,n = 0 if m 6= n and δm,n = 1 for
m = n.
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It is known that {Ln} is a basis in L2(0,∞) with respect to the measure e−xdx
(see, e.g., [6, p. 349]). The Laguerre polynomials Ln(x) can be expressed by the
Rodrigues formula

Ln(x) =
ex

n!
dn

xn
(xne−x) for n = 0, 1, 2, . . .

In particular, L0(x) = 1 and L1(x) = 1− x.
Now, we will show how we can construct an orthonormal basis in L2(0,∞) with

the usual measure dt by using the Laguerre polynomials. Since

δm,n =
∫ ∞

0

Lm(x)Ln(x)e−x dx = −
∫ ∞

0

Lm(x)Ln(x) de−x

=
∫ 1

0

Lm(− ln t)Ln(− ln t) dt

we see that the sequence

fn(t) = Ln(− ln t)χ(0,1) (n ≥ 0) (3)

is an orthonormal system in L2(0,∞) with the measure dt. Moreover, from the
completeness of the system {Ln} it follows that {fn}n≥0 is a basis in L2(0, 1).

We can also write

δm,n =
∫ ∞

0

Lm(x)Ln(x)e−x dx =
∫ ∞

0

Lm(x)
ex

Ln(x)
ex

dex

=
∫ ∞

1

Lm(ln t)
t

Ln(ln t)
t

dt.

Hence, we see that the set of functions

en(t) = −Ln(ln t)
t

χ(1,∞) (n ≥ 0) (4)

(we take here sign “minus” for a later technical reason) is an orthonormal system
in L2(0,∞), which is a basis for L2(1,∞). Since the sequences {fn} and {en} have
disjoint supports we see that the system

{fn} ∪ {en}

is an orthonormal basis in L2(0,∞) with the measure dt.
To formulate the result let us denote by U : L2 −→ L2 the operator defined by

the formulas

Uf0 = e0, Ufn+1 = fn, Uen = en+1 for n = 0, 1, 2, . . . (5)

It is clear that U is a shift isometry in L2(0,∞).
We are now ready to formulate the main result in this section, namely the following

representation formula for the Hardy operator proved already by Brown-Halmos-
Shields [1]. We present here a direct proof.
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Theorem 1.1. The Hardy operator Hf(x) = 1
x

∫ x

0
f(t) dt can be written as

H = I − U,

where U is a shift isometry defined by (5).

Proof. We only need to show that the formulas (5) are satisfied for the operator
U = I −H.

The first equality in formula (5), i.e., the equality (I−H)f0 = e0, is easy to check
by direct calculations since f0 = χ(0,1) and e0 = − 1

t χ(1,∞) (see (3) and (4)).
To prove the third equality in (5), i.e., the equality (I −H)en = en+1 (n ≥ 0) we

shall use the following properties of the Laguerre polynomials (see [6]):

Ln(0) = 1, L′n(x)− Ln(x) = L′n+1(x). (6)

From (6) it follows that∫ x

0

[L′n(s)− Ln(s)] ds =
∫ x

0

L′n+1(s) ds

and, therefore,

Ln(x)−
∫ x

0

Ln(s) ds = Ln+1(x).

Thus, after the change of variables x = ln t, s = ln τ we have

Ln(ln t)−
∫ t

1

Ln(ln τ)
τ

dτ = Ln+1(ln t).

Dividing both parts by −t we see that from (4) it follows that

(I −H)en = en+1.

Hence, it only remains to prove that the second equality in formula (5) holds, i.e.,
that (I −H)fn+1 = fn for all n = 0, 1, 2, . . .

To prove this fact let us first prove that from (6) it follows that(Ln(x)
ex

)′
=

(Ln+1(x)
ex

)′
+

Ln+1(x)
ex

. (7)

Indeed, in view of (6) we have(Ln(x)
ex

)′
=

L′n(x)ex − Ln(x)ex

e2x
=

L′n+1(x)ex

e2x

=
L′n+1(x)ex − Ln+1(x)ex

e2x
+

Ln+1(x)
ex

=
(Ln+1(x)

ex

)′
+

Ln+1(x)
ex

.
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Let us continue the proof of the theorem. From (7) it follows that∫ ∞

x

(Ln(s)
es

)′
ds =

∫ ∞

x

(Ln+1(s)
es

)′
ds +

∫ ∞

x

Ln+1(s)
es

ds,

and, thus,
Ln(x)

ex
=

Ln+1(x)
ex

−
∫ ∞

x

Ln+1(s)
es

ds.

After the substitutions x = − ln t, s = − ln τ (0 < t, τ ≤ 1) we have

Ln(− ln t) = Ln+1(− ln t)− 1
t

∫ t

0

Ln+1(− ln τ) dτ. (8)

Now putting t = 1 in (8) and using the fact that Ln(0) = Ln+1(0) = 1 (cf. (6)) we
find that ∫ 1

0

Ln+1(− ln τ) dτ = 0 (n ≥ 0). (9)

Using (8) and (9) we obtain

Ln(− ln t)χ(0,1) = Ln+1(− ln t)χ(0,1) −
1
t

∫ t

0

Ln+1(− ln τ)χ(0,1) dτ,

which is the equality (I −H)fn+1 = fn and so the second equality in the formula (5)
is satisfied for the functions fn = Ln(− ln t)χ(0,1). This means that the proof is
complete.

From the theorem it immediately follows that the L2-adjoint (I −H)∗ is equal to
(I −H)−1.

Corollary 1.2. The operator (I−H)−1 is a shift isometry in L2(0,∞) and, moreover,
(I −H)−1 = (I −H)∗ in L2(0,∞).

2. On the Euler differential equation

Let us consider the Euler differential equation of the first order

y′(x)− 1
x

y(x) = g(x), y(0) = 0, x > 0. (10)

First we note that if g ∈ L2, then, accordingly to Corollary 1.2, we have that
f = (I − H)−1g ∈ L2. Hence, from the Hölder inequality it follows that

∫ x

0
f(t) dt

exists. If we take y(x) =
∫ x

0
f(t) dt, then we will have

y′ − 1
x

y = (I −H)f = g.
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Therefore we see that the solution of the differential equation (10) is given by the
formula

y(x) =
∫ x

0

(I −H)−1g(t) dt (11)

and (1) gives

‖y′‖L2 = ‖(I −H)−1g‖L2 = ‖g‖L2 for any g ∈ L2. (12)

Let us now consider the Sobolev space Ẇ 1,2 on (0,∞), i.e., the space of functions y
on (0,∞) with the norm ‖y‖Ẇ 1,2 = ‖y′‖L2 . (The elements in Ẇ 1,2 are functions up
to the constants.) Since (I −H)−1 maps L2 isometrically onto L2 and the operator
Pf(x) =

∫ x

0
f(t) dt maps isometrically L2 onto Ẇ 1,2, we find that the equalities (11)

and (12) can be interpreted in the following way: the differential operator Dy = y′− 1
xy

has a right inverse

(Rg)(x) =
∫ x

0

(I −H)−1g(t) dt,

which maps the space L2 isometrically onto the Sobolev space Ẇ 1,2.
Naturally appears the question what happens, in a more general situation, when

g belongs to some weighted Lp-space. To formulate the result let us denote by Lp
α for

α ∈ R, p ≥ 1, the space of all functions on (0,∞) with the norm

‖g‖Lp
α

=
(∫ ∞

0

∣∣∣∣g(t)
tα

∣∣∣∣p dt

t

) 1
p

and by Ẇ 1,p
α the space of all functions y (up to constants) on (0,∞) with the norm

‖y‖Ẇ 1,p
α

= ‖y′‖Lp
α
.

Theorem 2.1. Let g ∈ Lp
α with p ≥ 1 and α > −1 , α 6= 0. Then the differential

equation (10) has a solution

y(x) =
∫ x

0

(I −H)−1g(t) dt ∈ Ẇ 1,p
α .

The operator

(Rg)(x) =
∫ x

0

(I −H)−1g(t) dt

maps Lp
α boundedly onto Ẇ 1,p

α . Moreover, the operator (I − H)−1 is given by the
formula

(I −H)−1g(x) = g(x) +
∫ x

0

g(s)
ds

s
(13)

for α > 0 and by the formula

(I −H)−1g(x) = g(x)−
∫ ∞

x

g(s)
ds

s
(14)

for α ∈ (−1, 0).
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Proof. In [3] it was shown (see Remark 5 therein) that if α > −1, α 6= 0, then
the operator I −H is bounded in Lp

α and has there a bounded inverse given by the
formula (13) for α > 0 and by the formula (14) for α ∈ (−1, 0). If we consider

f = (I −H)−1g ∈ Lp
α,

then from the Hölder inequality it follows that the integral
∫ x

0
f(t) dt exists. Hence we

can take y(x) =
∫ x

0
f(t) dt and for such defined y(x) we will obviously have y′− 1

xy =
(I −H)f = g.

3. Generalizations and concluding remarks

The results in section 1 can obviously be generalized in different directions. Here
we will first derive a weighted version of Theorem 1.1). Let w be a positive locally
integrable function on (a, b), −∞ ≤ a < b ≤ +∞, such that∫ b

a

ω(t) dt = ∞. (15)

Let us consider the weighted space L2
w = L2

w(a, b) which consists of classes of
real-valued measurable functions f defined on (a, b) such that

‖f‖L2
w

:=
(∫ b

a

f(x)2 w(x) dx

)1/2

< ∞.

Theorem 3.1. (i) Suppose that W (x) :=
∫ x

a
w(t) dt < ∞ for any x ∈ (a, b). Then

the operator

Hwf(x) =
1

W (x)

∫ x

a

f(t)w(t) dt

can be written in a form Hw = I − Uw, where Uw is a shift isometry in L2
w.

(ii) Suppose that W̃ (x) :=
∫ b

x
w(t) dt < ∞ for any x ∈ (a, b). Then the operator

H̃wf(x) =
1

W̃ (x)

∫ b

x

f(t)w(t) dt

can be written in a form H̃w = I − Ũw, where Ũw is a shift isometry in L2
w.

Proof. (i) The function W : (a, b) → (0,∞) has the following properties: W (a) = 0,
W (b) = ∞, W ′(x) = w(x) > 0 a.e. and is one to one. Moreover,(∫ ∞

0

f(x)2 dx

)1/2

=
(∫ b

a

f(W (t))2W ′(t) dt

)1/2

=
(∫ b

a

f(W (t))2w(t) dt

)1/2
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and, thus, W induces an isometry Twf(x) := f(W (x)) between L2(0,∞) and L2
w(a, b).

As usual, isometry between spaces induces isometry between operator spaces. In our
case we have

Hf(W (x)) =
1

W (x)

∫ W (x)

0

f(t) dt

=
1

W (x)

∫ x

a

f(W (s))w(s) ds = Hw(Twf)(x),

so the isometry Tw transforms the operator H to the operator Hw. Therefore, ac-
cording to Theorem 1.1,

Hw = I − Uw,

where Uw is an isometry shift which corresponds to the shift U .
(ii) In this case instead of the function W we need to consider the function W̃ .

The proof is analogous to the proof of (i) so we leave out the details.

Remark 3.2. For the case a = 0 and b = ∞ two proofs of the fact that Hω = I − Uw

and H̃w = I − Ũw, where Uw and Ũw are isometries in L2
w, can be found in [2] (see

also [4, Theorem 5.45]). However, in Theorem 2.1 we proved more (namely that Uw

and Ũw are the shift isometries) and the approach above is both easier and put the
problem into a more natural frame.

If instead of the isometry Twf(x) = f(W (x)) we consider the transformation

Swf(x) = f(W (x))
√

w(x),

then it will be induced an isometry between L2(0,∞) and L2(a, b), which transforms
the operator H to the operator

Awf(x) =

√
w(x)

W (x)

∫ x

a

f(t)
√

w(t) dt,

in the case (i) and to the operator

Ãwf(x) =

√
w(x)

W̃ (x)

∫ b

x

f(t)
√

w(t) dt,

in the case (ii). Therefore, analogously to the Theorem 2.1, we have the following:

Theorem 3.3. (i) If
∫ x

a
w(t) dt < ∞ for any x ∈ (a, b), then the operator I − Aw

is a shift isometry in L2(a, b).

(ii) If
∫ b

x
w(t) dt < ∞ for any x ∈ (a, b), then the operator I− Ãw is a shift isometry

in L2(a, b).
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In particular, for the case (a, b) = (0,∞) and w(t) = tα we obtain the following
striking example, which was directly proved and pointed out to us by M. Plum in a
personal communication.

Example 3.4. (i) The operator I −Aα, where

Aαf(x) =
α + 1
x

α
2 +1

∫ x

0

f(t)t
α
2 dt

is a shift isometry in L2(0,∞) for α > −1.

(ii) Analogously the operator I − Ãα, where

Ãαf(x) = −α + 1
x

α
2 +1

∫ ∞

x

f(t)t
α
2 dt

is a shift isometry in L2(0,∞) for α < −1.

Remark 3.5. Example 3.4 shows that there are scales of operators Aα and Ãα satis-
fying (1) instead of H and this fact and all other results in this paper contributes to
the understanding of an open Problem 3 in [4, p. 299].

Remark 3.6. In this paper all results are equipped with L2, or weighted L2 spaces.
However, our original interest in this subject was connected with the following result
for weighted Lp spaces (see [3] and also [4, Prop. 5.38]):

Let f ∈ Lp
α with p ≥ 1 and α > −1, α 6= 0. Then∫ ∞

0

∣∣∣∣f(x)− 1
x

∫ x

0
f(t) dt

xα

∣∣∣∣p dx

x
≈

∫ ∞

0

∣∣∣∣f(x)
xα

∣∣∣∣p dx

x
(16)

with the constant of equivalence independent of f .

Many questions are of interest in this connection, e.g., to find the sharp constants
in (16).
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[1] A. Brown, P. R. Halmos, and A. L. Shields, Cesàro operators, Acta Sci. Math. (Szeged) 26 (1965),
125–137.

[2] N. Kaiblinger, L. Maligranda, and L.-E. Persson, Norms in weighted L2-spaces and Hardy oper-
ators, Function Spaces, The Fifth Conference (Poznań, 1998), Lecture Notes in Pure and Appl.
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Revista Matemática Complutense
2006: vol. 19, num. 2, pags. 467–476

476


