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Primariness of some spaces of continuous
functions

LECH DREWNOWSKI

ABSTRACT. J. Roberts and the author have recently shown that, under the Continuum Hypoth-
esis, the Banach space /_/c, is primary. Since this space is isometrically isomorphic to the space
C(w*) of continuous scalar functions on ©*=pw —w, it is quite natural to consider the question
of primariness also for the spaces of continuous vector functions on w*. The present paper con-
tains some partial results in that direction. In particular, from our results it follows that C(w*,C(K))
is primary for any infinite metrizable compact space K (without assuming the CH).

A Banach space X is said to be primary if, whenever we have a (topologi-
cal) direct sum decomposition X=FE®F, then either E or F is isomorphic to
X. Many Banach spaces are known to be primary; among them are the spaces
C(K) of continuous scalar functions on infinite metrizable compact spaces K
([31,[1]). In a recent paper [2], answering a question posed by Leonard and
Whitfield. James Roberts and the author have shown that, under the Con-
tinuum Hypothesis (CH), also the Banach space /_/c, which is isometrically iso-
morphic to C(w*), is primary. (Throughout this paper, ®* denotes the remain-
der Bw— o of the Stone-Cech compactification of @ ={1,2,...}). The present pa-
per originated from an attempt, not very successful so far, to generalize this
result to the spaces C(w*,X), where X is a Banach space.

For the purpose of this paper let us agree to say that a Banach space X is
nice if for every (continuous linear) operator 7:X—X there exists a subspace
Y of X which is isomorphic to X and which is mapped isomorphically by one
of the operators T or id,— T onto a complemented subspace of X. Clearly, if
X is nice and X=E®DF, then either E or F contains a complemented isomorph
of X.

The approach in [2] is essentially standard and consists in showing that
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(i) the space C=C(w*) is nice;

(i1) (under the CH) the /_—sum of (infinitely many isometric copies of)
C L(C:=(C®C @ ...), , is isomorphic to C;

and then proving that C is primary by an application of Pelczynski’s decom-
position method.

In the present paper we first give an alternative proof of (i), and then ob-
tain a vector analogue of (i): if X is separable and nice, then also C(w*,X) is
nice. We also have a vector analogue of (ii), but with a suitable modification
of the /_-sums used in (ii). Unfortunately, one of the crucial properties of the
I_-sums that makes the Pelczynski method work in [2], viz., [(E®F) =
L (E)®L, (F), does not seem to hold for our modification. In consequence, we
were unable to show that if X is nice (or primary?), then C{®*,X) is primary,
a result which is (more or less) what one tends to expect. Nevertheless, there
is something positive we can prove: If X is a separable nice Banach space
which is isomorphic to its c-sum, c(X), then C(w*,X) is primary (without as-
suming the CH!). In particular, for every infinite metrizable compact K, the
space C(0* C(K))=C (0*xK) is primary.

Let us introduce some notation and recall some facts about w*. (Referen-
ces can be found in [2).) We denote by the algebra of clopen subsets of ®*;
o, =oA—{@}. If A €4, then 1, denotes the characteristic function of 4 relative
to 0*#(4)={Be-{:B cA}, and -/ (4)=-1/(A4)—{o}. We recall that -7 is a base
for the topology of ®w*, and that if 4.7, then A is homeomorphic to ®*;
hence, for every Banach space X, C(4,X)=C(w* X). In what follows we often
identify C(4,X) with the subspace {f: 1 f=f} of C(w*,X). We also recall that
the algebra -7 has the following property (sometimes called Cantor separabil-
ity): For every decreasing sequence (4,) in-7, there exists 4 €=1, which is con-
tained in all 4,. Finally, there is a result of Negrepontis that, under the CH,
if A is an open F,subset of w*, then its closure 4 is a retract of o*.

1. Lemma ([2]). Let A:e{—>R be a nondecreasing set function. Then for
every A €<, there exist B ect(A) and P € R such that

ME)= for all E e7(B).

2. Theorem ([2]). If T:C(0*)—>C(w*) is an operator, then for every A €1,
there exists a B e=4(A) and a scalar y such that

(TH1,=%f for all f € C(B)

As in [2], it will be convenient to prove this theorem in its equivalent form
stated below. The proof presented here is somewhat different from that in [2],
and we first give some explanations.
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We recall that there is a one-to-one correspondence between the operators
T:C(0*)-»>C(w*) and the bounded finitely additive vector measures
U ei—>C(w*); If T is given, then the corresponding (representing) measure L is
defined by w(E)=T(1,); if u is given, then the corresponding operator 7T is de-
fined by Tf =[ fdu.

Now suppose that 7 and p are related to each other in the above manner,
and consider the conjugate operator 7*:M(w*)—>M(w*), where M(w*) is the
space of regular Borel measures on w* (identified with the dual of C(w*)). For
each pe 0* let p,=T*3, where §, is the Dirac measure at p. Then it is readily
seen that

WE)Pp)=p,(E) for all Ee.7 and pe w* .

Let a measure v e M(w*) be real-valued, and let v+ be its positive part.
Then v+ is given for every Borel set Ec o* by

v*(E)= supv(B),

where the supremum is taken over all Borel subsets B of E. Now, using regu-
larity, it is easy to verify that

v+(E)=sup v(F) for all E et

Fe {(E)}

In particular, for the real space C(w*), if po>C(w*) is a bounded
measure, then

Wi(E)=sup p(F) for all Ee<?and pe o*

Fe:{(E)
Hence, for every E € 4, the function p—p*(E) is lower semi-continuous on o*,
and the same is of course true of the negative-part function p—p;(E)= (— 1)
(E). (The lower semicontinuity of the function p—(T *3,)*(E) holds in fact for
every operator 7-:C(K)—C(K) and every open set Ec K)

Now we restate the above theorem in an equivalent form.

3. Theorem ([2]). Let pi>C(00*) be a bounded finitely additive vector
measure. Then for every A €A, there exist a B in<4{(A) and a scalary such that

WE =1, for all E eA(B).

Proof. We may (and will) assume that C(®*) is real. We start by defining
two nondecreasing set functions A, A_,:.c/->R, by

A(E)=sup p*(E) and A_(E)=sup p(E)

peE peE
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(It is easy to verify, using the formula for v+(E), E =7, given above, that these
two functions coincide with those used in [2].) Let 4 €. Applying Lemma 1
twice, we find B ec4(4) and a,p € R such that

A (E)=p and A_(E)=aq for all E e=7(B).

Let Eec{(B). If Feot(E) and pe w*, then p*(F)<p' (E). But
sup, ALy(F)=A,(F)=p; so

sup wi(E)=p for all Fec{(E)

peF

From this and the lower semicontinuity of the function p—u*(E) it follows
that for every B’ <P the set {pe E:n+(E)>B'} is open and dense in E. Hence
the set

E":={peE: p(E)=P}
is a dense G,-subset of E.
Next, if E=B, then
B=A(B)2 Wi(E)+pn(B—E)=p*, (E)+B for all pe (B—E)
so that
pu*(E)= 0 for all pe (B—E)*
But, by the lower semicontinuity again, the set {p € B— E:u*(E)=0} is closed
in B—F, and it contains the set (B—FE )® which is dense in B— E; therefore,
p(E)=0 for all pe B—E. Thus
B for pe E?,
Wi(E) =
0 for pe B—E.
By a similar argument, the set
E;={peE: w;(E)=a}
is a dense G,-subset of E, and
a forpekE,

HAE) =
0 forpeB—E.
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Hence
B—oa=:y for pe EPNE,
W(E)=pE)—p(E) =
0 forpeB—E.

But the function u(E):p—y(E) is continuous, and the set EPNE, is dense in
E, hence u(E)=y for all pe E.

We have thus shown that for every E €<4(B),

WEYP) =1, (E)=71p) for all pe B,

which is precisely what was to be proved.o

4. Corollary. C(0w*) is a nice Banach space.

Proof. See [2], Proof of Corollary 2.4; see also Proof of Corollary 6
below.O

Now we give an extension of Theorem 3 to the case of vector valued
functions.

5. Theorem. Let X be a separable Banach space, Y a Banach space
whose dual Y* is weak* separable, and let

T:C(0* X)>C(w*, Y)

be an operator. Then for every A -, there exist Be-{(A) and ue L(X,Y) such
that

(TH1,=uef for all f € C(B,X).

Proof. Let (x,) be a sequence dense in X, and (y¥) a sequence in Y* sep-
arating the points of Y.

Given xe€ X and y*e Y*, consider the bounded finitely additive measure
1o > C(0* ); A-y* T(1 ,x)

Then, by Theorem 3, for every A €4, there exists a Be.{(A4) and a scalar y
such that

U, {E)1 y= y1, for all EecA(B).
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Applying this inductively when y*=y*(n=1,2...) and x is held fixed, and then

making use of the Cantor separability of<#, we see that for every x€ X and

Aecot, there exists a Beof(4) and a sequence of scalars (y,) such that
u,,y;(E) 1,=v,]1; for all Ee<4(B)and neN.

Since the sequence ()*) is total on Y, it follows that there exists a (unique)
y € Y such that

T(1.x)1,= 1. for all E ec(B).
Now, applying this inductively when x=Xx,(m=1,2,...) and then using the Can-
tor separability of -7again, we find that for every 4 €.+, there exists a B e<£(A)
and a sequence (¥,) in Y such that

T(1,x,)1,=1., for all Ec-f(B)and meN.

If x e X and (x, ) is a subsequence of (x,,) converging to x, then by the con-
tinuity of T there 1s a y=u(x) € Y such that the sequence (y, ) converges to y

(and this y does not depend on a particular choice of (ka)). Thus
T(1:x)1,=1,u(x) for all Ee<?(B)and xe X.
Clearly, the mapping u:X—Y is linear, and

NuEol =111,4 O, < N7 x) | <17 |Ix] for all xe X

so that ue L(X,Y) (and llull <]l T1|.)
It follows that
(TH=uf

for every<{-simple function f in C(B,X); since such functions are dense in
C(B,X), the last equality holds for all f in C(B,X).0

6. Corollary. If is a separable nice Banach space, then also the space
Clo*, X) is nice.

Proof. Let I denote the identity operator in C(w*,X) and i the identity
operator in X. Let Te L(C(0*,X)). By Theorem 5, we can find Be<f, and
u € L(X) such that.

(Tf)1,=uof for all f € C(B,X).
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It is then easily checked that
(I-T)f 1,=(i —u)ef for all f € C(B,X).
Since X is nice, there exists a subspace Y of X which is isomorphic to X
and which is mapped isomorphically by u or i —u onto a complemented sub-
space of X. Let’s assume this holds for u so that v=ulY is an isomorphic em-

bedding and u(Y) =u(Y)=: Z is complemented in X. Let p be a projection
from X onto Z.

If f € C(B,Y), then (Tf)1,=vof and so
lo=lI-* 1f < loef Nl < HTAN < IITHLIIAI,

which shows that 7IC(B,Y) is an isomorphic embedding of C(B,Y) into
C(w*,X). Define an operator P:C(w*,X)—>C(w *,X) by

Pg=T(v"op ogl,)
Clearly, the range of P is contained in T[C(B,Y)]. If ge TIC(B, V)], i.e., g= Tf
for some fe C(B,Y), then gl,=(Tf)1,=vef and hence Pg—= T(0tepovef) =

T(v-! «vef)=Tf=g. Thus P is a projection from C(w*,X) onto its subspace
TIAB,V)]= C(B,Y)~C(BX)~ C(o*X).0

As easily seen, for every compact space K and every Banach space X, there
is a natural isometric isomorphism between the spaces C(K,c,(X)) and
¢,(C(K, X)) so that

UK c(X))=c(C(K X))
We use this fact in our next result.

7. Corollary. If X is a separable nice Banach space which is isomorphic
to its c,-sum c(X), then the space C(w* X) is primary.

Proof. We first observe that

Ao*X)=C (0*c (X)) =c, (C(w*X));
thus, denoting shortly C(w*,X)=:C, we have C=¢,(C).
Now let C=E®F. By Corollary 6, one of the summands, E say, contains

a complemented subspace ¥ which is somorphic to C. Thus there is a sub-
space U in E such that
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E=U®YV, where V=C=c/[(C).
Applying Pelczynski’s decomposition method, we now get

E=~U®c(C)=~USCOc(C)~E®Cc(E®F)~EDc(E)®c(F)=c(E)Dc(F)~
c(E®F)~ c(C)~Cn

In particular, we have the following

8. Corollary. For every infinite metrizable compact space K, the space
C(o*,C(K))=C(0* x K) is primary.

Proof. This follows directly from the preceding corollary because such spa-
ces C(K) are known to be nice ([3], [1]) and isomorphic with their ¢,-sums [4].0

9. Remark. Let X be an arbitrary Banach space. Define k(X) to be the Ba-
nach space of all relatively norm compact sequences (x,) in X, endowed with
the supremum norm. Then :

K(X)/cfX) = C(0*,X),

This can be verified precisely as in the scalar case, using the Stone-Cech
isometric isomorphism between x(X) and C(Bw,X), and the fact (surely well
known) that Tietze’s type extensions from ®* to Po exist for continuous X-
valued functions. For the sake of completeness, we give a sketch of that fact:

Let ge C(0*,X). Then there exists a sequence (g,) of «f,-simple functions
in C(w*,X) converging uniformly to g. For each n choose a finite o7,-partition
oAp={A7,..., A} so that g, assumes constant (not necessarily distinct) values on
each of the sets A7 this can be done so thate,,, is a refirement of £, Then it
is easily seen that we can define a sequence of partitions of 0 -4, ={M;,.... . M,"}
consisting of infinite sets and such that-/, , is a refinement of-#, and that A=
(the closure of M in Pw)— M. Let x* € k(X) be the sequence which takes the
constant value x? on the set M, where {x;}=g(47), i=1,...,k,. Finally, let f, be
the continuous extension of x" to pw. Then fjo*=g, and ||f ,—f.ll.. =lg,—&.ll..
for all m and n so that the sequence (f,) converges uniformly to a function

f e CBw,X), f1 0*=g, and |fll.=lgl...

10. Remark. For a compact space K and a Banach space X, let /(C(K, X))
denote the Banach space consisting of all sequences (f,) such that f, € C(K, X)
for each n and the joint range of the functions f, that is, u%_f(KX), is a
relatively norm compact subset of X, with the norm defined by
ll£) | = supll £,ll.. Then the same argument as in the proof of Proposition 3.2
in [2] shows that, under the CH (which enters here via the result of Negrepontis
mentioned before Lemma 1), /. (C(w*,X)) is isometric to a complemented sub-
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space of C(0* X) from which, as a consequence, we have that /(C(0* X))~
C(0*,X). Unfortunately, we cannot apply this result to the primariness prob-
lem of the spaces C(w*,X) because we do not know if any analog of the fact
that [ (E®@F)=I_ (E)®I_(F) holds for our /-sums.
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