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Structure of measures on topological spaces

JOSE L. de MARIA and BALTASAR RODRIGUEZ-SALINAS

ABSTRACT. The Radon spaces of type (), i.e., topological spaces for which every finite Borel
measure on  is t-additive and --regular are characterized. The class of these spaces is very wide
and in particular it contains the Radon spaces. We extend the results of Marczewski and Sikorski
to the o-metrizable spaces and to the subsets of the Banach spaces endowed with the weak topo-
logy. Finally, the completely additive families of measurable subsets related with the works of
Hansell, Koumoullis and Fremlin are studied.

1. INTRODUCTION

The modern Measure Theory starts with the construction of the Borel
measures on the o-algebra of the Borel sets of R. Two important facts are to
be noted: 1) The measures are defined on a o-algebra. 2) They are countably
additive.

The study of the measures on R is the origin for later study of measures
on metric spaces started by Caratheodory and also the study of measures on
locally compact spaces with the brilliant construction of the Haar measure.

Some authors, Bourbaki among others, thought the frame of locally com-
pact spaces wide enought for a satisfactory measure theory. But the 60-70’s re-
present such a radical change in the way -of thinking about measure theory in
topological spaces, that even Bourbaki publishes in 1969 a volume about
measures defined on non locally compact spaces. This different point of view
is due to the new relationship between mathematical analysis and probability
calculus, in which measure theory had an important development some years
before, by virtue of the papers of P.J. Daniel, H. Steinhaus, B. Jessen, P. Lévy,
N. Wiener, Ju. V. Prokhorov, L. de Cam, R. A. Minlos, etc. This above men-
tioned book of Bourbaki generated the general measure theory on topological
spaces.
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One of the most distinguished measure theory is due to L. Schwartz, who
gave a lecture in 1964, in the Gulbenkian Institute of Lisbon, about the Ra-
don measure theory on non-locally compact spaces. In 1965 he gave another
lecture in the Tata Institute in Bombay where he developed the theory. Fi-
nally in 1973 appears the desired book “Radon Measures on Arbitrary Topo-
logical Spaces and Cylindrical Measures” which contain almost all of Bourba-
ki’s Chapter IX on integration. At the same time, in 1964, we gave a com-
munication about the measure theory on topological spaces at the V Reunién
de Matematicos Espafioles. Rodriguez-Salinas gave the main lecture in the Pri-
meras Jornadas Luso-Espaiiolas in 1972 precisely on the same subject and also
in the Gulbenkian Institute. Afterwards he continued working and publishing
papers on the same subject.

The relationship between topology and measure theory is described in term
of the regularity properties and in particular the “outher” and “inner” regu-
larity. A measure p defined on the c-algebra of the Borel sets of a topological
space is said to be outer regular if the measure of each Borel set is the infi-
mum of the measures of all open sets containing it. A measure p in the same
conditions is said to be inner regular if the measure of each Borel set is the
supremum of the measures of all the compact sets contained in it.

Among the first contributions on the regularity of measures, we must point
out the papers of A. D. Alexandroff (1940-1950), P. R. Halmos and I. von Neu-
mann (1950), E. Marczewski (1953), C. Ryll Nardzewski (1953), B. V. Gne-
denko and A. N. Kolmogorov (1954), and D. Blackwell (1955). Alexandroff
emphasizes inner regularity and proves that the measures on a Polish space
are inner regular. This result was later found again by Prokhorov in 1956.

Radon measures on topological spaces can be defined in different ways.
The Schwartz’s method is one of them. In particular Radon measures on com-
pletely regular spaces have been studied, apart from Schwartz, by A.D. Alexan-
droff, V. S. Varadarajan and K. Zizi. P. A. Meyer has defined Radon
measures on Hausdorff spaces by use of the concept of compactology of A.
Weil.

Radon measure theory is based on inner regularity, i.e. by use of the inner
approximation of the measure by means of the measures of the compact sets.
The first problem that it appears is that it is only possible to induce measures
in measurable subsets. Hence it is necessary to substitute this inner regularity
by an inner regularity with respect to a class (%) of closed sets. This class could
be the class ¢7) of all closed sets or some particular class such as the class £%;)
of all the metrizable compact sets. In this plurality rests the usefulness of the
Radon mesaures of type (). But the compactenes must be substituted by
something which plays a similar role, this is the concept of p-compactness in-
troduced by us in 1964.The Radon measures of type (%) allow to describe the
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structure of measures on the most important topological spaces. In this lec-
ture we are going to discuss this cuestion.

2. BASIC CONCEPT

Let T be a real function, defined on the class<7(Q) of a topological space
Q. monotone and such that ©(@)=0. A subset 4 of Q is said to be t-compact
if, for every open cover G, of 4 and for every > 0, there exists {G,,....,.G,} G,
such that

T(A\ ul")Gk) <E€.

Obviously every compact set is T-compact and if 7(¢) =0 and t©(4) = 1 for
every A+, we have that each t-compact is compact.

Analogously the notion of p-compact set is also introduced when p is
measure defined on the o-algebra of Borel sets of a topological space.

Let<# be a class of closed sets in a topological space 2. Then a Borel
measure | on <% (c-algebra of Borel in Q) is said to be a Radon measure of
type (%) if

1) Every He %is p-compact and p(H) is finite.

2) w(B)= sup {W(H):B>H e}, for every Be <8
¢Bcan be substituted by a class of Dc%)

In particular, if Q is a Hausdorff space and-¥ is the class of compacts of
Q, the Radon measures of type (%) are the usual Radon measures. (Some-
times it is required that the Radon measures are locally finite in order to as-
sure that the measure of the compact sets is finite). Other important classes,
as we have remarked already, are.7==¥, the class of the metrizable compact
subsets and ¥ = 7 the class of all closed sets. Every finite Radon measure of
type (%) is a Radon measure of type (7).

If u* is the outer measure associated to a locally finite Radon measure of
type (%), then a set 4 is p*-compact if and only if p*(4) is finite.

From now on we assume that all measures we consider are finite and that
Q is a topological space.

A Banach measure on £ is a measure p# 0 on27(Q) such that p(w)=0 for
every o € Q.
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An Ulam measure on Q is a Banach measure on Q with values in {0,1}.

A cardinal a is real-measurable if there exists a Banach measure on some
space Q of cardinality a.

A cardinal o is 2-measurable if there exists an Ulam measure on some
space Q of cardinality a.

The non 2-measurable cardinals are called non-measurable and the non
real-measurable cardinals are called cardinals of measure zero.

The cardinal ¢ = 2% is non-mesurable and with the Continuum Hypoth-
esis, it is of measure zero. Moreover there exist axioms of Set Theory con-
sistent with ZFC which assure that every cardinal is of measure zero. Such an
example is given by the Godel Constructibily Axiom. Ulam proved in 1930
that every real-measurable cardinal is either < 2% or else measurable (but not
both).

In 1984 Marczewski and Sikorski [23] have proved that the existence of a
dense set with cardinality of measure zero in a metric space is equivalent to
the existence, for every finite Borel measure p on Q, of a separable closed sub-
set F such that p(Q\F)=0. They also proved that this last property is equiv-
alent to the fact that every Borel measure on € has a proper support. These re-
sults can be completed in this way: Every Borel measure on a metric space Q
is a Radon measure of type (7) if and only if the weight of Q is a cardinal of
measure zero. The weight of a topological space Q is the smallest cardinal of
the dense subsets of Q.

For every Borel measure p on a metric space {2, one has
W(B)=sup {W(F):B>Fe .7}

for every Borel set B. So it is obvious that a Borel measure p is Radon of type
¢7) if and only if Q is p-compact.

A topological space £ is called a Radon space of type (%) if every Borel
measure on £ is a Radon measure of type (7). In particular, Radon spaces of
type (s¥) coincide with the Radon spaces.

A subset 4 of Q is said universally Borel measurable (resp. universally Ra-
don measurable of type ¢%)) if, for every Borel measure (resp. Radon measure
of type (%)) u on Q, there exist two Borel subsets B, B’ such that Bc Ac B’
and w(B\B)=0

Q is said universally measurable if every Radon measure of type (/) on Q
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is a Radon measure. This definition coincides with the usual one when Q is
a completely regular space. (See [36] 1.2.11,[30] Lemma 8). Complete metric
spaces are universally measurable ([29] Corollary 5). So they are Radon
spaces if and only if their weight is of measure zero. Hence we have a gen-
eralization of the similar property of Polish spaces.

A o-algebra of of subsets of Q is self-generative if a set A belongs to o if
and only if for every x € 4, there exists aneighborhood V(x) such that 4 V()
cof. The smallest self-generative c-algebra & which contains open sets is
called the Spanish c-algebra, the elements of & are called the Spanish sets. In par-
ticular, if Q is strongly Lindelof then 8=<%

3. RADON SPACES OF TYPE ()

Now we are going to study the structure of the Radon spaces of type (/)
in relation with the self-generative character of its o-algebra of the measurable
sets, and with a property, inspired from a Lemma of D. Montgomery [25]. We ‘
have called Flock spaces, the spaces which own this property. We also use the
concept of L-weight which is related with the weight of a topological space
and the property of Lindelof.

1. Proposition.If (G,), is a well-ordered family of open sets in Q, and
H=G \u G, and E,c H, is a Spanish set, then the union E=\ J E , of each

subfamzly of (E,), is a Spanish set. e

Proof. Let G',= u G,. By transfinite induction we will prove that E NG,
is a Spanish set. Indeed 1) EnG’,=0.2) If EnG’ €S then

EnG’,,,= (EnG’)UE €8

with E’,=E, or E’,=0. 3) If a is a limit ordinal and we suppose that EnG ;€&
for every p<a then every x e ENG’, has a neighborhood V(x)=G’; with <a
such that

(EnG)NnV(x)=ENnG,€d
s0, EnG’,edand E=ENnuUG,€é.

2. Corollary. Under the hypothesis of Proposition 1, every union L H, of
a subfamily of (H), is a Spanish set. acd

3. Definition. Q is called a Flock space if, for every well-ordered family
(G), of open subsets of Q and setting H,=G \u G,,, the union U H, of any

aeAd

subfamily of (H), is a universally Borel measurable set.
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If Q a metrizable space, from Lemma 2 [25], we get that every union U H,

aed

is a F, set, so Q is a Flock space. Also, every strongly Lindelof space is a Flock
space.

From Theorem 2.12.6 [28] and Corollary 47 [20] it follows that the measur-
able sets with respect to a Radon measure of type ¢) constitute a self-gener-
ative c-algebra which contains<# so every element of & is universally Borel
measurable of type 7).

Let us prove that the c-algebra of the measurable sets for a Radon measure p
of type €7) is self-generative. For every x € A there exists a neighborhood ¥{(x)
such that A~ V(x) is measurable, as G= Y V"(x) is p-compact there exist a se-
quence (x,)c A such that

G\ liV"(xn))=0,
50 A\ JV’(x,,) is measurable, hence
1
A = SAN V() UA\ TV °(x,)
1 1

is also measurable since AN V°(x,)= (AN V(X)) V*(x,).

4. Definition. Q has the a-property of Lindeldf, where o is a transfinite car-
dinal, if for every family (G),., of open subsets of QQ, there exists Jc I, such that
card (J) < a, and

uG,= UG,

iel ieJ

If a base of the topology of Q has cardinal o, then Q has the a-property of
Lindelof.

The smallest cardinal o such that Q has the a-property of Lindelof is
called the L-weight of Q.

5. Theorem. Let Q be a Flock space whose L-weight is of measure zero
and (G)), be a family of open sets in Q, then

WU G)= supp(VG)),
aed J aet

for every Borel measure | where the supremum is taken over all finite subsets
J of A.

Proof. By Zerme o theorem and as the L-weight of Q is of measure zero,
we can suppose that 4 is well-ordered and its cardinal of measure zero. Let
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H,=G\uG,.

B<a

Since Q is a Flock space, every union U H, is an universally Borel
measurable. Then the set function aed

u(S)= u*(;sz )

is a finite measure defined over all subsets ScA, where p* designates the

outer measure associated to p. As the cardinality of 4 is of measure zero, there

exists a countable set ScA such that v(4)=v(S), i.e., w*(L H,) =p*(v H),).
aeAd aes

Now,
oG = u(uAHu) = W uSHa)Su(usGu)Ssugu(ulGa),

aeAd

hence p(u G)= supp(v G,).
aed J ael

6. Theorem. Let Q be a regular space whose L-weight is of measure zero.
Then the following assertions are equivalent:

6.1. Q is a Radon space of type 7).

6.2. Every subset of Q which is universally Radon measurable of type 7)
is universally Borel measurable.

6.3. Every Spanish set of Q is a universally Borel measurable set.

6.4. Q is a Flock space.

Poof. 6.1 = 6.2. Obvious.
6.2 = 6.3. It follows from the remark following definition 3.
6.3 = 6.4. From Corollary 2.
6.4 = 6.1. Let Q be a Flock space. Then we shall prove that Q is
p-compact if p is a Borel measure on Q. Let (G,), be an open cover of ; from
Theorem 5 it follows that

H(E) = p( :EJAG.,)=su1]>u( ::JG,)-

Hence, for every €>0, there exists a finite subset J of 4 such that
MQ\L G, <g, so Q is p-compact. In a similar way it is proved that each open

G of “QJ is p-compact.
On the other hand, the class 3 of the Borel sets B such that

W(B) = sup {W(F): B o FeJ}
and

u(B) = sup { W(F):B->Fe7)}
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is a o-algebra which contains all the open subsets of Q. Indeed, if (F,),., is the
family of the closed sets F,c G, then G=u F", since Q is a regular space. So,
aed

WaG)= sup :JFZ) =sup WUF)

and Ge 3. Then every Borel set B belongs to > and € is a Radon space of
type ¢7).

Remark. If Q is a Radon space of type (.7) then the L-weight of Q is of
measure zero. If the L-weight is real-measurable, then there exists a well-or-
dered strictly increasing family (G,),., of open sets such that card (A4) is real-
mesurable. Let v be a Banach measure on 4, select x,€G,, \G, and set

WE)=v{wx, e E} (ECQ).

Then p is a Borel measure but it is not a Radon measure of type ¢7): If it
were a Radon measure of type (%), proceeding as in Proposition 1, would
imply that w(G,)=0 for every a € 4, and v(4)=p(uv G, )= 0, and v would not
be a Banach measure. acd

The class of the Radon spaces of type ¢7), which contains the metrizable
spaces whose weight is of measure zero and the strong Lindel6f spaces, is very
wide as it is proved in the following stability theorem.

7. Theorem.

7.1. If Q is a Radon space of type 7), then every subset of Q is a Radon
space of type £5).

7.2. IfQ is a regular space which is the union of a countable sequence (E,)
of Radon subspaces of type(7), then Q is a Radon space of type (7).

7.3.  If for every Borel measure p and for every & > 0 there exists a Radon
subspace of type () E, cQ such that p¥(Q\E,) <g, where n* is the outer
measure associated to |, then Q is a Radon spaces of type (7).

Proof. 7.1 and 7.3 are immediate. To prove 7.2 it is sufficient to prove that
Q is p-compact, as in 6.4 =6.1. (See. Proposition 15 [10]).

8. Definition. A topological space (resp.uniform space) Q is a said e-
metrizable (resp. uniform e-metrizable) if, for every Borel measure p on Q and for
every €> 0 there exists a metrizable set E,c Q (resp. in the induced uniformity)
such that p*(Q\E,) <€ where p* is thé outer measure associated to .
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By Theorems 6 and 7, every g-metrizable space whose L-weight is of
measure zero, is a Radon space of type ¢7). Hence Theorem 7 could be com-
pleted by means of the following result: If (E,) is a sequence of e-metrizable

spaces, then the topological product [|E, is a s-metrizable space.
1

Topological and uniform c-metrizable spaces can be defined in a natural
way. For them we can give an extension of a result of Marczewski and Sikorski:

9. Theorem. Let | be a Borel measure on a uniform c-metrizable space
Q. Then the following assertions are equivalent:

9.1. There exists a decomposition Q=FRJN, where F is a separable
closed set and W(N) = 0.

9.2. W is a Radon measure of type (% ), where 7, is the class of all the
separable closed subsets of Q.

9.3. W is a Radon measure of type (7).
9.4. Q is a p-compact space.

9.5. W has a proper support, i.e, the union of all negligible open set is a
negligible set.

Proof. cf. Theorem 12 [8].

The last theorem takes a more complete and stronger form if E is a Ba-
nach space. In this case we can give new equivalent assertions.

In the following theorem, if Q is a subset of a Banach space E, we will de-
note by (2, weak) the topological space (Q, o(E,E"),) and by (€2, norm) the
topological space (Q,]l.ll).

10. Theorem. If Q is a subset of the Banach space E, then the following
assertions are equivalent:

10.1. For every Borel measure p on (Q, weak) there exists a separable
closed set F such that W(Q\F)=0.

10.2 For every Borel measure | on (QQ, weak), the completion {i is a Ra-
don measure of type (%) on (Q, norm), where >x,, is the class of the traces
KnQ of the compact sets K of E.

10.3. Every Borel measure |\ on (QQ, weak) is a Radon measure of type
(1), where 5%, is the class of the separable and metrizable (for the induced in-
Jformity) closed subsets of (2, weak).

10.4. (Q, weak) is a Radon space of type 7).
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10.5. (Q, weak) is an e-metrizable space whose L-weight is of measure
zero.

10.6. (QQ, weak) is a Flock space with L-weight of measure zero.

10.7. Every Borel measure on (Q, weak) has a proper support F.

Proof. 10.1 = 10.2. Let p be a (finite) Borel measure on (Q, weak). As F
is norm-separable, every Borel subset of (F, norm) is a Borel subset of (F,
weak), hence the meassure v defined on E by uw(B)=pu(BnF) is a Radon
measure of type £7), so, it is a Radon measure because E is universally measur-
able. Then, fi is a Radon measure of type (-%,) since w(Q\F)=0.

10.2 = 10.3. It is sufficient to prove that each H € 7, is metrizable, for the
induced uniformity, and separable in (Q, weak).

10.3 = 10.4. Obvious.
10.4 = 10.7. Clear.

10.3 = 10.5. From the remark following Theorem 6 and from 10.4, the
L-weight of Q is of measure zero. Then 10.5 follows directly from 10.3.

10.5 = 10.6. cf. Theorems 6 and 7.
10.6 = 10.4. cf Theorem 6.

10.7 = 10.1. Since ®={x* . .x*e E* ||x*||<1} is a convex set of measur-
able functions which is compact in the topology 1, of pointwise convergence,
and Hausdorff in the topology t,, of convergence in measure, from A. Bellow’s
Theorem 12.3.3 [36], it follows that ® is metrizable in 1,=1,. Hence, (F, norm)
is separable.

Remark. The last theorem can be completed by the use of the fact that a
Radon space of type (-7) is a Radon space if and only if it is universally
measurable.

4. COMPLETELY ADDITIVE OF MEASURABLE SETS

We are going to study the case when the union of a family (E),., of
measurable sets is measurable.

11. Definition. 4 family (E),., of subsets of Q is said to be relatively dis-
crete if every point of L E, has a neighborhood which meets exactly one mem-

ber of the family. T he Efamily will be said discrete in Q if each point of Q has
a neighborhood which meets at most one member of the family.
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Let M be a set of complete Radon measures of type (7) (or t-additive) on
Q. A family (E,),., of subsets of Q is said to have an a.e.o-discrete decompo-
sition (a.e.c-d.d.)(resp. o-relatively discrete, a.e.o-r.d.d.) with respect to M if,
for every measure p € M, each

E,=UE,UZ,
n=1
where every (E,),., is discrete (resp. relatively discrete) and p(u Z)= 0.

aecd

From now on all measures will be finite and complete Radon measures of

type ¢7).

Preceding concepts coincide as we prove in the following

12. Proposition. The family (E),., of subsets of Q has a a.e.o-r.d.d. with
respect to W if and only if there exists a countable subset A,c A such that

l‘l'( UACEO.) = 0

Proof. Let E,=u E_UZ, where every (E,),., is relatively discrete and
neN
n(v Z)=0. Then, for every a € 4 and n € N, there exists an open set G,, such
aed
that E,cG,, and E,,N G, =0 when o’#a. Hence

2WHE)=pE) <o

for each ne N, so there exists a countable set 4,c4 such that p(E_)=0 for
each a € 4. As every open is p-compact and

(v E)NG ,=E,
aed,
when a € 4 it results that
W E)=p(2 E)N (Y G.)=0

Let A,=u A, then A, is countable and
neN

WO E)ST IO E)+i(V Z)=0.
The converse is immediate.

13. Definition. A family (E),., of subsets of  is said t-additive with re-
spect to u if; for every A’c A, there exists a countable subset A,c A’ such that

acd’

v E\U E)=0
aeAd,
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From Proposition 12 it follows that every family a.e.o-d.d. is t-additive.
It is clear the family C of all the open sets of Q is t-additive with respect to
each Radon measure of type ¢7), (or t-additive). If E is a Radon space of type
(F ), v the topology on E, and fQ —F a Borel p-measurable function, then
{f-' (V): Vev} is a t-additive family with respect to .

14. Proposition. Let (E),., be a locally countable family of subsets of Q
and u a measure on Q then (E),., is a.e.c-d.d. with respect to n. Hence, every
locally countable family is a.e.c-d.d.

Proof. In fact, for every x € U E,, there exists a neighborhood ¥(x) and a

countable subset 4,c A4 such that EI‘/(x)mEFa for every o ¢ 4. As p is a Ra-
don measure of type (%) there exists a sequence (¥(x,)) such that

l‘l'( v Ea\ o V(xn)) = 0'
neN

acA

Let A,=u A4, then A4, is countable and

neN 7

(v Vx)n(ucEm)=a.

neN n acd,

$0,
W E)si(VE\NL V,)=0
aed, aed neN "
and we conclude that (E),., is a.e.o-d.d. with respect of p.

15. Theorem. If (E).., is an a.e.c-d.d. family (with respect to p) of u-
measurable sets, then © E_ is a u-measurable set for every A’c A.

aeAd’

Proof. In fact, (E,),., is t-additive by Proposition 12.

16. Theorem. Let p be a Radon measure of type &%) and (E),., a family
of subsets of Q such that, for every A’c A, ;}AE‘, is w-measurable. Then, if

(E) ... is not a.e.c-d.d., there exists a Cantor set Cc U E, such that n different

aeAd

points belong to n different E,.

The proof is based on Theorem 2 [16] due Hansell and can be found in
Theorem 26 [10]. As a consequence

17. Corollary. Ifu a Radon measure of type €*,) on Q, then one (and only
one) of the following assertion is true:

(i) Q is aeo-dd, ie, there exists a o-discrete subset E, such that
p’(Q\Eo)=0
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(i) Q contains a subset homeomorphic to the Cantor subset and also con-
tains another subset not |.-measurable.

This result is analogous to a well-know result of A.H. Stone and A.G. El’kin
[34] [11], and it can be proved as Hansell does in [16].

The complete additivity of a family of measurable sets can be studies by
means of the following:

18. Theorem. Let p be a perfect measure on Q and (E,),., a disjoint family
of subsets of Q such that W(E,))=0 for every ac A. Then one and only one of
the following cases is verified:.

(i) For every A’c A, the union U E, is p-measurable and there exists a
acAd’
countable partition (A,) of A such that

{u(::AEJﬂ’cA,}={O,H(J:A,Ea)}
for every n.

(ii) There exists A’c A such that U E, is not u-measurable.

aeAd’

Proof. Similar to Theorem 2.5 [21] where it is supposed that the cardinal
of 4 is not measurable.

Remark If u#0 is a Radon measurable of type ¢7),then 18(i) is not ver-
ified. In fact, let us suppose 18(i) and

(W E)A’cA} ={0,1}.

Then, if we take x, € E, (when E,# @) and we define

W(E)=p(U{E:x, € E}),

p is a continuous Ulam measure. As p is 1-additive, every x€ Q is a neigh-
borhood ¥(x) such that v(¥(x))=0, and it results that v(Q2)=0 and this is a con-
tradiction with
v(Q)=w(U E)=1.
aeAd

19 Theorem. Let u be a perfect Radon measure of type (F)on Q. If
(E) .., is a disjoint family of p-measurable subsets of Q, then one and only
one of the following cases is true:

@) (E),., is a.e.c-d.d. with respect to .
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(ii) There exists A’c A such that U E_ is not p-measurable.
aeAd’

Proof. If follows from theorem 18 and the above remark applied to the
family

{E;ME,)=0,ae€4)}.
For Radon measures, Fremlim has proven the following theorem:

20 Theorem (Fremlim, [13]). Let u be a Radon measure on Q and let
(E) o4 be a point-finite family of p-measurable sets. Then one and only one
of the following assertion in true:

(NE ... is 1-additive with respect to W.

(i) There exists A’c A such that U E, is not p-measurable.
aed’
With Martin’s Axiom, Fremlim proved in [13] that the condition of point-
finiteness could be changed by point-countability.

21. Theorem. Let p be a Radon measure of type (-7) on Q and (E),.,
a locally countable family of u-measurable subsets. Then (E),., is a.e.c-d.d.
with respect to |, and U E, is p-measurable for each A’c A.

acA’

Proof. cf. Proposition 14.

Remark: The results of the present paper can be applied to study the Borel
measurable functions Q2 —F since, if 7is the topology of E, the union of
every subfamily of {f ~'(V):V €7} is measurable. (See, [10]).
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