Monodromy Zeta-functions of Deformations and Newton Diagrams

Gleb GUSEV

Moscow State University Independent University of Moscow Moscow — Russia gusev@mccme.ru

Received: May 29, 2008 Accepted: October 7, 2008

ABSTRACT

For a one-parameter deformation of an analytic complex function germ of several variables, there is defined its monodromy zeta-function. We give a Varchenko type formula for this zeta-function if the deformation is non-degenerate with respect to its Newton diagram.

Key words: Deformations of singularities, monodromy, zeta-function, Newton diagram. 2000 Mathematics Subject Classification: 14B07, 32S30, 14D05, 58K10, 58K60.

1. Introduction

Let F be the germ of an analytic function on $(\mathbb{C}^{n+1}, 0)$, where $\mathbb{C}^{n+1} = \mathbb{C}_{\sigma} \times \mathbb{C}_{\mathbf{z}}^{n}$, σ is the coordinate on \mathbb{C} , and $\mathbf{z} = (z_1, z_2, \ldots, z_n)$ are the coordinates on \mathbb{C}^n . The germ Fprovides a deformation $f_{\sigma} = F(\sigma, \cdot)$ of the function germ $f = f_0$ on $(\mathbb{C}^n, 0)$. We give formulae for the monodromy zeta-functions of the deformations of the hypersurface germs $\{f = 0\} \cap (\mathbb{C}^*)^n$ and $\{f = 0\}$ at the origin in terms of the Newton diagram of F. A reason to study deformations of hypersurface germs and their monodromy zeta-functions was inspired by their connection with zeta-functions of deformations of polynomials: [3].

Let A be the complement to an arbitrary analytic hypersurface Y in \mathbb{C}^n : $A = \mathbb{C}^n \setminus Y$. Let $V = \{F = 0\} \cap (\mathbb{C}_{\sigma} \times A) \cap B_{\varepsilon}$, where $B_{\varepsilon} \subset \mathbb{C}^{n+1}$ is the closed ball of

Rev. Mat. Complut. **22** (2009), no. 2, 447–454

ISSN: 1139-1138

Partially supported by the grants RFBR-007-00593, INTAS-05-7805, NWO-RFBR 047.011.2004.026, RFBR-08-01-00110-a

radius ε with the centre at the origin. Let $\mathbb{D}^*_{\delta} \subset \mathbb{C}_{\sigma}$ be the punctured disk of radius δ with the centre at the origin. For $0 < \delta \ll \varepsilon$ small enough the restriction to V of the projection $\mathbb{C}^{n+1} \to \mathbb{C}_{\sigma}$ onto the first factor provides a fibration over \mathbb{D}^*_{δ} ([7]). Denote by V_c the fibre over the point c. Consider the monodromy transformation $h_{F,A} \colon V_c \to V_c$ of the above fibration restricted to the loop $c \cdot \exp(2\pi i t), t \in [0, 1], |c|$ is small enough.

The zeta-function of an arbitrary transformation $h: X \to X$ of a topological space X is the rational function $\zeta_h(t) = \prod_{i\geq 0} (\det(\mathrm{Id} - th_*|_{H^c_i(X;\mathbb{C})}))^{(-1)^i}$, where $H^c_i(X;\mathbb{C})$ is the *i*-th homology group with closed support.

Definition 1.1. The zeta-function of the monodromy transformation $h_{F,A}$ will be called the monodromy zeta-function of the deformation f_{σ} on A: $\zeta_{f_{\sigma}|_{A}}(t) = \zeta_{h_{F,A}}(t)$.

For a power series $S = \sum c_{\mathbf{k}} \mathbf{y}^{\mathbf{k}}$, $\mathbf{y}^{\mathbf{k}} = y_1^{k_1} \cdots y_m^{k_m}$, one defines its Newton diagram as follows. Denote by $\mathbb{R}_+ \subset \mathbb{R}$ the set of non-negative real numbers. Denote by $\Gamma'(S)$ the convex hull of the union $\bigcup_{c_{\mathbf{k}} \neq 0} (\mathbf{k} + \mathbb{R}^m_+)$. The Newton diagram of the series S is the union of compact faces of $\Gamma'(S)$. For a germ G on \mathbb{C}^m at the origin, its Newton diagram $\Gamma(G)$ is the Newton diagram of its Taylor series at the origin.

For a generic germ F on $(\mathbb{C}^{n+1}, 0)$ with fixed Newton diagram $\Gamma \in \mathbb{R}^{n+1}_+$ the zeta-functions $\zeta_{f_{\sigma}|_{(\mathbb{C}^*)^n}}(t)$, $\zeta_{f_{\sigma}|_{\mathbb{C}^n}}(t)$ are also fixed. We provide explicit formulas for these zeta-functions in terms of the Newton diagram Γ .

2. The main result (a Varchenko type formula)

Let F be a germ of a function on $(\mathbb{C}^{n+1}, 0)$. Let $\mathbf{k} = (k_0, k_1, \ldots, k_n)$ be the coordinates on \mathbb{R}^{n+1} corresponding to the variables σ, z_1, \ldots, z_n respectively. For $I \subset \{0, 1, \ldots, n\}$, denote by \mathbb{R}^I and $\Gamma^I(F)$ the sets $\{\mathbf{k} \mid k_i = 0, i \notin I\} \subset \mathbb{R}^{n+1}$ and $\Gamma(F) \cap \mathbb{R}^I$ respectively.

An integer covector is called primitive if it is not a multiple of another integer covector. Let P^I be the set of primitive integer covectors in the dual space $(\mathbb{R}^I)^*$ such that all their components are strictly positive. For $\alpha \in P^I$, let $\Gamma^I_{\alpha}(F)$ be the subset of the diagram $\Gamma^I(F)$ where $\alpha|_{\Gamma^I(F)}$ reaches its minimal value: $\Gamma^I_{\alpha}(F) = \{\mathbf{x} \in \Gamma^I(F) \mid \alpha(\mathbf{x}) = \min(\alpha|_{\Gamma^I(F)})\}$ (for $\Gamma^I(F) = \emptyset$ we assume $\Gamma^I_{\alpha}(F) = \emptyset$). Consider the Taylor series of the germ F at the origin: $F = \sum F_{\mathbf{k}} \sigma^{k_0} z_1^{k_1} \dots z_n^{k_n}$. Denote: $F_{\alpha} = \sum_{\mathbf{k} \in \Gamma^{\{0,1,\dots,n\}}_{\alpha}} F_{\mathbf{k}} \sigma^{k_0} z_1^{k_1} \dots z_n^{k_n}$.

Definition 2.1. A germ F of a function on $(\mathbb{C}^{n+1}, 0)$ is called non-degenerate with respect to its Newton diagram if for any $\alpha \in P^I$ the 1-form dF_{α} does not vanish on the germ $\{F_{\alpha} = 0\} \cap (\mathbb{C}^*)^{n+1}$ at the origin (see [9]).

For $I \in \{0, 1, \ldots, n\}$ such that $0 \in I$, we denote:

$$\zeta_F^I(t) = \prod_{\alpha \in P^I} \left(1 - t^{\alpha(\frac{\partial}{\partial k_0})} \right)^{(-1)^{l-1}l! \, V_l(\Gamma_\alpha^I(F))},$$

where l = |I| - 1, $\frac{\partial}{\partial k_0}$ is the vector in \mathbb{R}^I with the single non-zero coordinate $k_0 = 1$, and $V_l(\cdot)$ denotes the *l*-dimensional integer volume, i.e., the volume in a rational *l*dimensional affine hyperplane of \mathbb{R}^I normalized in such a way that the volume of the minimal parallelepiped with integer vertices is equal to 1. We assume that $V_0(\text{pt}) = 1$ and for $n \ge 0$ one has $V_n(\emptyset) = 0$.

Theorem 2.2. Let F be non-degenerate with respect to its Newton diagram $\Gamma(F)$. Then one has

$$\zeta_{f_{\sigma}|_{(\mathbb{C}^{*})^{n}}}(t) = \zeta_{F}^{\{0,1\dots,n\}}(t), \tag{1}$$

$$\zeta_{f_{\sigma}|_{\mathbb{C}^{n}}}(t) = (1-t) \times \prod_{I: \ 0 \in I \subset \{0,1,\dots,n\}} \zeta_{F}^{I}(t).$$
⁽²⁾

Remarks 2.3.

(i) The equation (1) implies the equation (2) because of the following multiplicative property of the zeta-function. Let $h: X \to X$ be a transformation of a CW-complex X. Let $Y \subset X$ be a subcomplex of X. Assume that $h(Y) \subset Y$, $h(X \setminus Y) \subset (X \setminus Y)$. Then $\zeta_{h|_X}(t) = \zeta_{h|_{X \setminus Y}}(t) \times \zeta_{h|_Y}(t)$.

 $h(X \setminus Y) \subset (X \setminus Y). \text{ Then } \zeta_{h|_X}(t) = \zeta_{h|_{X \setminus Y}}(t) \times \zeta_{h|_Y}(t).$ One can see that $\zeta_{f_{\sigma}|_{\{0\}}}(t) = (1-t) \times \zeta_F^{\{0\}}(t).$ In fact, in the case $\Gamma^{\{0\}} = \emptyset$ one has $\zeta_{f_{\sigma}|_{\{0\}}}(t) = (1-t), \ \zeta_F^{\{0\}}(t) = 1.$ Otherwise $\zeta_{f_{\sigma}|_{\{0\}}}(t) = 1, \ \zeta_F^{\{0\}}(t) = (1-t)^{-1}.$ (ii) The zeta-function $\zeta_{f_{\sigma}|_{\mathbb{C}^n}}(t)$ coincides with the monodromy zeta-function of the case of the function of the coincides with the monodromy zeta-function of the case of the function of the coincides with the monodromy zeta-function of the case of the function of the case of t

(ii) The zeta-function $\zeta_{f_{\sigma}|_{\mathbb{C}^n}}(t)$ coincides with the monodromy zeta-function of the germ of the function $\sigma: \{F=0\} \to \mathbb{C}_{\sigma}$ at the origin. The main theorem of [8] provides a formula for the zeta-functions of germs of functions on complete intersections in non-degenerate cases. One can apply this formula to the germ σ and verify that the formula (2) agrees with the one of M. Oka. But (2) can not be deduced from the result of M. Oka because the function σ does not satisfy the condition of "convenience" ([8, page 17]).

Example 2.4.

(i) Let $F(\sigma, \mathbf{z}) = f(\mathbf{z}) - \sigma$. The monodromy zeta-function of the deformation f_{σ} coincides with the (ordinary) monodromy zeta-function $\zeta_f(t)$ of the germ f on $(\mathbb{C}^n, 0)$ (see, e.g., [9]). In this case the *l*-dimensional faces $\Gamma^I_{\alpha}(F)$ (where l = |I| - 1 > 0) are cones of integer height 1 over the corresponding (l-1)-dimensional faces $\Gamma^{I\setminus\{0\}}_{\alpha|_{\{k_0=0\}}}(f)$. One has:

$$V_{l}(\Gamma_{\alpha}^{I}(F)) = V_{l-1}\left(\Gamma_{\alpha|_{\{k_{0}=0\}}}^{I\setminus\{0\}}(f)\right) / l,$$

with $\alpha(\partial/\partial k_0) = \min(\alpha|_{\Gamma^{I\setminus\{0\}}(f)})$. This means that in this case the equation (2) coincides with the Varchenko formula ([9]).

(ii) For a deformation $F(\sigma, \mathbf{z})$ of the form $f_0(\mathbf{z}) - \sigma f_1(\mathbf{z})$, the fibre

$$(\{\sigma\} \times \{f_{\sigma} = 0\}) \cap B_{\varepsilon}$$

is the disjoint union of the sets

$$(\{\sigma\} \times \{f_0/f_1 = \sigma\}) \cap B_{\varepsilon}$$

and

$$(\{\sigma\} \times \{f_0 = f_1 = 0\}) \cap B_{\varepsilon}.$$

If $f_0(0) = f_1(0) = 0$, then $\zeta_{f_\sigma|_{\mathbb{C}^n}}(t) = (1-t) \times \zeta_{(f_0/f_1)|_{\mathbb{C}^n}}(t)$, otherwise $\zeta_{f_\sigma|_{\mathbb{C}^n}}(t) = \zeta_{(f_0/f_1)|_{\mathbb{C}^n}}(t)$ (the zeta-function of the meromorphic function f_0/f_1 : [2]). For $I \subset \{0, 1, \ldots, n\}$ such that $0 \in I$, and for a covector $\alpha \in P^I$, assume that the face $\Gamma^I_\alpha(F)$ has dimension l, where l = |I| - 1 > 1. Then $\Gamma^I_\alpha(F)$ is the convex hull of

face $\Gamma_{\alpha}^{I}(F)$ has dimension l, where l = |I| - 1 > 1. Then $\Gamma_{\alpha}^{I}(F)$ is the convex hull of the corresponding faces $\Delta_{\alpha,0}^{I} = \{0\} \times \Gamma_{\alpha|_{\{k_{0}=0\}}}^{I\setminus\{0\}}(f_{0})$ and $\Delta_{\alpha,1}^{I} = \{1\} \times \Gamma_{\alpha|_{\{k_{0}=0\}}}^{I\setminus\{0\}}(f_{1})$, which lie in the hyperplanes $\{k_{0} = 0\}$ and $\{k_{0} = 1\}$ respectively. It is not difficult to show (see, e.g., [4, Lemma 1]) that $V_{l}(\Gamma_{\alpha}^{I}(F)) = V_{\alpha}^{I}/l$, where

$$V_{\alpha}^{I} = V_{l-1}(\Delta_{\alpha,0}^{I}, \dots, \Delta_{\alpha,0}^{I}) + V_{l-1}(\Delta_{\alpha,0}^{I}, \dots, \Delta_{\alpha,0}^{I}, \Delta_{\alpha,1}^{I}) + \dots + V_{l-1}(\Delta_{\alpha,0}^{I}, \Delta_{\alpha,1}^{I}, \dots, \Delta_{\alpha,1}^{I}) + V_{l-1}(\Delta_{\alpha,1}^{I}, \dots, \Delta_{\alpha,1}^{I}).$$

Here V_{l-1} denotes the (l-1)-dimensional Minkowski's mixed volume: see, e.g., [8]. Moreover, $\alpha(\partial/\partial k_0) = \min(\alpha|_{\Gamma^{I}\setminus\{0\}}(f_0)) - \min(\alpha|_{\Gamma^{I}\setminus\{0\}}(f_1))$, thus (2) coincides with the main result of [2].

3. A'Campo type formula

Proof of Theorem 2.2 uses an A'Campo type formula ([1]) written in terms of the integration with respect to the Euler characteristic ([3]).

For a constructible function Φ on a constructible set Z with values in a (multiplicative) Abelian group G, its integral $\int_Z \Phi^{d\chi}$ with respect to the Euler characteristic χ is defined as $\prod_{g \in G} g^{\chi(\Phi^{-1}(g))}$ (see [10]). Further we consider $G = \mathbb{C}(t)^*$ to be the multiplicative group of non-zero rational functions in the variable t.

Let F be a germ of an analytic function on $(\mathbb{C}^{n+1}, 0)$ defined on a neighbourhood U of the origin. Let Y be a hypersurface in \mathbb{C}^n . Denote $S = (\mathbb{C}_{\sigma} \times Y) \cup \{\sigma = 0\}$. Consider a resolution $\pi : (X, D) \to (U, 0)$ of the germ of the hypersurface $\{F = 0\} \cup S$ at the origin, where $D = \pi^{-1}(0)$ is the exceptional divisor.

Theorem 3.1. Assume π to be an isomorphism outside of $\pi^{-1}(U \cap S)$. Then

$$\zeta_{f_{\sigma}|_{\mathbb{C}^n \setminus Y}}(t) = \int_{D \cap W} \zeta_{\Sigma|_{W \setminus Z}, x}(t)^{d\chi}, \qquad (3)$$

where W is the proper preimage of $\{F = 0\}$ (i.e., the closure of $\pi^{-1}(V)$, $V = ((\{F = 0\} \cap U) \setminus S)), \Sigma = \sigma \circ \pi, Z = \pi^{-1}(\mathbb{C}_{\sigma} \times Y)$ and $\zeta_{\Sigma|_{W \setminus Z}, x}(t)$ is the monodromy zeta-function of the germ of the function Σ on the set $W \setminus Z$ at the point $x \in D \cap W$.

Proof. The map π provides an isomorphism $W \setminus (Z \cup \{\Sigma = 0\}) \to V$, which is also an isomorphism of fibrations provided by the maps Σ and σ over sufficiently small punctured neighbourhood of zero $\mathbb{D}^*_{\delta} \subset \mathbb{C}_{\sigma}$. Therefore the monodromy zeta-functions

of this fibrations coincide, $\zeta_{f_{\sigma}|_{\mathbb{C}^n\setminus Y}}(t) = \zeta_{\Sigma|_{W\setminus Z}}(t)$ (the monodromy zeta-function of the "global" function Σ on $W\setminus Z$).

Applying the localization principle ([3]) to Σ we obtain:

$$\zeta_{f_{\sigma}|_{\mathbb{C}^{n}\setminus Y}}(t) = \int_{W \cap \{\Sigma=0\}} \zeta_{\Sigma|_{W\setminus Z}, x}(t)^{d\chi}.$$
(4)

The integration is multiplicative with respect to subdivision of its domain. One has $W \cap \{\Sigma = 0\} = (D \cap W) \sqcup ((W \cap \{\Sigma = 0\}) \setminus D)$. Thus the right hand side of (4) is the product

$$\left[\int_{D\cap W} \zeta_{\Sigma|_{W\setminus Z}, x}(t)^{d\chi}\right] \cdot \left[\int_{W\cap(\{\Sigma=0\}\setminus D)} \zeta_{\Sigma|_{W\setminus Z}, x}(t)^{d\chi}\right].$$

The first factor coincide with the right hand side of (3); we prove that the second factor equals 1.

For a point $x \in D$, its neighbourhood $U(x) \subset X$ with a coordinate system $u_1, u_2, \ldots, u_{n+1}$ is called *convenient* if each the of manifolds D, Z can be defined on U(x) by an equation of type $\mathbf{u}^{\mathbf{k}} = 0$ and each of the functions $\Sigma, \tilde{F} = F \circ \pi$ has the form $a \mathbf{u}^{\mathbf{k}}$, where $a(0) \neq 0$. One can assume that X is covered by a finite number of convenient neighbourhoods.

For an arbitrary convenient neighbourhood U_0 , choose an order of coordinates u_i on it such that $D = \{u_1 u_2 \cdots u_l = 0\}$.

Proposition 3.2. The zeta-function $\zeta_{\Sigma|_{W\setminus Z}, x}(t)$ at a point $x \in U_0 \setminus D$ is well-defined by the coordinates $u_{l+1}, u_{l+2}, \ldots, u_{n+1}$ of x.

Proof. The germ of the manifold Z at the point x is defined by an equation

$$u_{l+1}^{k_{1,l+1}} \cdots u_{n+1}^{k_{1,n+1}} = 0.$$

In a neighbourhood of x one has $\tilde{F} = a u_{l+1}^{k_{2,l+1}} \cdots u_{n+1}^{k_{2,n+1}}$, $\Sigma = b u_{l+1}^{k_{3,l+1}} \cdots u_{n+1}^{k_{3,n+1}}$, where $a(x) \neq 0$, $b(x) \neq 0$, $k_{1,j} \in \{0,1\}$; $k_{2,j}, k_{3,j} \ge 0$. The zeta-function $\zeta_{\Sigma|_W \setminus Z, x}(t)$ is well-defined by the numbers $k_{i,j}$, i = 1, 2, 3, $j = l + 1, \ldots, n + 1$, which do not depend on u_1, \ldots, u_l .

For a rational function Q(t), we define a set

$$X_Q = \{ x \in W \cap (\{ \Sigma = 0\} \setminus D) \mid \zeta_{\Sigma|_{W \setminus Z}, x}(t) = Q(t) \}.$$

It follows from the proposition above that for any convenient neighbourhood U_0 we have $\chi(U_0 \cap X_Q) = 0$. Thus for all Q(t) we have $\chi(X_Q) = 0$ and

$$\int_{W \cap (\{\Sigma=0\} \setminus D)} \zeta_{\Sigma|_{W \setminus Z}, x}(t)^{d\chi} = \prod_{Q} Q^{\chi(X_Q)} = 1.$$

Revista Matemática Complutense 2009: vol. 22, num. 2, pags. 447–454

451

4. Proof of Theorem 2.2

Using the Newton diagram $\Gamma(F)$ of the germ F on $(\mathbb{C}^{n+1}, 0)$, one can construct a unimodular simplicial subdivision Λ of the set of covectors with non-negative coordinates $(\mathbb{R}^{n+1})^*_+$ (see, e.g., [9]). Consider the toroidal modification map

$$p: (X_{\Lambda}, D) \to (\mathbb{C}^{n+1}, 0),$$

corresponding to Λ . Let $U \subset \mathbb{C}^{n+1}$ be a small enough ball with the centre at the origin, $X = p^{-1}(U)$, $\pi = p|_X$. Let $Y = \{z_1 z_2 \cdots z_n = 0\} \subset \mathbb{C}^n_{\mathbf{z}}$. Then $S = (Y \times \mathbb{C}_{\sigma}) \cup \{\sigma = 0\}$ is the union of the coordinate hyperplanes of \mathbb{C}^{n+1} . Since F is non-degenerate with respect to its Newton diagram $\Gamma(F)$, π is a resolution of the germ $S \cup \{F = 0\}$ (see, e.g., [8]). Finally, π is an isomorphism outside of S, so the resolution (X, π) satisfies the assumptions of Theorem 3.1.

Compute the right hand side of (3). Let $x \in D \cap W$ be a point of the torus T_{λ} of dimension n-l+1, corresponding to an *l*-dimensional cone $\lambda \in \Lambda$. Let λ be generated by integer covectors $\alpha_1, \ldots, \alpha_l$ and let λ lie on the border of a cone $\lambda' \in \Lambda$ generated by $\alpha_1, \ldots, \alpha_l, \ldots, \alpha_{n+1}$. Let (u_1, \ldots, u_{n+1}) be the coordinate system corresponding to the set $(\alpha_1, \ldots, \alpha_{n+1})$. There exists a coordinate system $(u_1, \ldots, u_l, w_{l+1}, \ldots, w_{n+1})$ in a neighbourhood U' of the point x such that $w_i(x) = 0, i = l + 1, \ldots, n + 1$ and $\tilde{F} = F \circ \pi = a u_1^{k_{1,1}} u_2^{k_{1,2}} \cdots u_l^{k_{1,l}} \cdot w_{n+1}^{k_{1,n+1}}$ (where $a(0) \neq 0$). The zero level set $\{\Sigma = 0\}$ is a normal crossing divisor contained in $\{u_1u_2\cdots u_l = 0\}$. Therefore $\Sigma = \sigma \circ \pi = u_1^{k_{2,1}} u_2^{k_{2,2}} \cdots u_l^{k_{2,l}}$. One has: $W \cap U' = \{w_{n+1} = 0\}$ and

$$(Z \cup \{\Sigma = 0\}) \cap U' = \{u_1 u_2 \cdots u_l = 0\}.$$

Thus $\zeta_{\Sigma|_{W\setminus Z},x}(t) = \zeta_{g|_{\{u_i\neq 0, i\leq l\}}}(t)$, where g is the germ of the following function of n variables: $g(u_1,\ldots,u_l,w_{l+1},\ldots,w_n) = u_1^{k_{2,1}}u_2^{k_{2,2}}\cdots u_l^{k_{2,l}}$.

Assume that one of the exponents $k_{2,1}, k_{2,2} \ldots, k_{2,l}$ (say, $k_{2,1}$) is equal to zero. Then g does not depend on u_1 . We may assume that the monodromy transformation of its Milnor fibre also does not depend on u_1 . Denote $h = g|_{\{u_1=0\}}$. The monodromy transformations of the fibre of $g|_{\{u_2u_3\cdots u_l\neq 0\}}$ and one of $h|_{\{u_2u_3\cdots u_l\neq 0\}}$ are homotopy equivalent, so $\zeta_{g|_{\{u_2u_3\cdots u_l\neq 0\}}}(t) = \zeta_{h|_{\{u_2u_3\cdots u_l\neq 0\}}}(t)$. On the other hand the multiplicative property of the zeta-function implies that

$$\zeta_{g|_{\{u_i\neq 0,\ i\leq l\}}}(t) \times \zeta_{h|_{\{u_2u_3\cdots u_l\neq 0\}}}(t) = \zeta_{g|_{\{u_2u_3\cdots u_l\neq 0\}}}(t),$$

and thus $\zeta_{g|_{\{u_i \neq 0, i \leq l\}}}(t) = 1.$

Now assume that all the exponents $k_{2,1}, k_{2,2} \ldots, k_{2,l}$ are positive. Then the nonzero fibre of the function g does not intersect $\{u_1u_2 \ldots u_l = 0\}$, so $\zeta_{g|_{\{u_i \neq 0, i \leq l\}}}(t) = \zeta_g(t)$. In the case l > 1 one has $\zeta_g(t) = 1$. In the case l = 1 one has: $g = u_1^{k_{2,1}}$, $\zeta_g(t) = 1 - t^{k_{2,1}}$.

We see that the integrand in (3) differs from 1 only at points x that lie in strata of dimension n. From here on l = 1. If all the components of $\alpha = \alpha_1$ are positive, then

 $T_{\lambda} \subset D$. Otherwise, $T_{\lambda} \cap D = \emptyset$. From here on $\alpha \in P^{\{0,1,\ldots,n\}}$ (see the definitions before Theorem 2.2).

Using the coordinates (u_2, \ldots, u_{n+1}) on the torus $T_{\lambda} = \{u_1 = 0\}$ we obtain: $T_{\lambda} \cap W = \{Q_{\alpha} = 0\}$, where for the power series $F = \sum F_{\mathbf{k}} \sigma^{k_0} z_1^{k_1} \cdots z_n^{k_n}$ we denote $Q_{\alpha} = \sum_{\mathbf{k} \in \Gamma_{\alpha}^{\{0,\ldots,n\}}(F)} F_{\mathbf{k}} u_2^{\alpha_2(\mathbf{k})} u_3^{\alpha_3(\mathbf{k})} \cdots u_{n+1}^{\alpha_{n+1}(\mathbf{k})}$. So $T_{\lambda} \cap W$ is the zero level set of the Laurent polynomial Q_{α} . Using results of [5,6] we obtain:

$$\chi(T_{\lambda} \cap W) = (-1)^{n-1} n! V_n(\Delta(Q_{\alpha})),$$

where $\Delta(\cdot)$ denotes the Newton polyhedron. Since the polyhedra $\Delta(Q_{\alpha})$ and $\Gamma_{\alpha} = \Gamma_{\alpha}^{\{0,1,\ldots,n\}}(F)$ are isomorphic as subsets of integer lattices, their volumes are equal: $V_n(\Delta(Q_{\alpha})) = V_n(\Gamma_{\alpha})$. In a neighbourhood of a point $x \in T_{\lambda} \cap W$ one has $\Sigma = a u_1^{\alpha(\partial/\partial k_0)}$, where $a(x) \neq 0$. Therefore $\zeta_{\Sigma|_{W \setminus Z}, x}(t) = 1 - t^{\alpha(\partial/\partial k_0)}$. Thus one has:

$$\int_{T_{\lambda}\cap W} \zeta_{\Sigma|_{W\setminus Z},x}(t)^{d\chi} = (1 - t^{\alpha(\frac{\partial}{\partial k_0})})^{\chi(T_{\lambda}\cap W)} = (1 - t^{\alpha(\frac{\partial}{\partial k_0})})^{(-1)^{n-1}n! V_n(\Gamma_{\alpha})}.$$
 (5)

Multiplying (5) for all strata $T_{\lambda} \subset D$ of dimension n we get (1).

Acknowledgement. I am grateful to my advisor S. M. Gusein-Zade, who motivated me to make this study, for constant attention and support.

References

- N. A'Campo, La fonction zêta d'une monodromie, Comment. Math. Helv. 50 (1975), 233–248 (French).
- [2] S. M. Guseĭn-Zade, I. Luengo, and A. Melle-Herrnández, Zeta functions of germs of meromorphic functions, and the Newton diagram, Funktsional. Anal. i Prilozhen. 32 (1998), no. 2, 26–35, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 32 (1998), no. 2, 93–99.
- S. M. Guseĭn-Zade and D. Sirsma, Deformations of polynomials and their zeta functions, Sovrem. Mat. Prilozh. 33 (2005), 36–42 (Russian, with Russian summary); English transl., J. Math. Sci. (N. Y.) 144 (2007), no. 1, 3782–3788.
- [4] G. G. Gusev, The Euler characteristic of the bifurcation set for a polynomial of degree two, Russ. Math. Surv. 63 (2008), no. 2, 363–365.
- [5] A. G. Hovanskiĭ, Newton polyhedra, and toroidal varieties, Funkcional. Anal. i Priložen. 11 (1977), no. 4, 56–64, 96 (Russian).
- [6] _____, Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen. 12 (1978), no. 1, 51–61 (Russian).
- [7] Lê Dũng Tráng, Some remarks on relative monodromy, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 397–403.
- M. Oka, Principal zeta-function of nondegenerate complete intersection singularity, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), no. 1, 11–32.

- [9] A. N. Varchenko, Zeta-function of monodromy and Newton's diagram, Invent. Math. 37 (1976), no. 3, 253–262.
- [10] O. Ya. Viro, Some integral calculus based on Euler characteristic, Topology and geometry— Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 127–138.