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ABSTRACT

We study the behavior of the arithmetic functions defined by

F(n) =
P+(n)

P−(n + 1)
and G(n) =

P+(n + 1)

P−(n)
(n ≥ 1),

where P+(k) and P−(k) denote the largest and the smallest prime factors,
respectively, of the positive integer k.

Key words: smallest prime divisor, largest prime divisor.
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Introduction

For every integer n ≥ 2, let P+(n) and P−(n) denote the largest and the smallest
prime factors of n, respectively; put P+(1) = 1 and P−(1) = ∞. An integer n is said
to be y-smooth if P+(n) ≤ y, and it is said to be z-rough if P−(n) > z.

There are several papers in the literature which study smoothness properties of
consecutive integers. In certain ranges, upper and lower bounds have been obtained
on the number of positive integers n ≤ x for which P+(n(n + 1)) ≤ y, and other
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similar questions have been studied; see, for example, [4, 5, 10, 15]. The arithmetic
function

H(n) =
P+(n)

P+(n + 1)
(n ≥ 1)

has been investigated in [3,6]; in particular, it is known (see [6]) that for every ε > 0
there exists δ > 0 such that the inequalities

n−δ ≤ H(n) ≤ nδ

hold for at most εx positive integers n ≤ x. The distribution of integers n for which
P+(n) < P+(n + 1) (that is, H(n) < 1) and that of integers n such that P+(n) >
P+(n + 1) have also been studied, as well as analogous questions about the possible
orderings among the three primes P+(n), P+(n+1), and P+(n+2); see [3,6]. These
results suggest that the values of P+(n) and P+(n + 1) are essentially independent.

In this paper, we introduce and study the arithmetic functions

F(n) =
P+(n)

P−(n + 1)
and G(n) =

P+(n + 1)
P−(n)

(n ≥ 1),

for which we obtain a variety of results with a similar flavor; our results suggest that
the values of P+(n) and P−(n±1) are essentially independent; that is, the smoothness
of n does not affect the roughness of its neighbors n± 1.

We show that for almost all positive integers n, the values F(n) and G(n) are
“large” in a certain sense. This is consistent with our intuition: Since the set of
y-smooth integers s ≤ x is much smaller than the set of y-rough integers r ≤ x over a
wide range in the xy-plane (see [14, chapters III.5 and III.6]), for “random” integers
s, r it is likely that P+(s) is much larger than P−(r). Our results show that the same
result is true when s and r are neighbors, that is, when |s− r| = 1.

Although F(n) and G(n) tend to be large, the value sets F(N) and G(N) are quite
dense in the set of all positive real numbers. In particular, both value sets contain
all fractions of the form p/q > 1 and almost all fractions of the form p/q < 1, where
p and q are prime numbers. On the other hand, we show that for every prime p,
there are infinitely many primes q > p such that p/q 6∈ F(N), and we expect the same
statement to hold for G(N) as well.

In addition to their intrinsic interest as natural analogues of the arithmetic func-
tionH(n), the functions F(n) and G(n) also exhibit interesting links with some famous
sets of positive integers, such as the Fermat and Mersenne primes.

1. Notation

Throughout the paper, any implied constants in symbols ‘O,’ ‘�,’ and ‘�’ are ab-
solute unless specified otherwise. We recall that, for positive functions U and V , the
statements U = O(V ), U � V , and V � U are all equivalent to the assertion that
U ≤ cV holds with some constant c > 0.
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In what follows, the letters `, p, q and r (with or without subscripts) always denote
prime numbers, k, m and n always denote positive integers, and x is always a positive
real number. As usual, we let π(x) denote the number of primes p ≤ x.

Finally, for any real number x > 0 and integer k ≥ 1, we denote by logk x the k-th
iterate of the function log x = max{lnx, 1}, where ln x is the natural logarithm.

2. Value sets

Let F(N) and G(N) denote the collection of values taken by F(n) and G(n), respec-
tively, as n varies over the set of natural numbers N. The following result shows that
the intersection F(N) ∩ G(N) contains every fraction of the form p/q, where p, q are
primes with p > q:

Theorem 2.1. For any two primes p > q, there exist integers m,n ∈ N, with

max{m,n} ≤ exp (p + o(p)) as p →∞,

such that
F(m) = G(n) = p/q.

Proof. Let L = {primes ` ≤ p : ` 6= q}, and put

L =
∏
`∈L

`.

Let M be the unique integer such that 1 ≤ M < q and LM ≡ 1 (mod q), and put

m = (q − 1)LM and n = (q + 1)LM − 1.

Since p ≥ q + 1 > M , it is clear that P+(m) = P+(n + 1) = p. On the other hand, it
is easy to see that q | m + 1 and q | n, whereas

m + 1 ≡ 1 (mod `) and n ≡ −1 (mod `) (` ∈ L);

therefore, P−(m + 1) = P−(n) = q. Combining these results, it follows that F(m) =
G(n) = p/q.

By the Prime Number Theorem, we also have the bound

max{m,n} < (q + 1)LM ≤ (q2 − 1)L < q
∏
`≤p

` = exp(p + o(p)), (1)

and this finishes the proof.

Remark 2.2. Using explicit bounds from [12] for the product of the primes ` ≤ p, one
can derive from (1) an entirely explicit version of Theorem 2.1 with a specific function
of p in the exponent rather than p + o(p).
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Remark 2.3. A minor modification to the construction of Theorem 2.1 allows one
to build infinitely many m and n with F(m) = G(n) = p/q when p > q. On the
other hand, the equation H(m) = p/q has only finitely many solutions m since by a
classical result of C. Siegel [13] it is known that P+(n(n + 1)) →∞ as n →∞. (See
also [9] for the currently best known effective lower bound of the type P+(n(n+1)) �
log2 n log3 n/ log4 n.)

In contrast with Theorem 2.1, the value set F(N) does not contain every fraction
of the form p/q with p < q (see Theorem 2.5 below), and we expect the same to be
true for G(N). However, the next result implies that almost all such fractions occur
in the intersection F(N) ∩ G(N).

Theorem 2.4. For every pair of primes (p, q) such that p < q ≤ x, with at most
o
(
π(x)2

)
possible exceptions, there exist integers m,n ∈ N, with

max{m,n} ≤ exp(exp(q + o(q))) as q →∞,

such that
F(m) = G(n) = p/q.

Proof. Let y =
√

log x. We exclude from consideration any pair of primes (p, q) for
which p ≤ q/y; clearly, there are at most

π(x) π(x/y) � x

log x

(x/y)
log(x/y)

� x2

(log x)2.5
= o(π(x)2)

such pairs with p < q ≤ x. We also exclude those pairs (p, q) for which

max{P+(q − 1), P+(q + 1)} > q/y.

To estimate the number of such pairs, we apply Brun’s method (see, for example,
[8, Theorem 2.3]) to deduce that for every positive integer a, each of the linear forms
a` + 1 and a`− 1 take prime values for at most

Na(x) � x

ϕ(a) log2(x/a)
� x log2 a

a log2(x/a)

primes ` ≤ x/a, where ϕ(·) is the Euler function. In the above estimate, we have used
the bound a/ϕ(a) � log2 a, which holds uniformly for all a ≥ 1. If p < q ≤ x and
P+(q ± 1) > q/y, then q = a` ∓ 1 for some integer a < 2y and prime ` ≤ (x + 1)/a;
hence, there are at most

π(x)
∑
a<2y

2Na(x + 1) � π(x)
x log y log2 y

log2 x
� π(x)2

log2 x log3 x

log x
= o(π(x)2)

such pairs of primes (p, q).
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Now, fix one of the remaining pairs (p, q). Let L = {primes ` ≤ p} and R =
{primes r : p < r < q }, and put

m = (q − 1)L(q−1)R and n = (q + 1)L(q−1)R − 1,

where
L =

∏
`∈L

` and R =
∏
r∈R

(r − 1).

Since P+(q ± 1) ≤ q/y < p, we have P+(m) = P+(n + 1) = p. We claim that
P−(m + 1) = P−(n) = q (and consequently, F(m) = G(n) = p/q). Indeed, using
Fermat’s Little Theorem, we have

m ≡ −L(q−1)R ≡ −1 (mod q),

hence, q | m + 1. Similarly,

n ≡ L(q−1)R − 1 ≡ 0 (mod q),

thus, q | n. On the other hand, as (r − 1) | R for each prime r ∈ R, Fermat’s Little
Theorem also implies that

m + 1 = (q − 1)L(q−1)R + 1 ≡ q 6≡ 0 (mod r),

and
n = (q + 1)L(q−1)R − 1 ≡ q 6≡ 0 (mod r),

thus, r - (m + 1)n. Finally, since ` | L for every ` ∈ L, it is clear that ` - (m + 1)n,
and the claim is proved.

By the Prime Number Theorem, we have the estimates

L ≤ exp(p + o(p)) and R ≤ exp(q + o(q)),

and the theorem follows.

The following result shows that F(N) does not include all fractions of the form
p/q with p < q:

Theorem 2.5. For every prime p, let

Qp = {primes q : p/q 6∈ F(N)}.

Then,
#{q ≤ x : q ∈ Qp} � π(x),

where the implied constant depends only on p. Moreover,

min
q∈Qp

{q} ≤ exp(O(p)).
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Proof. For a fixed prime p, let q be a prime such that:

(i) every prime ` ≤ p is a quadratic residue modulo q;

(ii) −1 is a quadratic nonresidue modulo q.

We claim that q ∈ Qp. Indeed, if n ≥ 1 is an integer for which P+(n) = p, property (i)
implies that n is a quadratic residue modulo q. But then the equation P−(n + 1) = q
is not possible, for otherwise n ≡ −1 (mod q) is a quadratic nonresidue by (ii).

To construct examples of such primes q, let N = 4
∏

`≤p `, and let a be the
congruence class modulo N determined by the conditions a ≡ 7 (mod 8) and a ≡
(−1)(`−1)/2 (mod `) for 2 < ` ≤ p; then every prime q ≡ a (mod N) satisfies (i)
and (ii), and we obtain the first statement of the theorem. The second statement
follows from the bound N ≤ exp(p + o(p)) and Linnik’s theorem.

Since +1 is always a quadratic residue modulo q, the method of Theorem 2.5
cannot be used to prove the analogous statement for the set G(N). However, numerical
evidence suggests that such a statement is likely to be true.

Question 2.6. Does an analogue of Theorem 2.5 hold if the value set F(N) is replaced
by G(N)?

It follows from the classical results of H. Hasse that the set of primes which divide
some element of the sequence {2k + 1 : k = 1, 2, 3, . . . } has relative asymptotic
density 2/3 in the set of all prime numbers (see [2] for an exhaustive survey of results
of this kind). This immediately implies that

#
{
primes q ≤ x : 2/q 6∈ F(N)

}
≥ (1/3 + o(1))π(x).

A slight modification of this argument also works for G(N) and in fact using some
results of [11] one can show that

#
{
primes q ≤ x : 2/q 6∈ G(N)

}
= (1 + o(1))π(x).

Question 2.7. Is it true that the lower bound

#
{
prime pairs (p, q) with p < q ≤ x : p/q 6∈ F(N)

}
≥ x1+δ

holds for some absolute constant δ > 0 and all sufficiently large values of x?

3. Distribution of values

Theorem 3.1. If F = F or F = G, then for any ε > 0 the following estimate holds:

#{n ≤ x : F (n) ≤ x1/u} � x log2 x

log x log3 x
+ x exp(−(1− ε) u log u),

where the implied constant in the �-symbol depends only on ε.

Revista Matemática Complutense
2007: vol. 20, num. 1, pags. 109–118 114



W. D. Banks/F. Luca/I. E. Shparlinski On rough and smooth neighbors

Proof. For a fixed integer a 6= 0, let

Fa(n) =
P+(n)

P−(n + a)
(n ≥ 1− a).

Since F(n) = F1(n) and G(n) = F−1(n + 1), it suffices to prove the stated inequality
for the function F = Fa. Let us fix a sufficiently small δ > 0. Put

y = x1/u, v = min
{

u

1 + δ
,

2 log2 x

log3 x

}
, and z = x1/v,

and note that z ≥ y(1+δ). Clearly, if Fa(n) ≤ y, then P−(n + a) ≥ P+(n)/y; hence,
either P+(n) ≤ z or P−(n+a) > z/y. For integers of the first type, we use the bound
(see, for example, [14, chapter III.5]):

Ψ(x, z) ≤ x exp (−(1 + o(1)) v log v) ,

where
Ψ(x, z) = #{n ≤ x : P+(n) ≤ z},

and for integers of the second type, we use the bound (see [14, Chapter III.6]):

Φ(x + a, z/y) � Φ(x, z/y) � x

log(z/y)
≤ xv

δ log x
,

where
Φ(x, z/y) = #{n ≤ x : P−(n) > z/y}.

Taking a sufficiently small δ, after simple calculations, we obtain the stated result.

Theorem 3.2. For a positive real number x, the lower bound

#
(
{F(m) : m ≤ x} ∩ {G(n) : n ≤ x}

)
� x

log x

holds.

Proof. This is clear since all fractions of the form p/2 = F(p) = G(p − 1) with
2 < p ≤ x are distinct.

4. Extreme values

Theorem 4.1. As x →∞, each of the inequalities

F(n) ≥ n7/10, F(n) ≤ n−7/10, G(n) ≥ n7/10, and G(n) ≤ n−7/10

holds for x1+o(1) positive integers n ≤ x.

115
Revista Matemática Complutense

2007: vol. 20, num. 1, pags. 109–118



W. D. Banks/F. Luca/I. E. Shparlinski On rough and smooth neighbors

Proof. By a well-known result of R. C. Baker and G. Harman [1], for any fixed integer
a 6= 0, there exists a constant C > 0 such that the cardinality of the set

Pa(x) =
{
primes p ≤ x : P+(p− a) ≤ p0.2961

}
is bounded below by

#Pa(x) >
x

(log x)C
= x1+o(1)

for all sufficiently large values of x. In particular, we have

F(p− 1) =
P+(p− 1)

p
≤ p−0.7039 and G(p− 1) =

p

P−(p− 1)
≥ p0.7039

for all p ∈ P1(x), and

F(p) =
p

P+(p + 1)
≥ p0.7039 and G(p) =

P+(p + 1)
p

≤ p−0.7039

for all p ∈ P−1(x). The result follows.

Remark 4.2. Assuming the Elliott-Halberstam conjecture, it is clear that the constant
7/10 can be replaced by 1− ε for any fixed ε > 0.

Remark 4.3. We note that F(n) ≥ 2/(n+1) holds for all n ≥ 2, and F(n) = 2/(n+1)
if and only if n + 1 is a Fermat prime. Similarly, G(n) ≥ 2/n holds for all n ≥ 2, and
G(n) = 2/n if and only if n is a Mersenne prime.

As a complementary result to Theorem 4.1, we now state the following corollary
to Theorem 2.1, which concerns integers n for which F(n) or G(n) is close to 1.

Corollary 4.4. Both of the inequalities

|F(n)− 1| ≤ (1 + o(1))
log2 n

log n
and |G(n)− 1| ≤ (1 + o(1))

log2 n

log n

hold for infinitely many n ∈ N.

Proof. By the Prime Number Theorem, there are infinitely many consecutive primes
q < p such that

|p− q| ≤ (1 + o(1)) log q.

By Theorem 2.1, one can find m,n ∈ N with max{m,n} ≤ exp(p + o(p)) such that

F(m) = G(n) =
p

q
= 1 + O

(
log q

q

)
= 1 + O

(
log p

p

)
.

Since p ≥ (1 + o(1))max{log m, log n}, the result follows.
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Remark 4.5. By the recent breakthrough result of D. A. Goldston, J. Pintz, and
C. Y. Yıldırım [7], there are infinitely many consecutive primes q < p for which

p = q + O

(
log q log4 q

log2 q

)
,

and this result leads to an obvious improvement in the bound of Corollary 4.4.

Remark 4.6. We observe that

|F(n)− 1| ≥ (n + 1)−1/2 (n ≥ 3). (2)

Indeed, if n+1 is prime, then P+(n) ≤ n/2 and P−(n+1) = n+1. Hence, F(n) < 1/2,
and therefore |F(n)− 1| > 1/2 ≥ (n + 1)−1/2 (since n + 1 ≥ 4). On the other hand,
if n + 1 is composite, then P−(n + 1) ≤ (n + 1)−1/2, and the bound (2) follows from
the obvious inequality |F(n)− 1| ≥ 1/P−(n + 1).

We believe that for every ε > 0 there exists n such that

|F(n)− 1| ≤ n−1/2+ε

but we do not know how to attack this problem. Perhaps it follows from standard
conjectures about the distribution of prime numbers, such as the Elliott-Halberstam
conjecture, but our efforts to find such an argument have not been successful.
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