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ABSTRACT

We study the Banach envelope of the quasi-Banach space l1,∞ consisting of all
sequences x=(ξk) with sn(x)=O

(
1
n

)
, where

(
sn(x)

)
denotes the non-increasing

rearrangement of x=(ξk). The situation turns out to be much more complicated
than that in the well-known case of the separable subspace l ◦1,∞, whose members
are characterized by sn(x)=o

(
1
n

)
.
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1. Notation and terminology

We use standard notation and terminology of Banach space theory; see [21], for
example.

Throughout, X and Y are real quasi-normed linear spaces. The symbol ||| · |||
denotes quasi-norms, while ‖ · ‖ is reserved for norms. By an embedding we mean a
one-to-one continuous linear map J : X → Y . Let N := {1, 2, . . . }. The cardinality
of a set S is denoted by |S|.

2. Sequence spaces

The nth approximation number of a bounded real sequence x=(ξk) is defined by

sn(x) := inf
{

sup
k 6∈F
|ξk| : |F|<n

}
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or, equivalently, by

sn(x) := inf{t > 0 : |S(x, t)| < n}, where S(x, t) :={k : |ξk|>t}.

We refer to S(x) :=
⋃
t>0 S(x, t) = {k : ξk 6=0} as the support of x=(ξk). A sequence

x is called finite if it has a finite support. The finite sequences form a linear space,
denoted by c00.

A rearrangement of a sequence x=(ξk) is obtained by permutating its coordinates
ξk, and adding or deleting 0’s. In the case of a null sequence,

(
sn(x)

)
is the non-

increasing rearrangement of |x|=(|ξk|).
The Banach space of all bounded real sequences x=(ξk) equipped with the norm

‖x|l∞‖ := sup
1≤k<∞

|ξk|

is denoted by l∞, and c0 stands for the closed linear subspace of all null sequences.
Let 0<p<∞. The Marcinkiewicz space or weak lp space, denoted by lp,∞, consists

of all x=(ξk) such that

|||x|lp,∞||| := sup
1≤n<∞

n1/psn(x) = sup
t>0

t |S(x, t)|1/p

is finite. It easily turns out that ||| · |lp,∞||| is a quasi-norm, which satisfies the quasi-
triangle inequality

|||x+ y|lp,∞||| ≤ cp
(
|||x|lp,∞|||+ |||y|lp,∞|||

)
.

In passing, we note that cp=21/p is the best possible constant. Indeed, substituting

x = ( 1 , . . . , 1
n1/p , . . . , 1

(2n−1)1/p , 0, 0, . . . )
and

y = ( 1
(2n−1)1/p , . . . , 1

n1/p , . . . , 1 , 0, 0, . . . ),

we may infer from |||x|lp,∞|||= |||y|lp,∞|||=1 and s2n−1(x+y)= 2
n1/p that (2−1

n )1/p ≤ cp.
The little Marcinkiewicz space or little weak lp space, denoted by l ◦p,∞, is defined

to be the closed hull of c00 in lp,∞. The members of l ◦p,∞ are characterized by the
condition that lim

n→∞
n1/psn(x)=0.

In analogy to an observation of Hunt [9, pp. 259–260], it turns out that lp,∞ fails to
be normable for 0<p≤1, whereas there exists equivalent norms in the case 1<p<∞.
Take, for example,

‖x|lp,∞‖ := sup
1≤n<∞

n1/p
[

1
n

n∑
k=1

sk(x)
]
.

From now on, we concentrate on the case p=1.
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The Sargent space m1,∞ is the collection of all x=(ξk) for which

‖x|m1,∞‖ := sup
1≤n<∞

s1(x) + . . .+ sn(x)
1
1 + . . .+ 1

n

is finite. Note that m1,∞ is a Banach space. Using the abbreviation

µn(x) := 1
Ln

n∑
k=1

sk(x) with Ln :=
n∑
k=1

1
k ,

we get
‖x|m1,∞‖ = sup

1≤n<∞
µn(x).

The little Sargent space m ◦1,∞ is defined to be the closed hull of c00 in m1,∞, while
m •1,∞ denotes the closed hull of l1,∞ inm1,∞. The members ofm ◦1,∞ are characterized
by lim

n→∞
µn(x)=0. We have the strict inclusions

l ◦1,∞ ⊂ l1,∞ ⊂ m •1,∞, l ◦1,∞ ⊂ m ◦1,∞ ⊂ m •1,∞, and m •1,∞ ⊂ m1,∞.

Obviously ( 1
k )∈ l1,∞\l ◦1,∞ and ( 1

k )∈m•1,∞\m ◦1,∞. Define a(λ) =(α(λ)
k ) with 0<λ≤1

by
α

(λ)
k := mλ2−m

2
if 2(m−1)2<k≤2m

2
.

Then a(λ)∈m ◦1,∞\l1,∞ for 0<λ<1 and a(1)∈m1,∞\m •1,∞. The latter example is due
to Russu [22].

The Matsaev space l∞,1 is the collection of all x=(ξk) such that

‖x|l∞,1‖ :=
∞∑
k=1

1
ksk(x)

is finite. It turns out that l∞,1 is a separable Banach space. By means of the standard
duality

〈x, y〉 :=
∞∑
k=1

ξkηk with x=(ξk) and y=(ηk),

we obtain(
l ◦1,∞

)∗ =
(
m ◦1,∞

)∗ = l∞,1 and
(
l ◦1,∞

)∗∗ =
(
m ◦1,∞

)∗∗ =
(
l∞,1

)∗ = m1,∞.

The linear space b1,∞ consists of all x=(ξk) that admit a representation

x=
∞∑
k=1

xk (coordinatewise), where x1, x2, . . . ∈ l1,∞ and
∞∑
k=1

|||xk|l1,∞|||<∞.

Obviously, l1,∞ ⊆ b1,∞. This inclusion is strict. Indeed, a result of Markus,
Mityagin, and Ariño mentioned at the beginning of section 4 implies thatm ◦1,∞⊆b1,∞.
Therefore a(λ)∈ b1,∞\ l1,∞ for 0<λ<1. It follows from ‖xk|m1,∞‖≤ |||xk|l1,∞||| and∑∞
k=1 |||xk|l1,∞|||<∞ that

∑∞
k=1 xk converges in m1,∞. Hence b1,∞ is a dense subset

of m•1,∞.
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We can easily check that b1,∞ becomes a Banach space under the norm

‖x|b1,∞‖ := inf
∞∑
k=1

|||xk|l1,∞|||,

the infimum being taken over all representations described above.
Observe that the closed unit balls

Bl :={x∈ l1,∞ : |||x|l1,∞|||≤1} and Bm :={x∈m1,∞ : ‖x|m1,∞‖≤1}

have the same extreme points xex. The collection of these extreme points, which are
characterized by sn(xex)= 1

n for n=1, 2, . . . , is denoted by Bex.
Since m1,∞ can be identified with the dual of l∞,1, we know from the classical

Krĕın-Milman theorem that Bm is the weakly∗ closed convex hull of Bex.
Recall that the extreme points of the closed unit ball B∞ :={x∈ l∞ : ‖x|l∞‖≤1}

have the form xex
∞=(±1).

The σ-convex hull of a bounded subset B of a Banach space is defined by

σ-conv(B) :=
{ ∞∑
k=1

λkxk : x1, x2, . . . ∈B, λ1, λ2, . . . ≥0,
∞∑
k=1

λk=1
}
.

In the following, we need a trivial case of the Choquet theorem; see [2, § 27] and
[19, chap. 3].

Lemma. The closed unit ball B∞ coincides with the σ-convex hull of its extreme
points.

Proof. For every sequence x=(ξk)∈B∞, let

a = (αk), where αk :=
{

+1 if ξk≥0,
−1 if ξk<0.

Then ‖2x − a|l∞‖ ≤ 1. Therefore, beginning with x1 := x, we inductively find a1,
x2 :=2x1 − a1, a2, x3 :=2x2 − a2, a3, . . . such that

‖xi|l∞‖ ≤ 1 and xi+1 := 2xi − ai.
This construction yields

x =
n∑
i=1

2−iai + 2−nxn+1 =
∞∑
i=1

2−iai.

Using the preceding lemma and the formula Bl = B∞ ·Bex, we can easily show
that the norm of b1,∞ is just the Minkowski functional of the σ-convex hull of Bex. In
particular, it follows that b1,∞ consists of all sequences that admit a representation

x=
∞∑
k=1

ξkx
ex
k (coordinatewise), where sn(xex

k )= 1
n and

∞∑
k=1

|ξk|<∞.
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Historical remarks. The definition of Lp,∞[0, 1] goes back to the famous
interpolation theorem of Marcinkiewicz [14, p. 1272], who considered functions U
such that A[mesE(|U(x)| > A)]1/p is uniformly bounded for all A > 0. Function
spaces that are non-atomic forerunners of l∞,1 and m1,∞ were invented by Lorentz
[13, pp. 418–420].

Later on, Sargent [23, p. 162; 24, pp. 64–65] and Garling [5, p. 96–99] introduced
the sequence spaces l∞,1, m1,∞, and m ◦1,∞.

Almost simultaneously, the Soviet school presented a third approach that was
created for treating non-self-adjoint operators on Hilbert space. The ideals Sω, SΩ,
and S

(◦)
Ω are the operator-theoretical counterparts of l∞,1, m1,∞, and m ◦1,∞; see

[7, pp. 139–150] as well as the original papers of Gokhberg/Krĕın [6], Matsaev [16],
Markus [15], Mityagin [17], and Russu [22], written in the early 1960’s.

Curiously enough, the three lines of development took place without reference to
each other. Thus it is impossible to decide who was the first inventor of the sequence
spaces under consideration. In any case, all of them could be called Lorentz spaces.

3. The Banach envelope of a quasi-normed linear space

The following definition is made in the spirit of category theory. The objects are the
real quasi-normed linear spaces and, since we are interested in the isometric theory,
the morphisms are the contractions, |||T : X → Y ||| ≤ 1.

The Banach envelope of a quasi-normed linear space X is a Banach space Xban

together with a contraction E from X into Xban (not necessarily one-to-one) such
that for every contraction T from X into an arbitrary Banach space Y there exists a
unique ‘extension’ T ban:

X Y

Xban

E

T

Tban

-

6
HHHH

HHj

HH
HHHHj

HHH
HHHj

H
HHH

HHj

Note that Xban is unique up to an isometry; see [25, pp. 170–171].
The Banach envelope Xban can be obtained as the closed hull of K(X) in X∗∗,

where K denotes the canonical map from X into its bidual.

Another construction goes as follows. Letting

πmax(x) := inf
{ n∑
k=1

|||xk||| : x1, . . . , xn∈X,
n∑
k=1

xk = x, n=1, 2, . . .
}

yields a semi-norm on X that coincides with the Minkowski functional of the convex
hull of BX :={x∈X : |||x|||≤1},

πmax(x) := inf{% ≥ 0 : x ∈ % conv(BX)}.
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Obviously, πmax is the largest semi-norm π on X for which π(x)≤ |||x|||. Passing to
the quotient space X/N with N :={x∈X : πmax(x)=0}, we obtain a normed linear
space, whose completion is the required Banach envelope. The underlying norm is
denoted by ‖ · |Xban‖.

Since Lp[0, 1] with 0<p< 1 supports only the functional o, the Banach envelope
of Lp[0, 1] is trivial. To exclude such uninteresting cases, we assume that X carries
sufficiently many functionals. In other words, X should have a separating dual X∗:

For every x 6=o in X there exists an x∗ in X∗ such that 〈x∗, x〉 6=0.
The separation property is equivalent to the fact that X admits an embedding into a
Banach space Y . In particular, we may use the canonical map K : X → X∗∗. Then
the contraction E : X → Xban (appearing in the diagram on the preceding page) is
an embedding as well.

The concept of the Banach envelope was independently introduced by Peetre
[18, p. 125] and Shapiro [26, p. 116]. The latter considered only the case that X
has a separating dual. Further information can be found in [10, pp. 27–28].

The rest of this section is concerned with a ‘philosophical’ question.
Let J : X → Y be an embedding of a normed linear space X into a Banach space Y ,
which means that X can be viewed as a linear subspace of Y . If the unique continuous
extension ÜJ : fX → Y is one-to-one as well, then we may say that the character of the
members of X is preserved in passing to the completion fX. For instance, we think of
the case that the members of Y are sequences, functions, or operators.

Unfortunately, as shown by a trivial example, ÜJ need not be one-to-one. Note
that

‖x‖ :=
(∣∣ ∞∑

k=1

ξk
∣∣2 +

∞∑
k=1

|ξk|2
)1/2

is a norm on c00, the linear space of all finite sequences x = (ξk). Let J be the
embedding of c00 into l∞, and consider the sequences

xn :=(

n-times︷ ︸︸ ︷
1
n
, . . . , 1

n
, 0, . . . ).

Then

‖xm − xn‖ =
√

1
m −

1
n for m < n and ‖xn‖ =

√
1 + 1

n .

In view of
lim
n→∞

‖xn‖ = 1 and lim
n→∞

‖Jxn|l∞‖ = lim
n→∞

1
n = 0,

the (abstract!) element x̃ ∈ ec00 generated by the Cauchy sequence (xn) is different
from o, while ÜJx̃= o. This means that the complete hull ec00 cannot be canonically
identified with a sequence space.
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The most famous example occurs in the theory of operator ideals and tensor
products. Let F(X)=X∗ ⊗X denote the ideal of finite rank operators on a Banach
space X, and define the norm

ν◦(T ) := inf
n∑
k=1

‖x∗k‖‖xk‖,

the infimum being taken over all finite representations

Tx =
n∑
k=1

〈x, x∗k〉xk for x∈X,

where x∗1, . . . , x∗n ∈X∗ and x1, . . . , xn ∈X. The completion of F(X) with respect to
ν◦ can be identified with the projective tensor product X∗Ò⊗X.

We know from Grothendieck [8, chap. I, p. 165] that the continuous extension ÜJ of
the embedding J : F(X)→ L(X) is one-to-one if and only if X has the approximation
property ; see also [21, p. 280]. Another necessary and sufficient condition requires
that ν◦ coincides with the nuclear norm

ν(T ) := inf
∞∑
k=1

‖x∗k‖‖xk‖.

In the latter case the infimum ranges over all infinite representations

Tx =
∞∑
k=1

〈x, x∗k〉xk for x∈X,

where x∗1, x∗2, . . .∈X∗ and x1, x2, . . .∈X.

4. Old and new results, open problems

For 0<p<1, the Banach envelope of lp,∞ is just l1; see [10, p. 28]. If 1<p<∞, then
lp,∞ admits an equivalent norm, which means that lban

p,∞ coincides isomorphically with
lp,∞. Thus p= 1 is the only non-trivial case. In fact, this case seems to be highly
sophisticated, and I am unable to give a final solution.

First of all, we observe that l1,∞ and l ◦1,∞ are separated by their duals. Since the
bidual of l ◦1,∞ can be identified with m1,∞, the situation turns out to be especially
nice for the little Marcinkiewicz space whose Banach envelope is just m ◦1,∞. This
observation is implicitly contained in papers of Markus [15, pp. 95, 108] and Mityagin
[17, p. 823]; see also [20, p. 186]. Not aware of the work of the Soviet mathematicians,
Ariño [1] rediscovered this result 25 years later.
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It is hoped that the diagram

b1,∞

l ban
1,∞ m •1,∞

l1,∞ m1,∞

l ∗∗1,∞ m ∗∗1,∞

Jm -
��

��
��

��
���1

��
��

��
��

���1

�
�
�
�
���

�
�
�
�
���

6 Jban
m•

------

J
��
�*

�
��*��
�*

�
��*��
�*

�
��*Jban

bHHHj
H
HHj

HHHj
H
HHj

HHHj
H
HHj

PPPPPPPPPPq

PPPPPPPPPPq

��
�
��*

�
��

��*

HH
H

HHY

H
HH

HHY

@
@
@
@
@@R

@
@
@
@
@@R

6

J∗∗m -

helps to understand the complications that occur in the case of lban
1,∞. Almost all

arrows denote canonical embeddings. Possible exceptions could be

Jban
b : lban

1,∞ → b1,∞, Jban
m• : lban

1,∞ → m•1,∞, and J∗∗m : l∗∗1,∞ → m∗∗1,∞.

These maps are the continuous extensions and the bidual of the canonical embeddings

Jb : l1,∞ → b1,∞, Jm• : l1,∞ → m•1,∞, and Jm : l1,∞ → m1,∞,

respectively.
As shown in section 6, the norms ‖ · |lban

1,∞‖ and ‖ · |m1,∞‖ are not equivalent on
l1,∞. Therefore Jban

m• fails to be an isomorphism. This implies that at least one of the
conjecture below must be true.

Conjecture 1. The norms ‖ · |lban
1,∞‖ and ‖ · |b1,∞‖ are not equivalent on l1,∞. In

other words, the map Jban
b : lban

1,∞ → b1,∞ is onto but not one-to-one.

Conjecture 2. The norms ‖ · |b1,∞‖ and ‖ · |m1,∞‖ are not equivalent on l1,∞. In
other words, the map J : b1,∞ → m•1,∞ is one-to-one but not onto.

Recall that

‖x|lban
1,∞‖ := inf

n∑
k=1

|||xk|l1,∞||| and ‖x|b1,∞‖ := inf
∞∑
k=1

|||xk|l1,∞|||,

where the infima range over all finite and infinite representations

x=
n∑
k=1

xk (n=1, 2, . . . ) and x=
∞∑
k=1

xk (coordinatewise),

respectively. Comparing these definitions with those of ν◦(T ) and ν(T ) shows that
Conjecture 1 is not unimaginable.

In summary, we notice a surprising (formal?) analogy:

lban
1,∞ ↔ X∗Ò⊗X projective tensor product,
b1,∞ ↔ N(X) ideal of nuclear operators,
m1,∞ ↔ I(X) ideal of integral operators.
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5. The Kalton-Sukochev norm

Explicit expressions for the norms
∥∥ · |L1,∞[0, 1]ban

∥∥ and
∥∥ · |L1,∞[0,∞)ban

∥∥ were
discovered by Cwikel/Fefferman [3, p. 150] and [4, p. 277]; see also Kupka/Peck [12,
p. 237]. Unfortunately, their approach was strictly limited to the non-atomic case.
This gap could be closed only recently by Kalton/Sukochev [11].

Following the latter authors, for every bounded sequence x=(ξk) andm=1, 2, . . . ,
we define the finite or infinite quantity

βm(x) := sup
ma<n

n∑
k=ma+1

sk(x)

n∑
k=a+1

1
k

,

where the supremum ranges over all a = 0, 1, 2, . . . and n = 1, 2, . . . such thatma < n.
Obviously,

|||x|l1,∞||| = β1(x) ≥ β2(x) ≥ . . . whenever x∈ l1,∞.

On the other hand, if βm(x) is finite for some m, then x∈ l1,∞. Indeed, by A.1, we
get

mas2ma(x) ≤
2ma∑

k=ma+1

sk(x) ≤ βm(x)
2ma∑
k=a+1

1
k ≤ (log 2m)βm(x) for a=1, 2, . . . .

Moreover,

nsn(x) ≤
n∑
k=1

sk(x) ≤ βm(x)
n∑
k=1

1
k ≤ (1 + log 2m)βm(x) for n ≤ 2m.

Thus
|||x|l1,∞||| = sup

1≤k<∞
ksk(x) ≤ (4 log 2m)βm(x).

The results presented in the remaining part of this section are essentially borrowed
from Kalton/Sukochev [11]. For the convenience of the reader, I have added the
elementary proofs.

Sublemma.
n∑

k=a+1

sk(x) = inf
{ n−a∑
h=1

sh(x− u) : |S(u)| ≤ a
}

for x∈c0,

a=0, 1, 2, . . . and n=1, 2, . . . such that a < n. The infimum is attained.

Proof. If |S(u)| ≤ a, then sa+1(u)=0. Hence
n∑

k=a+1

sk(x) =
n−a∑
h=1

sa+h(x) ≤
n−a∑
h=1

[
sa+1(u)+sh(x− u)

]
=
n−a∑
h=1

sh(x− u),

which implies that
n∑

k=a+1

sk(x) ≤ inf
{ n−a∑
h=1

sh(x− u) : |S(u)| ≤ a
}
.
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In order to get equality, we may assume that |ξ1|≥|ξ2|≥ . . . . Putting

u := (ξ1, . . . , ξa, 0 , . . . , 0 , . . . )
yields

x−u = ( 0 , . . . , 0 , ξa+1, . . . , ξn, . . . ).

Thus sh(x−u) = |ξa+h|=sa+h(x).

Lemma. If a, b=0, 1, 2, . . . and n=1, 2, . . . such that a+b<n, then

n∑
k=a+b+1

sk(x+ y) ≤
n∑

k=a+1

sk(x) +
n∑

k=b+1

sk(y) for x, y∈c0.

Proof. By the preceding sublemma, we may choose u, v∈c00 such that

n∑
k=a+1

sk(x) =
n−a∑
h=1

sh(x−u) and |S(u)| ≤ a,

n∑
k=b+1

sk(y) =
n−b∑
h=1

sh(y−v) and |S(v)| ≤ b.

Then |S(u+v)| ≤ |S(u)|+|S(v)| ≤ a+b and, therefore,

n∑
k=a+b+1

sk(x+y) ≤
n−a−b∑
h=1

sh(x+y−u−v) ≤
n−a−b∑
h=1

sh(x−u) +
n−a−b∑
h=1

sh(y−v)

≤
n−a∑
h=1

sh(x−u) +
n−b∑
h=1

sh(y−v) =
n∑

k=a+1

sk(x) +
n∑

k=b+1

sk(y).

Proposition 1. β(x) := lim
m→∞

βm(x) defines a norm on l1,∞.

Proof. We conclude from

n∑
k=2ma+1

sk(x+ y) ≤
n∑

k=ma+1

sk(x) +
n∑

k=ma+1

sk(y) for x, y ∈ c0

that
β2m(x+ y) ≤ βm(x) + βm(y) for x, y ∈ c0,

which implies the triangle inequality, β(x+y) ≤ β(x)+β(y).

Proposition 2. β(x) ≥ ‖x|m1,∞‖ for x∈ l1,∞.

Proof. Letting a=0 in the definition of βm(x), we obtain

βm(x) ≥ sup
1≤n<∞

n∑
k=1

sk(x)

n∑
k=1

1
k

= ‖x|m1,∞‖.

Revista Matemática Complutense
2009: vol. 22, num. 1, pags. 209–226 218



Albrecht Pietsch About the Banach envelope of l1,∞

Proposition 3. β(x) = ‖x|m1,∞‖ for x∈ l ◦1,∞.

Proof. Given any finite sequence x, we let m0 := |S(x)|. Then it follows from
sm0+1(x)=0 that

n∑
k=ma+1

sk(x) = 0 whenever n>ma≥m0.

Thus
βm(x) = sup

1≤n<∞

n∑
k=1

sk(x)

n∑
k=1

1
k

= ‖x|m1,∞‖ if m ≥ m0,

which proves the required equality for x∈c00. Since β(x) and ‖x|m1,∞‖ are continuous
with respect to quasi-norm ||| · |l1,∞|||, the result extents to all x∈ l ◦1,∞.

A theorem of Kalton-Sukochev says that

β(x) = ‖x|lban
1,∞‖ for x∈ l1,∞.

The proof of this fundamental achievement is rather cumbersome. Luckily, we need
only its elementary part:

Proposition 4. β(x) ≤ ‖x|lban
1,∞‖ for x∈ l1,∞.

Proof. In view of β(x) ≤ |||x|l1,∞||| for x∈ l1,∞, the inequality follows from the fact
that ‖ · |lban

1,∞‖ is the greatest norm on l1,∞ majorized by ||| · |l1,∞|||.

6. Tricky sequences

The following theorem, which is the main result of this paper, belongs to the
‘frustrating’ part of Banach space theory.

Theorem. The norms ‖ · |m1,∞‖ and ‖ · |lban
1,∞‖ fail to be equivalent on l1,∞.

Proof. Obviously, ‖x|m1,∞‖ ≤ ‖x|lban
1,∞‖ for x ∈ l1,∞. To see that there holds no

converse estimate ‖x|lban
1,∞‖ ≤ c‖x|m1,∞‖, a family of ‘tricky’ sequences will be

constructed. The symbols A.1, . . . ,A.4 refer to some elementary facts from calculus
that are summarized in the appendix.

(A) Given natural numbers i1, i2, . . . such that

2hih≤ ih+1, (1)
we define n0 :=0,

nh :=
h∑

m=1
(2m−1)im for h=1, 2, . . . ,

and
nh,p := nh−1 + (2p−1)ih for p=0, . . . , h. (2)
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Then
nh−1 = nh,0 < nh,1 < · · · < nh,h−1 < nh,h = nh

and
nh = nh−1 + (2h−1)ih.

It follows by induction that
nh ≤ 2hih−i1. (3)

Indeed, the case h= 1 is trivial, since n1 = i1. Assume that nh−1 ≤ 2h−1ih−1−i1 is
true for some h≥2. Using (1), we obtain

nh = nh−1 + (2h−1)ih ≤ 2h−1ih−1 − i1 + (2h−1)ih ≤ ih + (2h−1)ih − i1 = 2hih − i1.

Combining (1) and (3) yields
nh ≤ ih+1 − i1. (4)

In view of (2), we get
nh,p ≤ 2pih − i1. (5)

(B) Let
Nh,p :={n : nh,p−1<n≤nh,p} for p=1, . . . , h

and

Nh :=
h⋃
p=1

Nh,p = {n : nh−1<n≤nh} for h=1, 2, . . . .

Note that |Nh,p|=2p−1ih and |Nh|=(2h−1)ih. Consequently, the size of the sets Nh
and Nh,p increases rapidly:

|Nh+1| > 2h+1|Nh| and |Nh,p+1| = 2|Nh,p|.

(C) Define the sequence x=(ξn) by

ξn := 1

2p−1ih
= 1

|Nh,p|
for n∈Nh,p.

The condition (1) guarantees that (ξn) does not increase:

ξnh
= 1

2h−1ih
is greater than ξnh+1 = 1

ih+1
.

Thus sn(x)=ξn. We conclude from (5) that

nsn(x) ≤ nh,p 1

2p−1ih
< 2 for n ∈ Nh,p.

Hence x∈ l1,∞.
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(D) In the next step, the norm β(x) will be estimated from below.
Obviously, ∑

k∈Nh,p

ξk = 1.

Because of (2) and (3), we have (2q−1)ih≤nh,q and nh<2hih. Therefore

2hih∑
k=(2q−1)ih+1

sk(x) ≥
nh∑

k=nh,q+1

sk(x) =
h∑

p=q+1

∑
k∈Nh,p

ξk = h− q.

Moreover, by A.1,

2hih∑
k=ih+1

1
k ≤

∫ 2hih

ih

1
t dt = log 2hih − log ih = h log 2.

Hence

β2q−1(x) ≥

2hih∑
k=(2q−1)ih+1

sk(x)

2hih∑
k=ih+1

1
k

≥ h−q
h log 2 .

If h :=qr, then
β2q−1(x) ≥ r−1

r log 2 .

Letting q →∞ yields
β(x) ≥ r−1

r log 2 .

Consequently, r →∞ gives
β(x) ≥ 1

log 2 . (6)

(E) To estimate ‖x|m1,∞‖ from above, we use the quantity

λn(x) := 1
1+logn

n∑
k=1

sk(x)

instead of
µn(x) := 1

Ln

n∑
k=1

sk(x) with Ln :=
n∑
k=1

1
k .

By A.1,

‖x|m1,∞‖log := sup
1≤n<∞

λn(x)

defines an equivalent norm: ‖x|m1,∞‖log≤‖x|m1,∞‖≤ 3
2‖x|m1,∞‖log.
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(F) For the special indexes nh, we get

λnh
(x) =

h∑
m=1

∑
k∈Nm

ξk

1 + log nh
=

1
2h(h+ 1)
1 + log nh

.

Thus, given ε with 0<ε≤1, we can successively find i1, i2, . . . such that

2hih ≤ ih+1 and λnh
(x) ≤ 1

log 2 ε.

In the rest of this section, it will be shown that λn(x)≤ 1
log 2 ε for all n’s.

(G) As an intermediate step, we treat the indexes nh,p with p=1, . . . , h−1 and h≥2.
In this case,

λnh,p
(x) =

h−1∑
m=1

∑
k∈Nm

ξk +
p∑
q=1

∑
k∈Nh,q

ξk

1 + log nh,p
=

1
2 (h− 1)h+ p

1 + log nh,p
.

Let

Fh(t) :=
ah + log[t+ bh]

1 + log t
,

where
ah := 1

2 (h−1)h log 2− log ih and bh := ih − nh−1.

We deduce from (1) that nh,p+bh=2pih. Therefore

ah + log[nh,p+bh] =
[

1
2 (h−1)h+ p

]
log 2,

which in turn yields
λnh,p

(x) = 1
log 2 Fh(nh,p).

In particular,

λnh−1(x) = 1
log 2 Fh(nh−1) and λnh

(x) = 1
log 2 Fh(nh).

We infer from (4) that
bh = ih−nh−1 ≥ i1 ≥ 1.

According to the choice of the ih’s, we have Fh(nh−1)≤ ε≤1. Thus, with t0 =nh−1,
all conditions posed in A.2 are satisfied, and by A.4 we get

λnh,p
(x) = 1

log 2 Fh(nh,p) ≤
1

log 2 max{Fh(nh−1), Fh(nh)} ≤ 1
log 2 ε.
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(H) What remains is to consider those λn(x)’s whose index n differs from the nh,p’s.
First of all, we observe that

λn(x) = 1
i1

n
1+logn <

1
1+log i1

= λn1(x) ≤ 1
log 2 ε for 1≤n<n1,1 =n1 = i1.

From now on, let nh,p−1<n<nh,p with p=1, . . . , h and h≥2. Then

λn(x) =
1
2 (h− 1)h+ p−1 + n−nh,p−1

2p−1ih

1 + log n
=

1
2p−1ih

ch,p + n

1 + log n
,

where
ch,p := 2p−1ih[ 1

2 (h− 1)h+ p− 1]− nh,p−1.

Because of (2) and (4), we obtain

ch,p = 2p−1ih[ 1
2 (h− 1)h+ p− 2] + ih − nh−1 ≥ i1 ≥ 1.

Thus the observations stated in A.3 and A.4 tell us that
λn(x) ≤ max{λnh,p−1(x), λnh,p

(x)} ≤ 1
log 2 ε.

Consequently,
‖x|m1,∞‖log = sup

1≤n<∞
λn(x) ≤ 1

log 2 ε. (7)

Finally, we infer from (6) and (7) that ‖x|lban
1,∞‖≤c‖x|m1,∞‖log cannot hold for all

x∈ l1,∞ uniformly.

Remarks. Let x(N) be the sequence associated with ih := 2
1
2h(h+1)N, where N is any

natural number. Then, it follows from (2h−1)ih<nh<2hih that

lim
h→∞

λnh
(x(N)) = sup

1≤h<∞
λnh

(x(N)) = 1
N log 2 .

Moreover, the sequence
(
λnh

(x(N))
)
is increasing as h→∞.

The following diagram indicates the behavior of λn(x(2)):

-
logarithmic scale n

6λn(x(2))→ 1
log 4 = 0.7213 . . .

0.25

0.4

0.5

0.6

1

n1

4

n2,1

n2

196

n3,1

n3,2

n3

28868

n4,1

n4,2

n4,3

n4

15757508

s local maximac local minimas q q s q q c q r q s q q c q r q r q s q q q c q r q q r q q r qs

The sequence
(
λn(x(2))

)
has one local minimum on every interval Nh,1. Curiously

enough, beginning with h=6, there is also one local minimum on every interval Nh,2.
However, this phenomenon appears only for N = 2. In other words, if N > 2, then(
λn(x(N))

)
has no other local maxima than those attained at the nh’s.
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7. Appendix: Some elementary facts from calculus

A.1 We have
b∑

a+1

1
k <

∫ b

a

1
t dt <

b−1∑
a

1
k .

The asymptotic behavior of the quantity Ln :=
n∑
k=1

1
k is described by

2
3 (1 + log n) < 1

n + log n ≤
n∑
k=1

1
k ≤ 1 + log n.

A.2 Let
F (t) :=

a+ log[t+ b]
1 + log t

for t ≥ 1.

If b> 0, t0≥ 1, and F (t0)≤ 1, then either F (t) increases on [t0,∞) or there exists
some point tmin>t0 such that F (t) decreases on [t0, tmin] and increases on [tmin,∞).

Proof. If t≥1, then the sign of

F ′(t) =
t(1 + log t)− (t+ b)(a+ log[t+ b])

t(t+ b)(1 + log t)2

is determined by that of the nominator

N(t) := t(1 + log t)− (t+ b)(a+ log[t+ b]).

Regarding N(t) as a function on (0,∞), we have

N ′(t) = 1− a+ log t− log[t+ b] = 1− a− log[1 + b
t ] and N ′′(t) = 1

t −
1
t+b > 0.

The assumption F (t0)≤1 implies that a+log[t0 + b]≤1+log t0. Hence a < 1. Let s>0
denote the unique zero of the increasing function N ′(t). Then N(t) is increasing on
[s,∞). In view of F (t0)≤1, we obtain

log[1 + b
t0

] ≤ 1− a = log[1 + b
s ].

Thus s ≤ t0, and N(t) is increasing on [t0,∞). If N(t0) ≥ 0, it follows that F (t) is
increasing on [t0,∞). In the case that N(t0) < 0, there exists a point tmin > t0 at
which N(t) changes from − to + , which means that F (t) decreases on [t0, tmin] and
increases on [tmin,∞).

A.3 Let
G(t) :=

c+t
1+log t

for t ≥ 1.

If c ≥ 0, then the function F (t) decreases on [1, tmin ] and increases on [ tmin,∞
)
,

where tmin≥1 is the unique solution of the equation t log t=c.

A.4 If a function H decreases on [t0, tmin ] and increases on [ tmin,∞
)
, then

H(t) ≤ max{H(t1), H(t2)} if t0 ≤ t1 < t < t2 <∞.
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