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ABSTRACT

Let µ be the Jacobi measure supported on the interval [−1, 1]. Let introduce
the Sobolev-type inner product

〈f, g〉 =

∫ 1

−1

f(x)g(x) dµ(x) +Mf(1)g(1) +Nf ′(1)g′(1),

where M,N ≥ 0. In this paper we prove that, for certain indices δ, there are
functions whose Cesàro means of order δ in the Fourier expansion in terms of
the orthonormal polynomials associated with the above Sobolev inner product
are divergent almost everywhere on [−1, 1].
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Introduction

Let dµ(x) = (1− x)α(1 + x)β dx, α > −1, β > −1, be the Jacobi measure supported
on the interval [−1, 1]. Let f and g functions in L2(µ) such that there exists the first
derivative in 1. We can introduce the discrete Sobolev-type inner product

〈f, g〉 =
∫ 1

−1

f(x)g(x) dµ(x) +Mf(1)g(1) +Nf ′(1)g′(1) (1)
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where M ≥ 0, N ≥ 0. We denote by {q(α,β)
n }n≥0 the sequence of orthonormal

polynomials with respect to the inner product (1) (see [1]). These polynomials are
known in the literature as Jacobi-Sobolev type polynomials. For M = N = 0, the
classical Jacobi orthonormal polynomials appear. We will denote them {p(α,β)

n }n≥0.
For every function f such that 〈f, q(α,β)

n 〉 exists for n = 0, 1, . . ., the Fourier ex-
pansion in Jacobi-Sobolev type polynomials is

∞∑
n=0

cn(f)q(α,β)
n (x), (2)

where
cn(f) = 〈f, q(α,β)

n 〉.

The Cesàro means of order δ of the Fourier expansion (2) are defined by (see [9,
p. 76–77])

σδNf(x) =
N∑
n=0

AδN−n
AδN

cn(f)q(α,β)
n (x),

where Aδk =
(
k+δ
k

)
.

In this contribution we will prove that there are functions such that their Cesàro
means of order δ diverge almost everywhere on [−1, 1]. A similar result, when
M = N = 0, has been obtained in [6].

Notice that, for an appropriate function f , the study of the convergence of Fourier
series in terms of the polynomials associated to the Sobolev inner product

〈f, g〉 =
∫ 1

−1

f(x)g(x) dµ(x) +Mf(c)g(c) +Nf ′(c)g′(c)

when c ∈ [−1, 1] has been presented [7] and when c ∈ (1,∞) in ([3, 4]) some analog
results have been deduced.

Throughout this paper positive constants are denoted by c, c1, . . .. and they may
vary at every occurrence. The notation un ∼ vn means c1 ≤ un/vn ≤ c2 for sufficiently
large n, and by un ∼= vn we mean that the sequence un/vn converges to 1.

1. Jacobi-Sobolev type polynomials

Some basic properties of the polynomials q(α,β)
n (see [1]) that we will need in the

sequel, are given in below:

q(α,β)
n (x) = Anp

(α,β)
n (x) +Bn(x− 1)p(α+2,β)

n−1 (x) + Cn(x− 1)2p(α+4,β)
n−2 (x) (3)

where
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(i) if M > 0 and N > 0 then

An ∼= −cn−2α−2, Bn ∼= cn−2α−2, Cn ∼= 1,

(ii) if M = 0 and N > 0 then

An ∼=
−1
α+ 2

, Bn ∼= 1, Cn ∼=
1

α+ 2
,

(iii) if M > 0 and N = 0 then

An ∼= cn−2α−2, Bn ∼= 1, Cn ∼= 0.

|q(α,β)
n (1)| ∼

n
−α−3/2 if M > 0, N ≥ 0,

nα+1/2 if M = 0, N ≥ 0.
(4)

(q(α,β)
n )′(1) ∼ n−α−7/2 if M ≥ 0, N > 0. (5)

max
x∈[−1,1]

|q(α,β)
n (x)| ∼ nβ+1/2 if − 1/2 ≤ α ≤ β. (6)

|q(α,β)
n (cos θ)| =


O(θ−α−1/2(π − θ)−β−1/2) if c/n ≤ θ ≤ π − c/n,
O(nα+1/2) if 0 ≤ θ ≤ c/n,
O(nβ+1/2) if π − c/n ≤ θ ≤ π,

(7)

for α ≥ −1/2, β ≥ −1/2, and n ≥ 1.
The asymptotic behavior of q(α,β)

n , when x ∈ [−1 + ε, 1− ε] and ε > 0, is given by

q(α,β)
n (x) = sα,βn (1− x)−α/2−1/4(1 + x)−β/2−1/4 cos(kθ + γ) +O(n−1), (8)

where x = cos θ, k = n+ α+β+1
2 , γ = −(α+ 1)π2 , and lim

n→∞
sα,βn = ( 2

π )1/2.

The Mehler-Heine formula for Jacobi orthonormal polynomials is (see [8, Theo-
rem 8.1.1 and (4.3.4)]

lim
n→∞

(−1)nn−β−1/2p(α,β)
n

(
cos
(
π − z

n

))
= 2−

α+β
2 (z/2)−βJβ(z), (9)

where α, β are real numbers and Jβ(z) is the Bessel function. This formula holds
uniformly for |z| ≤ R, for R a given positive real number.

From (9)

lim
n→∞

(−1)nn−β−1/2p(α,β)
n

(
cos
(
π − z

n+ j

))
= 2−

α+β
2 (z/2)−βJβ(z) (10)

holds uniformly for |z| ≤ R, R a fixed positive real number, and uniformly on
j ∈ N ∪ {0}.
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Lemma 1.1. Let α, β > −1 and M,N ≥ 0. There exists a positive constant c such
that

lim
n→∞

(−1)nn−β−1/2q(α,β)
n

(
cos
(
π − z

n

))
= c(z/2)−βJβ(z),

uniformly for |z| ≤ R, R > 0 fixed.

Proof. Here we will only analyze the case when M = 0 and N > 0. The proof of the
other cases can be done in a similar way. From (3) we have

(−1)nn−β−1/2q(α,β)
n

(
cos
(
π − z

n+ j

))
= An(−1)nn−β−1/2p(α,β)

n

(
cos
(
π − z

n+ j

))
−Bn

(
cos
(
π − z

n+ j

)
− 1
)

(−1)n−1n−β−1/2p
(α+2,β)
n−1

(
cos
(
π − z

n+ j

))
+ Cn

(
cos
(
π − z

n+ j

)
− 1
)2

(−1)n−2n−β−1/2p
(α+4,β)
n−2

(
cos
(
π − z

n+ j

))
where j ∈ N ∪ {0}.

Finally, if n→∞ and using (3) and (10) we get

lim
n→∞

(−1)nn−β−1/2q(α,β)
n

(
cos
(
π − z

n+ j

))
=
(
− 1
α+ 2

2−
α+β

2 + 2 · 2−
α+β+2

2 +
1

α+ 2
4 · 2−

α+β+4
2

)(z
2

)−β
Jβ(z)

= 2−
α+β

2

(z
2

)−β
Jβ(z).

For every function f such that 〈f, q(α,β)
n 〉 exists for n = 0, 1, . . ., the Fourier-Sobolev

coefficients of the series (2) can be written as

cn(f) = 〈f, q(α,β)
n 〉 = c′n(f) +Mf(1)q(α,β)

n (1) +Nf ′(1)(q(α,β)
n )′(1), (11)

where

c′n(f) =
∫ 1

−1

f(x)q(α,β)
n (x)(1− x)α(1 + x)β dx.

Next, we will estimate the following integral involving Jacobi-Sobolev type poly-
nomials ∫ 1

−1

|q(α,β)
n (x)|q(1− x)α(1 + x)β dx

where 1 ≤ q <∞. ForM = N = 0 the calculation of this integral appears in [8, p. 391,
Exercise 91] (see also [5, (2.2)]).

First we compute an upper bound for this integral:
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Theorem 1.2. Let M ≥ 0 and N ≥ 0. For α ≥ −1/2

∫ 1

0

(1− x)α|q(α,β)
n (x)|q dx =


O(1) if 2α > qα− 2 + q/2,
O(log n) if 2α = qα− 2 + q/2,
O(nqα+q/2−2α−2) if 2α < qα− 2 + q/2.

For β ≥ −1/2

∫ 0

−1

(1 + x)β |q(α,β)
n (x)|q dx =


O(1) if 2β > qβ − 2 + q/2,
O(log n) if 2β = qβ − 2 + q/2,
O(nqβ+q/2−2β−2) if 2β < qβ − 2 + q/2.

Proof. From (7), for qα+ q/2− 2α− 2 6= 0, we have∫ 1

0

(1− x)α|q(α,β)
n (x)|q dx = O(1)

∫ π/2

0

θ2α+1|q(α,β)
n (cos θ)|q dθ

= O(1)
∫ n−1

0

θ2α+1nqα+q/2 dθ

+O(1)
∫ π/2

n−1
θ2α+1θ−qα−q/2 dθ

= O(nqα+q/2−2α−2) +O(1),

and for qα+ q/2− 2α− 2 = 0 we have∫ 1

0

(1− x)α|q(α,β)
n (x)|q dx = O(log n).

For the proof of the second part we can proceed in a similar way.

Now, a technique similar to the used in [8, Theorem 7.34] yields:

Theorem 1.3. Let M ≥ 0 and N ≥ 0. For β > −1/2∫ 0

−1

(1 + x)β |q(α,β)
n (x)|q dx ∼ nqβ+q/2−2β−2

where 4(β+1)
2β+1 < q <∞.

Proof. For the proof of this theorem it is enough to find a lower bound for the integral.
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Let β ≥ −1/2, M ≥ 0 and N ≥ 0. According to Lemma 1.1, we have∫ π

π/2

(π − θ)2β+1|q(α,β)
n (cos θ)|q dθ >

∫ π

π−1/n

(π − θ)2β+1|q(α,β)
n (cos θ)|q dθ

=
∫ 1

0

(z/n)2β+1|q(α,β)
n (cos(π − z/n)|q n−1 dz

∼= c

∫ 1

0

(z/n)2β+1nqβ+q/2|(z/2)−βJβ(z)|q n−1 dz

∼ nqβ+q/2−2β−2.

2. Divergent Cesàro means of Jacobi-Sobolev expansions

If the expansion (2) is Cesàro summable of order δ on a set, say E, of positive measure
in [−1, 1], then from [9, Theorem 3.1.22] (see also [6, Lemma 1.1]) we get∣∣cn(f)q(α,β)

n (x)
∣∣ = O(nδ), x ∈ E.

From the Egorov’s theorem there exists a subset E1 ⊂ E of positive measure such
that ∣∣cn(f)q(α,β)

n (x)
∣∣ = O(nδ)

uniformly for x ∈ E1. Hence, from (8), we have

|n−δcn(f)(cos(kθ + γ) +O(n−1))| ≤ c

uniformly for x = cos θ ∈ E1. Using the Cantor-Lebesgue Theorem, (see [6, subsec-
tion 1.5] as well as [9, p. 316]), we get∣∣∣cn(f)

nδ

∣∣∣ ≤ c, ∀n ≥ 1. (12)

Now we will prove our main result:

Theorem 2.1. Let α, β, p, and δ be given numbers such that

β > −1/2, −1
2
≤ α ≤ β,

1 ≤ p < 4(β + 1)
2β + 3

, 0 ≤ δ < 2β + 2
p

− 2β + 3
2

.

There exists f ∈ Lp(µ), supported on [−1, 0], whose Cesàro means σδNf(x) are diver-
gent almost everywhere on [−1, 1].
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Proof. Assume that

1 ≤ p < 4(β + 1)
2β + 3

, δ <
2β + 2
p

− 2β + 3
2

.

For q conjugate to p, from the last inequalities, we get

4(β + 1)
2β + 1

< q ≤ ∞, δ < β +
1
2
− 2β

q
− 2
q
.

For the linear functional c′n(f) =
∫ 1

−1
f(x)q(α,β)

n (x) dµ(x), from the uniform bound-
edness principle, (6) and Theorem 1.3, it follows that there is f ∈ Lp(µ), supported
on [−1, 0], such that

c′n(f)
nδ

→∞, when n→∞.

Hence, from (4), (5), and (11), we obtain

cn(f)
nδ

→∞, when n→∞.

Since this result is contrary with (12) σδNf(x) is divergent almost everywhere.

Remark 2.2. Using formulae in [2], which relate the Riesz and Cesàro means of order
δ ≥ 0, we conclude that Theorem 2.1 also holds for Riesz means.
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