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Paracommutators - brief introduction, open
problems

JAAK PEETRE

ABSTRACT. We review the basic facts about the theory of paracommutators in R” (see S. Jan-
son, J. Peetre, Trans. Am. Math. Soc. 305 (1988), 467-504). We also give an interpretation of
paracommutators from the point of view of group representations. This suggests a generalization
to more general groups. Here we sketch a theory of paracommutators over stratified groups. This
includes the famous Heisenberg group. Finally, we take up the question of generalizing the no-
tion of Schatten-von Neumann trace ideals to the case of multilinear forms in (abstract) Hilbert
space.

0. INTRODUCTION

Let us consider linear operators 7= T,=T,(4) in the Hilbert space L(R")
given by the formula

(1) TAE)=Cm) " | AE,EINE —EMRENE,
R"

where “stands for the Fourier transform. Here 4 is a function, usually fixed
throughout the discussion, known as the Fourier kernel of the operator and b
another function known as its symbol. Such operators are called paracommu-
tators in [JP] but have also been studied by other authors, e.g. Timotin [T1],
[T2], [T3], even in the case of local fields. (For some generalizations see also
[QP].) As examples of paracommutators we mention iterated commutators of
the type [KM,], [K',[K,M,]],..., where K K',... are Calderén-Zygmund oper-
ators (principal value convolutions with homogeneous functions of degree -»)
and M, stands for the operation of multiplication with b. This also formally
comprises Hankel and Toeplitz operators. Other examples can be found in
[JP]. An extreme case is when 4= 1; then we have simply a multiplication op-
erator. In the general case, it is helpful to think of 4 as a kind of Schur mul-
tiplier on the Fourier side.
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In Section 1 of this paper we briefly review the theory developed in [JPR],
with complements later given by Peng Lizhong [Pen 1,2,3]. In Section 2
paracommutators are viewed upon from the formal point of view of group
representations. In particular, this suggests extensions of the theory to other
groups than R, also non-Abelian ones, and, thus, in Section 3 we give a brief
outline of a theory of paracommutators over stratified groups, that is, simply
connected nilpotent Lie groups endowed with an auxiliary structure known as
stratification. A typical example of such a group is the famous Heisenberg
group. Finally, in Section 4 we mention an open question already touched
upon in [Pee], [JPR]. Namely, paracommutators may also be viewed as bi-
linear forms and so it is natural to look at multilinear analogues too. This
again calls for a theory of Schatten-von Neumann trace ideal classes for multi-
linear forms in (abstract) Hilbert space, which up to our knowledge is not
yet fully developed.

My thanks are due to José Dorronsoro for precious information about func--
tion theory on nilpotent groups.

1. FUNCTIONAL CHARACTER

The theory of paracommutators is basically about finding necessary and
sufficient conditions on the symbol b for the operator T,=T,(4) (when 4 is
fixed satisfying certain assumptions) to be bounded or compact or, more gen-
erally, in a suitable Schatten-von Neumann class S, 0<p<oco. Recall that a
compact operator T in a Hilbert space is in S, if the sequence of its Schmidt
or approximation numbers s5,(7), n=0, is in the sequence space /,. The condi-
tion on b again are expressed in terms of the scale of Besov spaces
-%,= B (R") or related spaces such as BMO(R"). Recall that B:«(R"), where
seR,0<p, g< o, is a space of functions (or, if s<0, tempered distribution)
such that, roughly speaking, one has control of s derivatives in the L -metric,
q being an auxiliary parameter connected with an interpolation process. The
main result in [JPR], with complements by Peng [Pen 1,2,3], has the following
general character.

“Theorem’’. In suitable assumptions on the Fourier kernel A holds T,€ S,
nfy <p=oco<becg, where y>0 is a certain number depending on A.

These assumptions are rather involved and in [JP] there is an elaborate
system of conditions AQ, Al,..,A8 invented to meet with various more

special situations. Peng has even more conditions “interpolating” between An
and A(n+ I). Let us however try to explain in informal terms what it is about.
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On the formal level the main assumption on A is that it should be homo-
geneous of degree O or close to homogeneous. In addition it is assumed that
A vanishes sufficiently fast (informally, up to order y) on the diagonal
{€,, £):€,=E,} of R"x R". This is what is needed for the “direct” part of the
theorem. For the “converse” we also need some kind of nondegeneracy con-
dition (a “Tauberian” or an “ellipticity” condition).

The proof, at least for p> I, follows the general pattern laid in Peller’s now
classic paper [Pel]; the case p< I [Pen, 3] again is based on ideas of Rochberg’s
[R] and requires decomposition theorems for the spaces-7, Let us review some
of the essential steps.

We begin with the easiest case p=_2. The Hilbert-Schmidt (S,-) norm of T,
is given by

1
(2ny

Am)[b(m)pan

Rn

” Tb”%{.s.=

where

A= — Sw(al,éz)rd(area).

(ny

{(SRIVIRIIELY

If 4 is homogeneous of degree O it is clear that A is homogeneous of degree
n but it may be infinite or zero along certain rays. As

2 1 n 7 2
ol = e j bt

it follows that in the optimal case, when ¢,mi"= A(n) = cn* with 0<¢,=c,< oo,
the two norms || 7|, and Ilbllm2 are equivalent.

The case p=1 follows from the well-known minimality of the space -4,— it
is the least translation and dilation invariant Banach space of functions. It is
essentially a question of verifying that T, is in S, for at least one (nontrivial)
symbol b. (This requires y < 1; to reduce to these case one has to introduce a
two parameter family of operators 7%= T}'= T3(A) defined in a similar way as
T=T,=T,(A) by replacing in the definition A(§,,§,) by the function
AELEN1 +E Py(1+1E,2)x) If we then have a result about boundedness (for-
mally p=co) we can by interpolation cover the direct statement for the whole
range p € (1,00). The converse again follows by a standard duality reasoning.
It makes use of the fact that the inner product in the Hilbert space-#, provides
us with a translation and dilation invariant pairing.
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Remark. It is also of interest to consider vector or operator versions of para-
commutators. For instance, “big” Hankel operators in the sense of Axler [A]
can in principle at least be reduced to suitable vectorial paracommutators. But,
as far as we know, no general theory has yet been worked out in this case.

2. FORMAL PROPERTIES

We will now try to explain the deeper meaning of the assumption that the
Fourier kernel A should be homogeneous of degree 0 and also the very defi-
nition of the paracommutator (formula (1) of the Introduction).

Let ¢ be the “affine” group, the Lie group generated by translations
(x-x+h, heR") and dilations (x—8x, 8> 0); it may be viewed as an exten-
sion of R~ identified with the group of translations. It acts on the Hilbert
space L¥([R") via unitary transformations as follows:

Ax)=Ax+h),
Ax)— 8" 5x).

Let this representation be denoted by U. Then an easy calculation reveals that
the family of operators 7,=T,(A4) (for 4 fixed) satisfies the formal relation

(l) UgTbUg—lszog (geCf)

Conversely, it is easy to see that any linear map b— T, which satisfies (1) must
be of the form T,=T,(A4) (for some A). Indeed, the distribution kernel of 7,
must be of the form

2 K(x,—y,.x,— y)b(y)dy
Rn

where K is a function (or distribution) of degree -2n. Taking Fourier trans-
forms we see that

A(angz) = K(é,, - gz)

(For later use we remark that in terms of K the Hilbert-Schmidt norm of 7,
is given by

3) T, =H Ly~ 2)b(y)b(2)dyd:z
Rrx k-~
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where

(4) L(y‘ Z) = H K(xl _yrxz"y)K(x; —Z,X;— Z)dxldxz-)
R*x R~

In this way we see that paracommutators connect with group representa-
tions. In particular we can obtain the decomposition of the ° ‘regular” repre-
sentation of ¢ on the space of Hilbert-Schmidt operators on L¥R") into irre-
ducible subspaces.

For simplicity consider first the case ‘n=1.Let T be any Hilbert-Schmidt
operator on L¥R) with (Fourier) kernel A(,.,) so that the Hilbert-Schmidt
(S,) norm is

A(E,,5,)PdE, &,

|m|,,s=§
RxR

Introduce new variables 1,1 with n=§,—&,, §,= 1 implying d&,d&, =ndtdn.
Then the metric is given by

725 = AM(1+7),n)? Ml drdn.

R xR

Let {a,} be a fixed orthonormal basis in the Hilbert space LY(R,dt). Then
A clearly comes as a sum

A, &) = SALEEIbE ~E)D

with
A& L)=al - -
&— iz
That is, T comes as a sum of paracommutators
T=3T,(4)
and
T35 = SN N3

This is not quite the desired decomposition, but almost, as B;* comes as the
(direct) sum of two irreducible subspaces:
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B R)=  B?4(R) + BPAR)
analytic functions anti-analytic functions

Is it possible to choose the basis {a,} in some canonical way?

If n>1 we proceed similarly, the only difference being that now
<%,= B,”*¥(R") comes as a continuous sum of irreducible subspaces.

3. HEISENBERG PARACOMMUTATORS (work in progress)

The considerations of the previous Section suggest that the theory of para-
commutators can be generalized to the setting of more general groups than R*
(even non-commutative ones). What we have in mind is in the first in-
stance stratified groups, in which case there is a natural notion of “dilation”.

Recall (for more details and examples see Folland [F]) that a stratified
group is a simply connected nilpotent Lie group G equipped with a stratifica-
tion, that is, its Lie algebra g is written as direct sumg =V ,+...+ V,, where the

V, are vector spaces such that [V, V]]c V.. (That G must be nilpotent follows
from the existence of a stratification. Also via the exponential map G and g

can be identified as manifolds.) The dilations y; (6> 0) are then defined (on
the Lie algebra level) by the formula

YoX,+ X ot X,) =B, + 8, + ...+ 8x,, (x,e V).

The trace of the corresponding infinitesimal generator is called the homo-
geneous dimension of G and will be written Q, i.e.

Q=dim V+2dim V,+..+mdim V.

In [F] a theory of function spaces is worked out for stratified groups (Sobolev
and Lipschitz spaces).

Example. The most interesting instance of a stratified group is the Heisenberg
group. In this case g =R+ R, so Q=2n+2, and the Lie algebra structure is
given by

[(z0,(z,t)]=(0,0(z,2")) (z,z' e R 1,t" € R),

where o is the standard symplectic structure on R*:

o(z,z' )=<xE>—< x',E> (xx" e R"EE e (R7)*).
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Let ¢ denote again the group generated by, say, left translations and dila-
tions. Its action on L¥G) is given by

Sx)—fhx),
Sx) -3 v(x)),

and, changing our point fo view, we can take formula (1) in Section 2 as a
definition of paracommutator. As a generalization of formula (2) in the same
Section, the kernel is then of the form

K(y='x,y-x)b(y)dy,
G

where K is homogeneous of degree —2Q in the sense that
K(75(x,),vs(x,)) =8-2K(x,,x;)  (5>0)

and where we integrate with respect to the Haar measure on G. We denote
the corresponding operator by 7,=T,(K).

In this case we can no longer make use of the Fourier transform or at least
it is less suitable here. However, we conjecture that most of the previous theory
(see Section 1) carries over to the present situation.

A first concern is then to find the proper analogue of the scale of spaces<3,

Let E,....E, be a basis for the space V, ocurring in the stratification
(r= dim V). Then the operator y= —(E}+...+ E}) is called the sub-Laplacian
of G. Following [F] we can then define (homogeneous) Sobolev spaces W(G)
using complex powers of y. By real interpolation and duality one can then de-
fine the (homogeneous) Besov spaces B"'(G) at least for / <p<oo. It is now
natural to set<8, = BQ/P"(G) which spaces, apparently, come equipped with%-in-
variant norms

||b0g|L,,p= ||b|[£p (ge%).

We now look a little closer at the case p=_2. The Hilbert-Schmidt norm of
the paracommutator 7, is then given by

LO-'2)b()b(2)dydz
Gx G

(1) ” Tb“ii& =

with formally
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L(y-'z)= H K(y-'x,y'x,)K(z-'x,,z7' x,)dydz;
GxG

this as a generalization of formulae (3)-(4) in Section 2. We must compare
|T,ll,.5 to the norm ||b||4,2. Obviously L is homogeneous of degree — Q. Let us

assume that it is C* outside the origin. The right hand side of (1) has the form
(Lxb,b) where (,) is the inner product in LX) and » stands for convolution.
In [F], th.2.1 it is shown that the operator vy has a unique fundamental sol-
ution ¢ which is homogeneous of degree —Q, ##y=7Yx ¢ =3. Therefore we
can write the last expression also as

(M¥y?b,b)

where M is homogeneous of degree 0, this corresponds essentially to a Calde-
ron-Zygmund transformation, bounded in L¥G) in view of [F], prop. 1.9. We
conclude that

1735 = ClB,

If we make the assumption that this transformation can be inverted we have
also an estimate in the opposite direction. In summary we have thus “proved™:

“Theorem’’. In suitable assumptions on K hold T(K)e S, iff beck,

To proceed further we need also the minimality of the space<#, or, what is the
same, the maximality of<#,. It is also clear that the assumptions on K are less
explict than in the case of R”, in which case they were formulated in terms of
A (see Section 1). We therefore postpone a further treatment to a future
occasion.

4. TRACE IDEAL CLASSES OF MULTILINEAR FORMS

In the previous sections we have drawn ideas from the theory of function
spaces, from abstract interpolation, even from group representations. We con-
clude with something which is more genuinely functional analysis (more ab-
stract), and thus closer to the heart of the matter of this conference.

The point is that it is often useful not to view paracommutators as oper-
ators but rather as bilinear forms. More precisely, with slight change of the mean-
ing of A - we restrict attention to the Abelian case only (G=R")- we may con-
sider the form
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Hb(ﬁg) = (211!)2,, “ A(&l’él)b(gl + gz)’iél)g‘(éz)dgldaz
R"x R~

where fand g are elements of L}(R"); this form is likewise termed the para-
commutator with symbol b. Notice that the critical set is now the “anti-di-
agonal” {(§,,&,):€,+&,=0}cR"x R". Because of the essential identity of bi-
linear forms and operators, one gets and entirely parallel theory. But it is now
also natural to look at analogous multilinear objects: trilinear forms of the type

H{fgh= S

m G +E+E) X
R"x R"x R~

x &) GENE )T, dErd,

and so forth with any number of arguments. However, as far as we know, it
is not clear what is meant by a trace ideal class of multilinear forms. The issue
has already been touched upon in [Pee], Chap. 5 and in [JPR], Sec. 5, and we
repeat here what was said there, with perhaps a few more details.

There are at least two methods of defining classes of multilinear forms anal-
ogous to the usual classes S, in the case of compact linear operators in Hilbert
space.

For notational simplicity we consider only the case of trilinear forms.

First method

Let there be given three Hilbert spaces H,, H,, H, We denote by S, the
space of all compact bilinear forms on H, x H,x H, (with values in €). It is
clearly a Banach space (in the supremum norm) and a normed ideal in the
sense that if B=B(x,y,z) is in S, then so is B(Ux,Vy, Wz) and with the same,
or a smaller, norm whenever U, V, W are contractions on H,, H,, H, respect-
ively. We further define S, to be the Hilbert-Schmidt class, that is, B is in S,
iff we have B(x,y,2)= Sa,Xyz, with Sla /< oo, where {x}, {;}, {z,} are the co-
ordinates with respect to any orthogonal bases in H,, H,, H,. This condition
is independent of the basis. Finally, we define S, to be the space of all nuclear
forms, i.e. forms B of the type

B(x,y, 2)= Z}"i(xr &.-)()’,T],«)-(Z Q,)

where {A,},{€},{n.},{C,} are sequences in C,H,H,H, respectively with
S IEN Imll ) <co. In the same way we define S,0<p<1, but then we get
quasinormed ideals, not normed ideals.
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What about S, 1 <p<2 or 2<p<oo? We suggest defining S, by interpola-
tion, either real or complex, i.e. S,=(S,,S,),, or S,=[S,,S..), where 1/p=1-86.
It is not clear that two definitons coincide, as in the operator case, nor that
they agree with the definition of S,. A heuristic argument for the support of
the latter statement goes as follows: the dual of S (in the natural duality pro-
vided by the inner product of S,) is S,. Therefore we are in principle in the
situation of the “theorem on interpolation between a space and its dual” ([LP];
cf. [BL]). But since S, is not reflexive the theorem is unfortunately not di-
rectly applicable. Also, it is not clear at all that the entire scale S, 0<p=co
is closed for interpolation.

Second method

This is based on the application of Schmidt or approximation numbers. If
B is any compact trilinear form we set

s(B)= inf ||B—Fl| (n=012,..),
rankF=n
where the infimum thus runs over all forms F of finite rank = n. If 0<p=oo
we define S to be the set of forms B such that the sequence {s,(B)} is in /.. It
is clear that S is a quasi-normed ideal. From the general theory of lnterpola-
tion of normed Abelian groups ([PS]; cf. [BL], Chap. 3 and Chap. 7) it follows
at any rate that the scale S, is closed for interpolation:

=(S~P0’S~Pl)e.co fOI‘ 0<9<1’ 11) — 1—9 + e

But is it true that S,=S,? It is not even clear that the spaces S, are Banach
spaces for any p< co.
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