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ABSTRACT

Let f : M → M be a Cr-diffeomorphism, r ≥ 1, defined on a closed manifold
M . We prove that if M is a surface and K ⊂M is a compact invariant set such
that TKM = E ⊕ F is a dominated splitting then f/K is entropy expansive.
Moreover C1 generically in any dimension, isolated homoclinic classes H(p),
p hyperbolic, are entropy expansive.

Conversely, if there exists a C1 neighborhood U of a surface diffeomorphism f
and a homoclinic class H(p), p hyperbolic, such that for every g ∈ U the contin-
uation H(pg) of H(p) is entropy-expansive then there is a dominated splitting
for f/H(p).

Key words: entropy-expansiveness, homoclinic classes, dominated splitting, homoclinic
tangency, symbolic extension.
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Introduction

Since the seminal work of Smale [37] establishing the main goals to describe the
long term evolution of discrete or continuous time dynamical systems, one of the
main strategies has been to prescribe some property at the infinitesimal level of the
system that implies a definite behavior for the underlined dynamics. Examples in-
clude the concepts of hyperbolicity, partial hyperbolicity and dominated splitting. In
the hyperbolic case the tangent bundle of an invariant set K, TKM splits into two
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complementary directions S ⊕ U , invariant by the action of the differential map, S
exponentially contracted and U exponentially expanded by this action. In the case
of partial hyperbolicity one of these directions, for instance the contracting one S, is
replaced by the direct sum of a contracting and a neutral direction S⊕C. In the case
of a dominated splitting it holds that TKM = E ⊕ F where E and F are invariant
by the action of the differential map. Albeit nothing can be said about the size of
forward iterated vectors by the differential map, it can be assured that the direction
of vectors in TKM \ E converges exponentially fast to F . We have

hyperbolicity =⇒ partial hyperbolicity =⇒ existence of a dominated splitting.

But the converse is not generally true.
These concepts allow to understand large classes of dynamics, particularly those

exhibiting sensibility to initial data and chaos. Systems having these properties con-
stitute an active area of research in Dynamical Systems.

On the other hand, one may also ask what are the consequences at the infinitesimal
level from a known behavior of the evolution system at the ambient manifold, in
particular we wish to be able to say when a dynamical system is (partially) hyperbolic
or has a dominated splitting. But rarely a property displayed by a system solely
implies a distinguishing behavior of the differential map acting at the tangent bundle.
For instance, in [17, 18] it is proved that a (generalized) pseudo-Anosov map f is
ergodic and even Bernoulli. Thus they have very rich properties from the point of
view of chaotic dynamics. But for those maps there is at least a periodic point p where
the derivative Dfp is idempotent and so the dynamics at the tangent bundle level
cannot be characterized in terms of hyperbolicity, partial hyperbolicity or even the
existence of a dominated splitting. On the other hand under an arbitrarily small C1-
perturbation of f we may create sinks or sources hence loosing ergodicity. Example 1.1
is a generalized pseudo-Anosov map defined on S2 illustrating such a behavior.

Hence, it is natural to ask, for a given Cr topology defined in Diffs(M), r, s ≥ 1,
which robust properties satisfied by the underlined system have dynamical conse-
quences at the tangent bundle level and vice versa. Several authors have worked in this
line of ideas (see, for instance, [13,23,25,30,35]), particularly in the C1 topology. Here
by a robust property we mean a property shared by all system in a Cr-neighborhood
of the original one.

Answers to these questions when restricted to homoclinic classes H(p) associated
to a hyperbolic periodic point p of f would give more information about these sets.
Recall that the homoclinic class H(p) of a saddle-type hyperbolic periodic point p,
is the closure of the transverse intersections of the stable manifold W s(p) with the
unstable manifold Wu(p) of p. Points x ∈W s(p)∩Wu(p), x 6= p, are called homoclinic
points. They are characterized by the fact that both forward and backward orbits
converge to the orbit of the periodic point p. Their importance was first realized
by Poincaré when studying Celestial Mechanics, mainly in the three body problem.
Poincaré observed that for such a system (i) there can exist homoclinic points, (ii) the
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existence of a single homoclinic point forces the existence of infinitely many of them,
and (iii) the appearance of chaotic motions.

Homoclinic classes are, in the hyperbolic case, the elementary pieces (basic pieces)
of the dynamics, i.e., maximal invariant hyperbolic sets. Thus in the hyperbolic case
different homoclinic classes are disjoint. Moreover, these properties were proved to be
true for a residual subset of C1 diffeomorphisms on any n-dimensional manifold [9].

In [2] it is proved that for generic C1 diffeomorphisms, the elementary pieces are
the chain recurrent classes, and when one of these sets contains a periodic point p
it coincides with the homoclinic class of p. Moreover, [9] together with the Closing
Lemma of [32], give that the homoclinic classes constitute a partition of a dense part
of the limit set of generic diffeomorphisms, and [10] establishes that chain recurrent
sets of generic diffeomorphisms are Hausdorff limits of homoclinic classes. All these
results evidence the importance of understanding the dynamics restricted to homo-
clinic classes. For more on this, and a discussion of the notion of elementary pieces
of dynamics, see [5] and the references therein.

The facts described above motivate our interest in the description of the dynamics
of homoclinic classes, especially in the non-hyperbolic context. We note that every
homoclinic class is f -invariant and transitive. However, a homoclinic class may be
robustly non-uniformly hyperbolic: it contains in a robust way hyperbolic saddles
with different indices from p, see [11,12,14] for constructions illustrating this fact.

One weak form of hyperbolicity inH(p) can be expressed in terms of expansiveness:
f is α-expansive in H(p) if dist(fn(x), fn(y)) ≤ α for all n ∈ Z, with x, y ∈ H(p),
implies x = y. It is well known that hyperbolicity implies α-expansiveness for some
α > 0. But expansiveness alone does not guarantee hyperbolicity, see [30, section 2].
However, if expansiveness holds in a robust way, then generically, for 3-dimensional
diffeomorphisms, the homoclinic class is hyperbolic [30]. Here robust means that for
all diffeomorphism g that is C1 near f the homoclinic class H(pg) of the continua-
tion pg of p is α-expansive.

This was generalized in [29] for co-dimension one homoclinic classes in two ways:
First, for n-dimensional diffeomorphisms, robustly expansive codimension-one homo-
clinic classes have a codimension-one dominated splitting. Second, robustly expansive
codimension-one homoclinic classes with a dominated splitting are hyperbolic.

One can relax the notion of expansiveness requiring entropy-expansiveness. This
last notion is characterized by the fact that there is ε > 0 such that for any point
x ∈M ,

⋂
n∈Z f

n(B(x, ε)) is a set of topological entropy zero (see Definition A). Note
that if f is an expansive homeomorphism then there is a positive constant α such
that the set

⋂
n∈Z f

n(B(x, α)) = {x}, which trivially has zero entropy. In this paper
under the hypothesis of robust entropy-expansiveness, we study what are the con-
sequences at the dynamical behavior of the tangent map Df of a diffeomorphism
f : M →M . In this direction we obtain that the tangent bundle has a Df -invariant
dominated splitting. Reciprocally, we show, in the case of surfaces, that the existence
of a dominated splitting for the tangent bundle of a homoclinic class H(p), p a hyper-

295
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bolic periodic point, implies robust entropy expansiveness for the diffeomorphism f
restricted to H(p). Thus robust entropy expansiveness is equivalent to the existence
of a dominated splitting for homoclinic classes of surfaces diffeomorphisms.

Example 1.1 exhibits a diffeomorphism f that is not entropy expansive. In this
case Ω(f) = S2 is a homoclinic class. In the example it is possible to observe what
occurs for C1+σ surface diffeomorphisms when entropy expansiveness does not hold:
a sequence of arbitrarily small horseshoes appears [21]. The diffeomorphism of the
example is of class C∞ and hence it is asymptotically entropy expansive (see Defini-
tion C) by a result of Buzzi [8]. The first example of a diffeomorphism that is not
entropy expansive neither asymptotically entropy expansive was given by Misiurewicz
in [26], answering a question posed by Bowen [7]. Nevertheless we add our example to
this article because of its nice properties: (i) it is defined on the sphere S2 while the
example of Misiurewicz is in greater dimension, (ii) it is ergodic and even Bernoulli,
(iii) it admits analytic models and so there are non entropy-expansive diffeomor-
phisms in this setting too. Moreover, a straightforward modification of this example
produces a diffeomorphism (Example 1.2) defined on a manifold of dimension greater
than 2 that does have a dominated splitting defined on a homoclinic class, but it is
not entropy expansive. Thus we cannot expect to generalize Theorem A directly.

A way to measure the lack of expansiveness of a non trivial homoclinic class H(p)
is to calculate the entropy of the set of points in H(p) whose forward and backward
iterates do not separate by a positive factor. Roughly speaking, if the entropy of
such set is sufficiently small, almost all points of the system can be distinguished,
and the homoclinic class is “almost” expansive. Again h-expansiveness solely does
not guaranty neither hyperbolicity nor the existence of a dominated splitting for the
tangent bundle, as one can see in section 1. This does not work in general. For
instance, Morse-Smale diffeomorphisms are entropy expansive but are far away from
being expansive. However h-expansiveness implies existence of a dominated splitting
for non trivial homoclinic classes.

Let us now give precise definitions. Let M be a compact connected boundary-
less Riemannian d-dimensional manifold and f : M → M a homeomorphism. Let
K be a compact invariant subset of M and dist : M ×M → R+ a distance in M
compatible with its Riemannian structure. For E,F ⊂ K, n ∈ N, and δ > 0, E is
said to (n, δ)-span F with respect to f if for each y ∈ F there is x ∈ E such that
dist(f j(x), f j(y)) ≤ δ for all j = 0, . . . , n − 1. Let rn(δ, F ) denote the minimum
cardinality of a set that (n, δ)-spans F . Since K is compact rn(δ, F ) <∞. We define

h(f, F, δ) ≡ lim sup
n→∞

1
n

log(rn(δ, F ))

and the topological entropy of f restricted to F as

h(f, F ) ≡ lim
δ→0

h(f, F, δ).

The last limit exists since h(f, F, δ) increases as δ decreases to zero.
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For x ∈ K let us define

Γε(x, f) ≡ { y ∈M | d(fn(x), fn(y)) ≤ ε, n ∈ Z }.

We will simply write Γε(x) instead of Γε(x, f) when it is understood which f we
refer to.

Following Bowen (see [7]) we say that

Definition A. The homeomorphism f/K is entropy-expansive or h-expansive for
short, if and only if there exists ε > 0 such that

h∗f (ε) ≡ sup
x∈K

h(f,Γε(x)) = 0.

Definition B. If f : M → M is a Cs-diffeomorphism , s ≥ 1, and K ⊂ M is
compact invariant, we say that f/K is robustly entropy expansive if there is a C1-
neighborhood U of f and an open set U ⊃ K such that if g ∈ U then there is Kg ⊂ U
such that g/Kg is entropy expansive. We say that Kg is a continuation of K (not
necessarily unique).

Remark. We shall work in the C1 topology because our methods to prove some of
the results, as Theorem C, involve techniques only known in this case. For instance,
Hayashi Connecting Lemma [20], Pugh Closing Lemma [32], Franks Lemma [16] are
valid in full generality in the C1-topology. In fact it is known that Franks Lemma is
generally false in the C2-topology (see [34]).

The importance of f being h-expansive is that the topological entropy can be
derived from its ε-estimate h(f,K, ε), as shown by [7, Theorem 2.4].

A similar notion to h-expansiveness, albeit weaker, is the notion of asymptotically
h-expansiveness [26].

Definition C. Let K be a compact metric space and f : K → K an homeomorphism.
We say that f is asymptotically h-expansive if and only if

lim
ε→0

h∗f (ε) = 0.

Thus we do not require that for a certain ε > 0 h∗f (ε) = 0 but that h∗f (ε) → 0
when ε→ 0. It has been proved by Buzzi that any C∞ diffeomorphism defined on a
compact manifold is asymptotically h-expansive.

Next we recall the notion of dominated splitting.

Definition D. We say that a compact f -invariant set Λ ⊂ M admits a dominated
splitting if the tangent bundle TΛM has a continuous Df -invariant splitting E ⊕ F
and there exist C > 0, 0 < λ < 1, such that

‖Dfn|E(x)‖ · ‖Df−n|F (fn(x))‖ ≤ Cλn ∀x ∈ Λ, n ≥ 0. (1)

297
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Our main results are the following:

Theorem A. Let M be a compact boundaryless C∞ surface and f : M → M
be a Cr-diffeomorphism such that K ⊂ M is a compact f -invariant subset with a
dominated splitting E ⊕ F . Then f/K is h-expansive.

Since the property of having a dominated splitting is open we may conclude that
any g C1 close to f is such that g/Kg is h-expansive where Kg is a continuation
of K = Kf .

In case M is a d-dimensional manifold with d ≥ 3 the existence of a dominated
splitting is not enough to guarantee h-expansiveness as it is shown in Example 1.2
presented below. Nevertheless a weaker result can be achieved:

Theorem B. Let M be a compact boundaryless C∞ d-dimensional manifold and
f : M → M be a Cr-diffeomorphism. Let H(p) be an isolated f -homoclinic class
associated to the f -hyperbolic periodic point p. Assume that H(p) admits a dominated
splitting. Then there is a C1 neighborhood U of f such that for a residual subset
R ⊂ U any g ∈ R is h-expansive when restricted to H(pg).

Observe that if the topological entropy of a map f : M → M vanishes, h(f) = 0,
then f is h-expansive. For instance the identity map id : M → M is h-expansive.
Nevertheless, robustness of h-expansiveness has a dynamical meaning as shows the
following theorem.

Theorem C. Let M be a compact boundaryless C∞ surface and f : M → M be a
Cr-diffeomorphism. Let H(p) be an f -homoclinic class associated to the f -hyperbolic
periodic point p. Assume that there is a C1 neighborhood U of f such that for any
g ∈ U it holds that the continuation H(pg) of H(p) is h-expansive. Then H(p) has
a dominated splitting.

A natural question that arises is if Theorem C holds not only for surfaces but also
for compact manifolds of any finite dimension. We believe that this is the case and
it will be the subject of a forthcoming paper. This would imply that C1 generically
h-expansiveness of an isolated homoclinic class H(p, f) is equivalent to the existence
of a dominated splitting for H(p, f).

Idea of the proofs

To prove Theorem A we proceed as follows.

• We remark that there is a compact neighborhood U(K) of K such that we may
extend the cones defining the dominated splitting E⊕F to U(K) in a continuous
way.

• If y ∈ M is such that its f -orbit orb(y) ⊂ U(K) then there are defined lo-
cal center stable manifolds and local center unstable manifolds W cs

loc(fn(y)),
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W cu
loc(fn(y)) for any n ∈ Z. These center stable and center unstable mani-

folds can be obtained applying Peano’s Theorem on the existence of solutions
of ODE’s in the plane R2.

• We choose ε > 0 such that if x ∈ K and dist(x, y) ≤ ε then y ∈ U(K) and so
the local center stable and unstable manifolds are well defined.

• Assume that y ∈ Γε(x) ∩ W cu
loc(x). Then the center-unstable arc [x, y]cu ⊂

W cu
loc(x) is a (ε, E)-interval [33], and therefore by the domination property (1),

W cs
loc(z) is a true stable manifold for all z ∈ [x, y]cu, that is, W cs

loc([x, y]cu) con-
tains a neighborhood in M .

• By [33, Proposition 3.1], either `(fn([x, y]cu))→ 0 when n→ +∞ or the ω-limit
set of [x, y]cu is contained in a periodic arc or a periodic circle.

(i) In the first case fn(W cs
loc([x, y]cu)) shrinks to a point when n→ +∞. This

implies that the topological entropy of W cs
loc([x, y]cu) vanishes and therefore

we also have h(W cs
loc([x, y]cu) ∩ Γε(x)) = 0.

(ii) If the ω-limit set of W cs
loc([x, y]cu) is contained in a periodic arc or a

periodic circle then there is N such that for n > N the dynamics on
fn(W cs

loc([x, y]cu)) is, for n large enough, similar to the dynamics of the
diffeomorphism restricted to that interval or circle which always has zero
topological entropy. This implies again that h(W cs

loc([x, y]cu)) = 0 too.

In any case we derive that h(W cs
loc([x, y]cu), f) = 0, implying that

h(W cs
loc([x, y]cu) ∩ Γε(x)) = 0. Similar arguments are valid for y ∈ W cs

loc(x).
In this case we have that [x, y]cs ⊂W cs

loc(x) is a (ε, F )-interval.

• If y ∈ Γε(x) is such that y /∈W cu
loc(x)∪W cs

loc(x) then we project y along W cs
loc(y)

into W cu
loc(x) obtaining a point yF that is contained in ΓL·ε(x) for some con-

stant L > 0 independent of y, and argue as above. The existence of L is due to
the fact that the angle between E(z) and F (z) is bounded away from zero for
any point z ∈ U(K).

• So in any case we conclude that Γε(x) is contained in the local stable manifold
of some (L · ε, E)-interval or in the local unstable manifold of some (L · ε, F )-
interval and therefore h(Γε(x), f) = 0. Since this last equality holds for all
x ∈ K, Theorem A follows.

To prove Theorem B we proceed as follows.

• We use the existence of the finest dominated splitting (see Definition 3.1) for a
homoclinic class H(p, f). Generically, in the C1 topology, this splitting has the
form

TH(p,f)M = E ⊕ F1 ⊕ · · · ⊕ Fj−i ⊕G
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with dim(E) = i, dim(Fh) = 1 for all h, and dim(G) = dim(M) − j. The
sub-bundles Fh are not hyperbolic [1, 19].

• When H(p, f) is an isolated homoclinic class it is known that E is uniformly
contracting and G is uniformly expanding [4].

• Take ε > 0 such that the dominated splitting extends to any point whose orbit
is at a distance less than ε from the orbit of a point in H(p, f). Thus if for some
x ∈ H(p, f) there is y ∈ Γε(x) then y cannot be in the strong unstable manifold
of x (tangent to G) neither in the strong stable manifold (tangent to E).

(i) y cannot project along its center-stable manifold into the unstable manifold
of x into yG 6= x. Otherwise, taking into account that the angles between
any distinct sub-bundle is bounded away from zero we get that ∀ n ∈ Z :
fn(yG) ∈ Γε·L(fn(x)) where L > 0 is some constant. Forward iterations
of the distance between fn(x) and fn(yG) growths exponentially fast until
fn(yG) leaves Wu

loc(fn(x)). Hence yG 6= x leads to a contradiction with
the fact that y ∈ Γε(x).

(ii) Thus y lies in a center manifold. Since the tangent bundle to this center
manifold splits into one-dimensional ones, repeating the arguments used in
Theorem A we get the proof of Theorem B.

To prove the remaining theorem we introduce the notions of symbolic extension
and principal symbolic extension. Let f : X → X be a homeomorphism of the
compact metric space X. A symbolic extension of (f,X) is a subshift on a finite
alphabet (g, Y ) which has f as a topological factor. (g, Y ) is an extension of (f,X)
if there exists a continuous surjection π : Y → X such that fπ = πg.

For any f -invariant measure µ we define hπext(µ) = sup{hν(g) : π∗ν = µ}, where
hν(g) is the entropy of g with respect to ν. An extension (g, Y ) is principal if it
preserves the measure theoretic entropy of the factor (f,X) for any f -invariant mea-
sure µ, i.e., hπext(µ) = hµ(f). Roughly speaking principal extensions preserves the
entire information theory of the original system.

The proof of Theorem C is obtained following the steps:

• We profit from a result of Downarowicz and Newhouse, [15, Theorem 1.4], that
shows that if we have a Hènon like tangency between the stable manifold and the
unstable manifold of a periodic point then f cannot have a principal symbolic
extension.

• Under the assumption that we do not have a dominated splitting but that
we have robust entropy expansiveness, we can perturb f to create a tangency
between the stable manifold and the unstable manifold of the continuation pg
of the f -periodic point p. After a new perturbation we may assume that this
tangency is a Hènon like one and that the perturbed diffeomorphism is C2.
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• Applying the results of [15] we obtain that f/H(pg, g) cannot have a principal
symbolic extension.

• On the other hand it is proved in [6] that for a homeomorphism defined on a
compact metric space it is equivalent to have a principal symbolic extension and
to be asymptotically entropy expansive.

• Joining the last two facts we arrive to a contradiction since an entropy expansive
system is asymptotically entropy expansive.

1. Examples

Observe that since for Morse-Smale diffeomorphisms topological entropy vanishes
they are a fortiori h-expansive. Moreover, they are robust under C1 perturbations,
so we cannot expect in general to have a dominated splitting when we have robust
entropy-expansiveness. That is the reason for which we restrict ourselves to the case
of homoclinic classes in Theorem C.

In [7] Bowen asked for examples of diffeomorphisms which are not h-expansive.
The first giving such an example was Misiurewicz, [26]. Nevertheless we give here a
C∞ example in S which illustrates the fact that we should have “arbitrarily small”
horseshoes to brake h-expansiveness. By “arbitrarily small horseshoe” we mean a
horseshoe contained in the intersection of the ε-stable and unstable manifolds for any
positive ε. A modification of such example gives a 3-dimensional one which does
have a dominated splitting but is not h-expansive illustrating that in the general case
dominance is not enough to guarantee h-expansiveness. As Theorem B shows, the
existence of a dominated splitting implies h-expansiveness generically in the case of
isolated homoclinic classes.

Example 1.1. There is a C∞ diffeomorphism of S2 that is not h-expansive.

We consider in R2 the action given by the matrix A = ( 2 1
1 1 ). Since the entries of A

are integers and det(A) = 1, the lattice Z2 is preserved by this action and therefore
it passes to the quotient T2 = R2/Z2. This gives us a very well known linear Anosov
diffeomorphism a : T2 → T2. Let [x, y] represent the equivalence class of (x, y) ∈ R2

in T2. We define in T2 the relation [x, y] ∼ [−x,−y] = −[x, y]. The quotient T2/ ∼
gives the sphere S2. In order to see this let us take the square in R2 limited by the
straight lines x = − 1

2 , x = 1
2 , y = − 1

2 , y = 1
2 . We obtain a fundamental domain for

the torus and we identify it with T2.
In the quotient T2 the vertices A(1/2, 1/2), B(−1/2, 1/2), C(−1/2,−1/2),

D(1/2,−1/2), of the square are all identified. Let us call E to the point (1/2, 0),
F to the point (−1/2, 0), G to the point (0, 1/2), and H to the point (0,−1/2). Ob-
serve that E is identified with F and G is identified with H in T2. Now observe that the
boundary of the square OEAG is identified with the boundary of the square OEDH
(by the relations (x, y) ∼ −(x, y) and (x, y) ∼ (x′, y′) if (x− x′, y − y′) ∈ Z2). Hence
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B

C D

O

x

y

A(1/2,1/2)

EF

G

H

q

-q

Figure 1 – Fundamental domain for T2

both squares are two different disks glued in their boundaries by this identification.
It is not difficult to see that the quotient topology coincides in the interior of the
squares OEAG and OEDH with the topology of R2 and that the common boundary
of both disks is a circle separating T2/ ∼ Moreover, the rest of the square ABCD
doesn’t add more points to the quotient because the squares OEAG and OFCH, and
OEDH and OFBG, are identified by the relation (x, y) ∼ −(x, y). Hence we obtain
that T2/∼ ∼= S2. See figure 1 where we have marked two points, q and −q, which are
identified by the relation ∼.

On the other hand a([x, y]) ∼ −a([x, y]) = a(−[x, y]) by linearity, and therefore
projects to S2 as a map g : S2 → S2, known as a generalized pseudo-Anosov map
which is shown to be Bernoulli with respect to Lebesgue [17]. If Π : T2 → S2 is the
projection defined by the relation ∼, we may write g(x) = Π(a(Π−1(x))). Observe
that the projection Π : T2 → S2 is a branched covering and that the definition of g
doesn’t depend on the pre-image of x by Π−1. Therefore periodic points of a project
into periodic points of g and dense orbits of a project into dense orbits of g. For g
there are singular points P where the local ε-stable and ε-unstable sets are arcs with
the point P as an end-point. This local stable (unstable) sets are called 1-prongs (see
figures 1 and 2 where O is a point with 1-prongs).

Let O ∈ S2 be the image by Π of [0, 0]. Then O is a fixed point of g. The point O is
singular because the local stable and unstable manifolds of [0, 0] in T2 project into S2

as arcs ending at O (because [x, y] ∼ −[x, y]). The local stable and unstable manifolds
of the points in T2 near [0, 0] project onto arcs contained in the stable and unstable
sets respectively of points in S2 near O like in figure 2. Note that we do not speak of
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p p’

s
p

s

0

0

u
0

u
pg

k

(p’)

Figure 2 – Singularity of a generalized pseudo-Anosov

stable (unstable) manifolds but of stable (unstable) sets because neither W s
loc(x) nor

W u
loc(x) are locally connected (see [30]).
The intersection of the stable and unstable manifolds of the points [0, x] and

[0,−x] of T2 consists of four points identified by pairs by the relation [x, y] ∼ −[x, y].
If [x, y] ∈ T2 projects to X ∈ S2, let us call sX and uX to the projections of the
ε-local stable and ε-local unstable manifolds respectively of the point [x, y]. Hence if
a point X is close enough to a singular point like O, sX and uX will intersect twice.
Points in sX are in the ε-local stable set of X and points in uX are in the ε-local
unstable set of X. Moreover, if Y ∈ sX then dist(gn(Y ), gn(X))→ 0 when n→ +∞.
Similarly for points in uX replacing n→ +∞ by n→ −∞.

Given ε′ > 0 choose a periodic point p ∈ T2 so close to [0, 0] that Π(p) = P is a
periodic point satisfying dist(P, 0) < ε′. Such a point exists since periodic points are
dense for the Anosov diffeomorphism a defined on T2 and projects on S2 as g-periodic
points.

Let {P, P ′} = sP ∩ uP . Then it is not difficult to see that given ε > 0 there is
ε′ > 0 small enough such that P ′ ∈ Wu

ε (P ) ∩W s
ε (P ). Thus we have a homoclinic

intersection between ε-local stable and ε-local unstable arcs of the periodic point P ,
where P ′ is a homoclinic point associated to P .

It follows that for all ε > 0 there are points P such that Γε(P ) contains a small
horseshoe. Thus g : S2 → S2 is not h-expansive since the topological entropy of
horseshoes is positive. Moreover, this example is transitive and there are analytic
models for it (see [17], and [22]).

Clearly the example is a homoclinic class which has no dominated splitting.

Example 1.2. Property (1) sole does not imply h-expansiveness in dimension 3 or
more.
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Consider the 3-manifold M = S2 × S1 with g : S2 → S2 as in the example above,
and put in S1 a diffeomorphism h : S1 → S1 with a North-South dynamics, say,
N ∈ S1 is a source and S ∈ S1 is a sink and the ω-limit of any point in S1 is S
and the α-limit of every point in S1 is N . We may assume that |DhN | > 2k where
k = sup{‖Dg(x)‖, x ∈ S2}. Let us define f : M →M by f(x, y) = (g(x), h(y)). Then
if K = S2 × {N} ⊂ M , K is compact invariant and there is a dominated splitting
for K, E ⊕ F , where E = TxS

2, F = TNS
1. By the previous example f is not

h-expansive.
This example shows what may occur to prevent a diffeomorphism f defined on

an invariant set K supporting a dominated splitting to be h-expansive: the strongly
expanding direction F along TS1M does not interferes on the dynamics of f/S2×{N}.
Thus property (1) holds for f restricted to K = S2 × {N} albeit does not for the
projection g = ΠS2f . In fact K is a (flat) homoclinic class for f : M →M .

2. Dominated splitting implies h-expansiveness on surfaces

Here we shall prove Theorem A. Let us begin stating the following lemma.

Lemma 2.1 (Pliss). Let 0 < λ1 < λ2 < 1 and assume that there exists n > 0
arbitrarily large such that

n∏
j=1

‖Df/E(f j(x))‖ ≤ λn1 .

Then there exist a positive integer N = N(λ1, λ2, f), c = c(λ1, λ2, f) > 0, such that
if n ≥ N then there exist numbers

0 ≤ n1 ≤ n2 ≤ · · · ≤ nl ≤ n

such that
h∏

j=nr

‖Df/E(f j(x))‖ ≤ λh−nr
2 ,

for all r = 1, 2, . . . , l, with l ≥ cn, and for all h with nr ≤ h ≤ n.

Proof. See [31].

Let M be a surface and K ⊂ M a compact and f -invariant subset such that
TK(M) can be written as a dominated splitting E ⊕ F verifying (1). By continuity
of f and Df there is δ0 > 0 such that we may extend the cones defining the dominated
splitting to the closed δ0-neighborhood of K, U(K) = { y ∈M | dist(y,K) ≤ δ0 }. In
this neighborhood there exists a continuous splitting TU(K)(M) = Ê ⊕ F̂ extending
the splitting TK(M) = E⊕F (see [24]). If the orbit of a point y, orb(y), is contained
in U(K) then for that point there are defined local center-stable and center-unstable
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manifolds W cs
loc(y) and W cu

loc(y) where loc > 0 stands for a small real number. By
Peano Theorem on the existence of solutions of an ordinary differential equation
given by a continuous field, W cs

loc(y) can be obtained as a solution of the ODE

{
Y (0) = y

Y ′(u) = Ê(u), u ∈ R2

where we have identified B(y, δ0) with R2. Such a solution is tangent to Ê and
therefore, by domination, it is a local center-stable manifold for y. Similarly for F̂
we obtain W cu

loc(y) as a solution of the ODE obtained replacing Ê by F̂ . We may
also assume that for all x ∈ M the δ0-neighborhood of x, B(x, δ0), is contained
in a local chart and therefore we can identify B(x, δ0) with R2. Moreover, there
is δ1, 0 < δ1 ≤ δ0, such that if dist(f j(y), f j(z)) ≤ δ1 for all j = 0, . . . , n and
z ∈ W cs

loc(y) then f j(z) ∈ W cs
loc(f j(y)) for all j = 0, . . . , n. Similarly for the local

center-unstable manifolds we have that if dist(f−j(y), f−j(z)) ≤ δ1 for all j = 0, . . . , n
and z ∈W cs

loc(y) then f−j(z) ∈W cs
loc(f−j(y)) for all j = 0, . . . , n (see [33, Lemma 3.0.4

and Corollary 3.2]).

Let us denote by K̂ the maximal f -invariant subset of U(K) and by K̂+ and K̂−

the forward and backward maximal invariant subsets respectively:

K̂ =
⋂
j∈Z

f j(U(K)), K̂+ =
∞⋂
j=0

f−j(U(K)), K̂− =
∞⋂
j=0

f j(U(K)),

The following lemma relates the length of a stable (unstable) arc joining two points
with the distance between those points.

Lemma 2.2. Given y ∈ K̂+ there is δ2, 0 < δ2 ≤ δ1, such that if the length of
the arc [y, z]cs ⊂ W cs

loc(y) is greater than δ > 0 for 0 < δ ≤ δ2, `([y, z]cs) > δ, then
dist(y, z) > δ/2. Moreover, we may choose δ2 such that if dist(y, z) ≤ δ ≤ δ2 then
`([y, z]cs) ≤ 2 · δ. Similarly for an arc [y, z]cu ⊂W cu

loc(y), y ∈ K̂−.

Proof. Since Ê is a continuous sub-bundle of TU(K)M we may find δ2, 0 < δ2 ≤ δ1 such
that given π/8 ≥ η > 0 then the angle ∠(E(y), E(w)) < η for all w ∈ B(y, δ2)∩U(K).
Thus if we parameterize [y, z]cs by arc-length β : [0, l] → M , β(s) = (β1(s), β2(s)),
with β(0) = y, β(l) = z, then β′(s) = (β′1(s), β′2(s)) is parallel to E(β(s)), here we
have put l = length([y, z]cs). Therefore, since (β′1(s))2 + (β′2(s))2 = 1, we have by the
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Revista Matemática Complutense

2008: vol. 21, num. 2, pags. 293–317



M. J. Pacifico/J. L. Vieitez Entropy-expansiveness and domination for surface diffeomorphisms

β'(0)

y=β(0)
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β

(s)

'(s)
z= β(1)

β'(0)

β'(s)

ϕ

h=2.sin(    )ϕ/2 <2.sin(     )η/2 <η

Figure 3 – Bounds for small angles

Mean Value Theorem

dist(y, z) = ‖β(l)− β(0)‖ =
√

(β1(l)− β1(0))2 + (β2(l)− β2(0))2

=
√

(β′1(s1))2 + (β′2(s2))2 · l

= l
(

1− (
√

(β′1(0))2 + (β′2(0))2 −
√

(β′1(s1))2 + (β′2(s2))2)
)

= l

(
1− (β′1(0))2 − (β′1(s1))2 + (β′2(0))2 − (β′2(s2))2

1 +
√

(β′1(s1))2 + (β′2(s2))2

)
≥ l
(

1− |β′1(0)− β′1(s1)||β′1(0) + β′1(s1)|

+ |β′2(0)− β′2(s2)||β′2(0) + β′2(s2)|
)
.

But, since ∠(Ê(β(s)), Ê(β(0))) < η,

‖(β′1(s)− β′1(0), β′2(s)− β′2(0))‖ ≤ 2 sin(η/2) < η,

(see figure 3). Therefore, taking into account that

|β′1(0) + β′1(s1)| ≤ |β′1(0)|+ |β′1(s1)| ≤ 2

and that the same is true with respect to β′2 we have

dist(y, z) ≥ l(1− 4η) > l/2 > δ/2

if η > 0 is sufficiently small.

Revista Matemática Complutense
2008: vol. 21, num. 2, pags. 293–317 306



M. J. Pacifico/J. L. Vieitez Entropy-expansiveness and domination for surface diffeomorphisms

To prove that if dist(y, z) ≤ δ then `([y, z]cs) ≤ 2δ let us assume that y is the
origin O of coordinates in R2 and that the Ox1 axis is in the direction of Ê(y). Since
∠(Ê(y), Ê(w)) < η ≤ π/8 for all w ∈ B(y, δ2), all the solutions starting at y are
contained in the cone of center y = O, axis Ox1 and angle with Ox1 equal to η. It
follows that the arc [y, z]cs of the local center stable manifold of y is contained in that
cone and that the local center stable manifold of y can be written as the graph of a
C1 function x2 = h(x1). Moreover |h′(x1)| ≤ tan(2η) ≤ 4η, whenever 0 ≤ η ≤ π/8.
Moreover, since η ≤ π/8 we have

√
1 + 16η2 <

√
1 + 16× (0.4)2 < 2. Thus, if x1(z)

denotes the abscissa of z, since |x1(z)| ≤ dist(y, z) ≤ δ, then

`([y, z]cs) =
∫ x1(z)

0

√
1 + h′2(x1) dx1

≤
∫ δ

0

√
1 + 16η2 dx1 = δ

√
1 + 16η2 ≤ 2 · δ.

Proof of Theorem A. We first observe that taking an iterate fm of f we may as-
sume C = 1 at equation (1) defining domination in order to simplify calculations.
Indeed, we have for all n ≥ 1

‖D(fm)n/E(x)‖ · ‖D(fm)−n/F (fmn(x))‖ = ‖Dfmn/E(x)‖ · ‖Df−mn/F (fmn(x))‖
≤ Cλmn = C(λm)n ≤ λ′n,

if we choose 1 > λ′ > λ and m > 0 such that C ≤ λ′/λm. Since for a compact
invariant set X we have that the topological entropy h(fm/X) = m · h(f/X), if we
prove that for some ε > 0, h(fm/Γε(x, f)) = 0 then the same is true for f . Thus we
assume that for f itself C = 1 and λ = λ′. Let

√
λ < λ1 < λ2 < λ3 < 1. We find δ3,

0 < δ3 ≤ δ2, such that if dist(z, w) ≤ δ3, z, w ∈ U(K), then

1− c < ‖Df/Ê(z)‖
‖Df/Ê(w)‖

< 1 + c and 1− c < ‖Df
−1/F̂ (z)‖

‖Df−1/F̂ (w)‖
< 1 + c,

where c > 0 is such that (1 + c)λ2 ≤ λ3.
Since U(K) is a compact neighborhood of K and TU(K)M = Ê⊕ F̂ is a dominated

splitting we may find γ > 0 such that for all y ∈ U(K) it holds ∠(Ê(y), F̂ (y)) ≥ γ. Let
us pick a point x ∈ K and, identifying R2 with a coordinate neighborhood around x,
let lE(x) be the straight line at x tangent to E(x) and lF (x) the straight line tangent
to F (x). From a point yF ∈ lF (x), yF 6= x, we consider the straight line yF + lE(x)
parallel to E(x). Then for any point y in yF + lE(x) we have that the distance
between y and x is greater than the distance between yF and x multiplied by sin γ,
that is,

dist(y, x) ≥ dist(yF , x) sin γ =⇒ dist(yF , x) ≤ dist(y, x)
sin γ

,

(see figure 4).

307
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Figure 4 – Bounds for the distance between x and y ∈ y0 + lE(x)

When we substitute the linear model by that given by the local center-stable and
center-unstable manifolds, since the local center-unstable manifold is tangent to F̂
and the local center-stable manifold is tangent to Ê we may assume that δ3 is so
small that

dist(y, x) ≥ dist(yF , x)
( sin γ

3

)
=⇒ dist(yF , x) ≤ 3 dist(y, x)

sin γ

for yF ∈W cu
loc(x) ∩B(x, δ3), y ∈W cs

loc(yF ) ∩B(x, δ3).
Now let ε > 0 be such that

ε <
δ3 sin γ

6
.

We will prove that for all x ∈ K, h(f/Γε(x)) = 0, thus proving that f/K is h-
expansive.

Let us first assume that y ∈ W cu
loc(x) ∩ Γε(x), y 6= x, and in order to simplify

notation let us put E (F ) instead of Ê (F̂ ) in the sequel. Since y ∈ Γε(x) we have
that orb(y) ⊂ U(K) and so y ∈ K̂. Therefore for all j ∈ Z it holds that

‖Df/E(f j−1(y))‖ · ‖Df−1/F (f j(y))‖ < λ

and so
n∏
j=1

‖Df/E(f j−1(y))‖ · ‖Df−1/F (f j(y))‖ < λn, ∀n ≥ 1.
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If it were the case that
n∏
j=1

‖Df−1/F (f j(y))‖ ≤ λn1

for arbitrarily large n > 0 then by Lemma 2.1 there are N = N(λ1, λ2) ∈ N and
c = c(λ1, λ2) > 0 such that if n ≥ N there exists 1 ≤ n1 < n2 < · · · < nk ≤ n
with k > c · n and

ni∏
j=h

‖Df−1/F (f j(y))‖ ≤ λni−h
2 ,

for ni ≥ h ≥ 1, i = 1, . . . , k. In particular nk ≥ k > c · n. Thus by our choice of δ3
and ε we have that

nk∏
j=h

‖Df−1/F (f j(z))‖ ≤ λn1−h
3 ,

for all h (nk ≥ h ≥ 1) if dist(f j(z), f j(y)) ≤ δ3 for all j (h ≤ j ≤ nk) and
f j(y) ∈W cu

loc(f j(x)) for all j ≥ 0. Moreover f j([x, y]cu) ⊂W cu
loc(f j(x)).

If ρ = dist(x, y) > 0, we have for h = 1

ρ ≤ `([x, y]cu) ≤ `([fnk(x), fnk(y)]cu)λnk−1
3 .

Since [fnk(x), fnk(y)]cu is tangent to F and dist(fnk(x), fnk(y)) ≤ ε, by Lemma 2.2,
we have that `([fnk(x), fnk(y)]cu) ≤ 2ε. Thus

ρ ≤ `([x, y]cu) ≤ 2ε · λnk−1
3

and since 0 < λ3 < 1 and nk > c · n → ∞ we conclude that ρ = 0 which contradicts
that x 6= y.

Therefore we have that it is not true that for arbitrarily large n > 0

n∏
j=1

‖Df−1/F (f j(y))‖ ≤ λn1 ,

and since
n∏
j=1

‖Df/E(f j−1(y))‖ ‖Df−1/F (f j(y))‖ < λn,

we may conclude from λ2
1 > λ that there is n0 such that

n∏
j=1

‖Df/E(f j−1(y))‖ ≤ λn1 ,

for all n ≥ n0. Thus, in the notation of [33], I = [fn0(x), fn0(y)]cu is an (ε, E, λ1)-
interval. Let us assume, without loss of generality, that n0 = 0 and so I = [x, y]cu.
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There are two cases: either `(fn(I)) → 0 or `(fn(I)) 9 0 when n → ∞. In any
case we may assume that for all point z ∈ I we have that W cs

loc(z) is a stable manifold
(see [33, Corollary 3.3]) and so W cs

loc(I) contains a neighborhood in M .
Let us assume first that `(fn(I)) → 0 when n → ∞. Choose ζ > 0 and let

us find bounds for rn(ζ,W cs
loc(I)) where rn(ζ,W cs

loc(I))) is the minimum cardinality
of a set that (n, ζ)-spans W cs

loc(I)). Since `(fn(I)) → 0 there is n0 > 0 such that
diam(fn(W cs

loc(I))) ≤ ζ for all n ≥ n0. Hence we may find a finite subset E such that
(ζ, n0)-spans W cs

loc(I) and this set also (ζ, n)-spans W cs
loc(I) for all n ≥ 0. It follows

readily that

h(f,W cs
loc(I), ζ) = lim sup

n→∞

1
n

log
(
rn(ζ,W cs

loc(I))
)

= 0

and therefore h(f,W cs
loc(I)) = 0.

On the other hand, if `(fn(I)) 9 0 then by [33, Proposition 3.1] we have that
for all z ∈ I, the omega -limit set of z, ω(z), is a periodic orbit or lies in a periodic
circle. (In the proof of [33, Proposition 3.1] Pujals and Sambarino assume that f is of
class C2. But this is just used when `(fn(I))→ 0 in order to argue as in Schwartz’s
proof of the Denjoy property ([36]). If we already know that `(fn(I)) 9 0 then it
is enough to assume f of class C1 to ensure that the ω-limit of I is contained in a
periodic arc or a periodic circle.)

In case of ω(x) being included in a periodic circle C this circle is normally hy-
perbolic attracting a neighborhood V of C and points in V converge exponentially
fast to C. If f is C2 then as in [33] we conclude that the dynamics by fτ (τ being
the period of C) in C is conjugate to an irrational rotation while if f is just C1 we
only have semi-conjugacy. (We may have a Cantor set as Ω(f/C) in C and wandering
intervals.) In any case (conjugacy or semi-conjugacy with an irrational rotation Rα)
we profit from the fact that h(Rα) = 0. This implies that if fτ/C is conjugate or
semi-conjugate to Rα then h(fτ/C) = 0.

On the other hand, if ω(x) is a periodic orbit, say, of a point q, since `(fn(I)) < δ
for all n ≥ 0 we have that there is a periodic point q′ in W cu

loc(q) such that attracts
points in fn(I\{x}) (for instance the other end-point of fn(I) different from fn(x)),
see [33, Lemma 3.3.1]. Note than since W cu

loc(q) is an arc, the period of q′ is the same of
that of q, or the double of it. Let P be the set of periodic points of f in W cu

loc(q)\{q}.
Then all of them have the same period, say τ . The set P divides W cu

loc(q) in arcs on
which the dynamics by fτ is monotone. It follows that the topological entropy of
fτ/W cu

loc(q) is zero.
So in both cases, periodic orbit or periodic circle, fτn(W cs

loc(I)) approaches an fτ

invariant one-dimensional manifold L such that the topological entropy h(fτ ,L) = 0.
Let ζ > 0 and m ∈ N be given an find S′ ⊂ L, (m, ζ) spanning L. We may find n0

and a subset S of fn(I) for n ≥ n0, such that (m, ζ)-spans fn(I) with respect to fτ .
Projecting along the fibers of the local center-stable manifolds which, by equation (1),
are dynamically defined (i.e., W cs

loc(z) is a strong stable manifold for all z ∈ L) we
know that there is n1 > 0 such that for any point z ∈ I, `(fn(W cs

loc(z))) < ζ for
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all n ≥ n1. We add a finite number of points to S in order to ensure that we have
an (m, ζ) spanning set for f j(W cs

loc(I)) for j = 0, 1, . . . , n1 − 1. We conclude that
h(f,W cs

loc(I), ζ) = 0 since the set S(m, ζ) spans fn(W cs
loc(I)) for all n ≥ 0. Since ζ > 0

is arbitrary we obtain that h(f,W cs
loc(I)) = 0.

Similarly if y ∈W cs
loc(x) then J = [x, y]cs is an ε-F -interval and reasoning with the

α-limit of J we obtain that h(f,W cu
loc(J)) = 0.

By [7, Corollary 2.3] we have that if there is an ε-E-interval I (or an ε-F -interval
J) such that Γε(x) ⊂ W cs

loc(I) (resp.: Γε(x) ⊂ W cu
loc(J)) then h(Γε(x), f) = 0. So in

that case the proof of Theorem A is complete.

Assume now that y ∈ Γε(x) but y /∈ W cs
loc(x), y /∈ W cu

loc(x). We will reduce this
case to the previous one.

Since y ∈ K̂ we have that W cs
loc(y) and W cu

loc(y) are well defined and are embedded
arcs. Since for all z ∈ U(K) the angle between E(z) and F (z) is bounded from below
by γ > 0, shrinking ε if necessary, from dist(z, w) ≤ ε, z, w ∈ K̂, we may assume
firstly that W cs

loc(w) ∩W cu
loc(z) = wF and W cs

loc(z) ∩W cu
loc(w) = wE , and secondly that

f(wF ) = W cs
loc(f(w)) ∩W cu

loc(f(z)),
f(wE) = W cu

loc(f(w)) ∩W cs
loc(f(z)),

f−1(wF ) = W cs
loc(f−1(w)) ∩W cu

loc(f−1(z)),

f−1(wE) = W cu
loc(f−1(w)) ∩W cs

loc(f−1(z)).

Letting z = x, w = y, we obtain points yF = W cs
loc(y)) ∩W cu

loc(x) and yE = W cs
loc(x) ∩

W cu
loc(y). Since y /∈W cs

loc(x)∪W cu
loc(x) it holds that yE 6= x and yF 6= x. See figure 5.

Since dist(fn(x), fn(y)) ≤ ε for all n ∈ Z, by induction we have that

fn(yF ) = W cs
loc(fn(y)) ∩W cu

loc(fn(x)) for all n ∈ Z. (2)

Moreover, we have that

dist(fn(x), fn(yF )) <
3 dist(fn(x), fn(y))

sin γ
<

3 ε
sin γ

<
δ3
2
,

which implies by Lemma 2.2 that `(fn([x, yF ]cu) = `([fn(x), fn(yF )]cu) < δ3, which
in turn implies that dist(fn(x), fn(z)) < δ3 for all z ∈ [x, yF ]cu and for all n ≥ 0.

Thus [x, yF ]cu = I is a (δ3, E)-interval (see [33]) and therefore we have that W cs
loc(I)

is a stable manifold which implies that dist(fn(yF ), fn(y)) → 0 when n → ∞. Rea-
soning as in the case in which y ∈W cu

loc(x) we obtain

h(f,W cs
loc(I), ζ) = lim sup

n→∞

1
n

log
(
rn(ζ,W cs

loc(I))
)

= 0.

Hence h(f,W cs
loc(I)) = 0 and from Γε(x) ⊂W cs

loc(I)) we conclude that h(f,Γε(x)) = 0.
Since this last inequality holds for all x ∈ K we have that f/K is h-expansive, finishing
the proof of Theorem A.
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Figure 5 – Case y /∈W cs
loc(x), y /∈W cu

loc(x).

3. Generalization to higher dimensions

Theorem B is a sort of generalization of Theorem A under certain restrictions. In
order to state these restrictions, we recall the concept of finest dominated splitting
introduced in [3].

Definition 3.1. Let Λ ⊂ M be a compact f -invariant subset such that TM/Λ =
E1⊕E2⊕· · ·⊕Ek, Ej being Df invariant, j = 1, . . . , k. We say that E1⊕E2⊕· · ·⊕Ek
is dominated if for all 1 ≤ j ≤ k − 1

(E1 ⊕ · · · ⊕ Ej) ⊕ (Ej+1 ⊕ · · · ⊕ Ek)

has a dominated splitting We say that E1 ⊕ E2 ⊕ · · · ⊕ Ek is the finest dominated
splitting when for all j = 1, . . . , k there is no possible decomposition of Ej as two
invariant sub-bundles having domination.

C1-generically, the finest dominated splitting has a very special form.

Generic assumptions (see [1, §2.1])

There exists a residual subset G of Diff1(M) such that if f : M →M is a diffeomor-
phisms belonging to G then

(i) f is Kupka-Smale, (i.e., all periodic points are hyperbolic and their stable and
unstable manifolds intersect transversally).
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(ii) For any pair of saddles p, q, either H(p, f) = H(q, f) or H(p, f) ∩H(q, f) = ∅.

(iii) For any saddle p of f , H(p, f) depends continuously on g ∈ G.

(iv) The periodic points of f are dense in Ω(f).

(v) The chain recurrent classes of f form a partition of the chain recurrent set of f .

(vi) Every chain recurrent class containing a periodic point p is the homoclinic class
associated to that point.

Theorem 3.2. There is a residual subset I ⊂ G of Diff1(M) such that if f ∈ I has
a homoclinic class H(p, f) which contains hyperbolic saddles of indices i < j then
either

(i) For any neighborhood U of H(p, f) and any C1-neighborhood U of f there is
a diffeomorphism g ∈ U with a homoclinic tangency associated to a saddle of
the homoclinic class H(pg, g), where pg is the continuation of p.

(ii) There is a dominated splitting

TH(p,f)M = E ⊕ F1 ⊕ · · · ⊕ Fj−i ⊕G

with dim(E) = i and dim(Fh) = 1 for all h and dim(G) = dim(M) − j.
Moreover, the sub-bundles Fh are not hyperbolic.

Proof. This is [1, Corollary 3] taking into account that a result by Gourmelon guaran-
tees that the homoclinic tangency can be associated to a saddle inside the homoclinic
class (see [19, Corollary, 6.6.2, Theorem 6.6.8]).

Remark 3.3. In Theorem 3.2 we cannot assure that E is contracting and G is expand-
ing unless the homoclinic class is isolated (see [1, 4]).

Sketch of the proof of Theorem B. Observe first that by assumption we are C1-far
from homoclinic tangencies. Therefore taking into account Theorem 3.2 and assuming
that H(p, f) is isolated, we have that for all x ∈ H(p, f) it holds that

TxM = E0(x)⊕ E1(x)⊕ · · · ⊕ Ek(x)⊕ Ek+1(x),

with E0(x) contracting, Ek+1(x) expanding and all Ej(x), j = 1, . . . , k, one dimen-
sional and not hyperbolic. From this result we have that the proof of Theorem B is
similar to the proof of Theorem A. Let y ∈ Γε(x) where x ∈ H(p, f). We cannot
have y ∈ Wu

loc(x), where Wu
loc(x) is the local unstable manifold tangent to Ek+1.

Otherwise, since on Ek+1 Df acts as a hyperbolic expansion, we will have that
for some n0 > 0 it holds that dist(fn0(x), fn0(y)) > ε. If we choose ε > 0 less
than the minimum of the diameters of the local unstable manifolds of points in
H(p, f), then we arrive to a contradiction. Similarly we cannot have that there is
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y ∈ Γε(x) ∩W s
loc(x) where W s

loc(x) is the local stable manifold tangent to E0. Sup-
pose now that y /∈ W s

loc(x) ∪Wu
loc(x). If y ∈ Γε(x) we may project fn(y) along a

center stable manifold tangent to E0(fn(y)) ⊕ E1(fn(y)) ⊕ · · · ⊕ Ek(fn(y)) into the
unstable manifold of fn(x) obtaining a point fn(y′) ∈ Wu

loc(fn(x)). (These center-
stable manifolds are just locally defined but since dist(fn(x), fn(y)) ≤ ε ∀n ∈ Z,
by [33, Lemma 3.0.4, Corollary 3.2], as in equation (2) we have that, for all n ∈ Z,
fn(y′) = W cs

loc(fn(y)) ∩Wu
loc(fn(x)).) Since the angles between the different direc-

tions Ej given by the dominated splitting are bounded away from zero the diameter
of this projection goes to zero when ε goes to zero. So this projection fn(y′) belongs
to ΓLε(fn(x)) for some constant L > 0 which depends on the lower bound for the
angles between the different sub-bundles of the splitting. Thus, as in the proof of
Theorem A, we obtain that the projection y′ coincides with x. Similarly the projec-
tion of y along a center unstable manifold tangent to E1(y)⊕ · · · ⊕ Ek+1(y) into the
stable manifold of x (tangent to E0(x)) has to coincide with x for sufficiently small
ε > 0. Therefore Γε(x) is included in a center manifold of x, W c

loc(x). Either W c
loc(x)

is one-dimensional (k = 1) and then we may argue as in the first part of Theorem A,
or there is some surface S tangent to Ej(x), Ej+1(x) for some j ∈ {1, . . . , k − 1} in
which there is a projection y′ 6= x of y along a center unstable manifold tangent to
Ej+2(y), . . . , Ek+1(y) such that y′ ∈ ΓKε(x). In the former case the existence of y′

implies readily that there is n0 ≥ 0 such that Ej+2(fn(y′)) ⊕ · · · ⊕ Ek+1(fn(y′)) is
uniformly expanding for all n ≥ n0 and that E0(fn(y′))⊕ · · · ⊕ Ej−1(fn(y′)) is uni-
formly contracting for n ≤ −n0. Therefore points in Γε(x) have to be in S. Hence
we may repeat the second part of the proof of Theorem A taking into account that
Ei is one dimensional for all i = 1, . . . , k. In any case we obtain that htop(Γε(x)) = 0.
Therefore f/H(p, f) is entropy expansive. This finishes the sketch of the proof.

4. Robust h-expansiveness implies domination on surfaces

In this section we prove Theorem C. In order to do that we will argue by contra-
diction assuming that we do not have a dominated splitting. This will allow us to
create a tangency between the stable and unstable manifolds of p. Using results of
Downarowicz and Newhouse (see [15] and [28]) we will see that this is not possible
when f/H(p) is h-expansive in a robust way.

Recall that a subshift (g, Y ) is the restriction of the full shift in a finite alphabet
to a closed invariant subsystem.

Definition 4.1. Let f : X → X be a homeomorphism of a compact metric space X.
A symbolic extension of the pair (f,X) is a subshift (g, Y ) with a continuous surjec-
tion π : Y → X such that fπ = πg. Let us define for any f -invariant measure µ,
hπext(µ) = sup{hν(g) : π∗ν = µ}. An extension (g, Y ) is principal if it preserves the
measure theoretic entropy hµ(f) of the factor (f,X) for any f -invariant measure µ,
hπext(µ) = hµ(f). In particular if a symbolic extension is principal then the topo-
logical entropy of the extension coincides with that of the original system, that is,
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h(g, Y ) = h(f,X).

Theorem 4.2 (Downarowicz, Newhouse). Fix 2 ≤ r <∞. There is a residual subset
R of the space Diff r(M) of C r-diffeomorphisms of a closed surface M such that if
f ∈ R and f has a homoclinic tangency, then f has no principal symbolic extension.

Proof. See [15, Theorem 1.4].

Moreover, if f has no principal symbolic extension then f cannot be asymptotically
h-expansive as has been proved by M. Boyle, D. Fiebig, and U. Fiebig (see [6]).

Proof of Theorem C. Let H(p) be a non trivial f -homoclinic class associated to the
hyperbolic periodic point p. Assume that there is a C1 neighborhood U of f such that
for any g ∈ U it holds that there is a continuation H(pg) of H(p) such that H(pg)
is h-expansive. Let x ∈ W s(p) ∩Wu(p) be a transverse homoclinic point associated
to the periodic point p . We define E(x) ≡ TxW

s(p) and F (x) ≡ TxW
u(p). Since

p is hyperbolic we have that E(x) ⊕ F (x) = TxM . Moreover, E(x) and F (x) are
Df -invariant, i.e., Df(E(x)) = E(f(x)) and Df(F (x)) = F (f(x)).

By definition H(p) ≡ clos(hom(p)) where hom(p) is the set of transverse homo-
clinic points associated to p so if we prove that there is a dominated splitting for
hom(p) we are done since then we can extend by continuity the splitting to the clo-
sure H(p). Moreover, since C2-diffeomorphisms are dense in the C1-neighborhood U
we may assume that f is of class C2.

So let us assume that f is of class C2 and prove that there is a dominated splitting
for hom(p) . To do so it is enough to prove that there exists m > 0 such that for
some k : 0 ≤ k ≤ m it holds for all x ∈ hom(p) that

‖Dfk/E(x)‖ ‖Df−k/F (fk(x))‖ ≤ 1
2
.

Hence arguing by contradiction let us assume that for all m > 0 there is xm ∈ hom(p)
such that for all k with 0 ≤ k ≤ m we have

‖Dfk/E(xm)‖ ‖Df−k/F (fk(xm))‖ > 1
2
.

Hence, as in [24, 35], given any γ > 0 and ε > 0 we may find m > 0, depending on ε
and γ, such that with an ε-C1-perturbation we obtain a C2 diffeomorphism g′ with a
homoclinic point xg′ associated to pg′ such that the angle at xg′ between W s

loc(xg′ , g′)
and Wu

loc(xg′ , g′) is less than γ. Since γ is arbitrarily small we may C1-perturb g′

obtaining g′′ of class C2 with a tangency at xg′′ between W s
loc(xg′′) and Wu

loc(xg′′). As
in [27] we may C2-perturb g′′ obtaining g in Diff2(M) with a C2 robust tangency of
Hènon-like type. By the results of [15] and [28] we conclude that there is no symbolic
extension for g/H(pg). Therefore, by [6], g/H(pg) is not asymptotically h-expansive
and a fortiori it is not h-expansive contradicting our hypotheses. This finishes the
proof of Theorem C.
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doctorat, Université de Bourgogne, 2007.
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manifolds., Amer. J. Math. 85 (1963), 453-458; errata, ibid., Amer. J. Math. 85 (1963), 753.

[37] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.

317
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