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ABSTRACT

For a one-parameter deformation of an analytic complex function germ of several
variables, there is defined its monodromy zeta-function. We give a Varchenko
type formula for this zeta-function if the deformation is non-degenerate with
respect to its Newton diagram.
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1. Introduction

Let F be the germ of an analytic function on (C"*1,0), where C*"*! = C, x C?, o is
the coordinate on C, and z = (21, 22, ..., 2,) are the coordinates on C". The germ F'
provides a deformation f, = F(o,-) of the function germ f = fy on (C™,0). We give
formulae for the monodromy zeta-functions of the deformations of the hypersurface
germs {f =0} N(C*)™ and {f = 0} at the origin in terms of the Newton diagram
of F'. A reason to study deformations of hypersurface germs and their monodromy
zeta-functions was inspired by their connection with zeta-functions of deformations
of polynomials: [3].

Let A be the complement to an arbitrary analytic hypersurface Y in C": A =
C*"\Y. Let V = {F=0}n(C, x A) N B, where B. C C""! is the closed ball of
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radius € with the centre at the origin. Let D5 C C, be the punctured disk of radius
0 with the centre at the origin. For 0 < § < ¢ small enough the restriction to V' of
the projection C"™! — C, onto the first factor provides a fibration over D} ([7]).
Denote by V. the fibre over the point c¢. Consider the monodromy transformation
hp a: V. — V. of the above fibration restricted to the loop c-exp(2mit), t € [0,1], |c|
is small enough.

The zeta-function of an arbitrary transformation h: X — X of a topological space
X is the rational function ¢, (t) = [];~(det(Id —th*|Hic(X;C)))(_1)l, where Hf(X;C)
is the i-th homology group with closed support.

Definition 1.1. The zeta-function of the monodromy transformation hp 4 will be
called the monodromy zeta-function of the deformation f, on A: (g |, (t) = Cup 4 (t).

For a power series S = Y cyX, y* = ylfl - -yFm one defines its Newton diagram
as follows. Denote by Ry C R the set of non-negative real numbers. Denote by I'(.9)
the convex hull of the union U, +o(k + R’"). The Newton diagram of the series S is
the union of compact faces of I'(S). For a germ G on C™ at the origin, its Newton
diagram I'(G) is the Newton diagram of its Taylor series at the origin.

For a generic germ F on (C"*!,0) with fixed Newton diagram T' € R the
zeta-functions (y,| ... (t), C,|cn (1) are also fixed. We provide explicit formulas for
these zeta-functions in terms of the Newton diagram I'.

2. The main result (a Varchenko type formula)

Let F be a germ of a function on (C"*',0). Let k = (ko,k1,...,kn) be the
coordinates on R"*! corresponding to the variables o, z1,..., 2, respectively. For
I c{0,1,...,n}, denote by R and TY(F) the sets {k | k; = 0,i ¢ I} C R*""! and
['(F) NR! respectively.

An integer covector is called primitive if it is not a multiple of another integer
covector. Let P! be the set of primitive integer covectors in the dual space (R’ )*
such that all their components are strictly positive. For a € P, let T'L(F) be the
subset of the diagram I' (F)) where a|pir(py reaches its minimal value: T'L(F) = {x €
P(F) | a(x) = min(a|rrg)} (for TI(F) = 0 we assume T (F) = (). Consider

kn

the Taylor series of the germ F' at the origin: F = ZFkakozfl ...zrn. Denote:

= ko ok k
Fa - ZkGF({xo’l ««««« n} FkO' 0211 . .Znn,

Definition 2.1. A germ F of a function on (C"*1,0) is called non-degenerate with
respect to its Newton diagram if for any a € P! the 1-form dF, does not vanish on
the germ {F, =0} N (C*)"*! at the origin (see [9]).

For I €{0,1,...,n} such that 0 € I, we denote:

Gy = I (1177

aeP!

)

))(*1)L71“V1(F(IX(F))
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where [ = [I] -1, 6%0 is the vector in R? with the single non-zero coordinate ko = 1,
and Vj(-) denotes the I-dimensional integer volume, i.e., the volume in a rational I-
dimensional affine hyperplane of R’ normalized in such a way that the volume of the
minimal parallelepiped with integer vertices is equal to 1. We assume that Vy(pt) =1

and for n > 0 one has V,,(0) = 0.

Theorem 2.2. Let F be non-degenerate with respect to its Newton diagram T'(F).
Then one has

Chalenyn (1) = ¢RI (1), (1)
e =1-0)x [ ¢, 2)

I:0e1c{0,1,....,n}

Remarks 2.3.

(i) The equation (1) implies the equation (2) because of the following multi-
plicative property of the zeta-function. Let h: X — X be a transformation of a
CW-complex X. Let ¥ C X be a subcomplex of X. Assume that h(Y) C Y,
MX\Y) C(X\Y). Then Gy () = Cuiyy (£) X Gy (£)-

One can see that (y, |, (t) = (1 —1) x Cl{po} (t). In fact, in the case T1% =) one has
Chlioy (1) = (1=1), ¢PH(t) = 1. Otherwise (s, (t) =1, (K@) =1 1)L

éii) The zeta-function (¢, .. (t) coincides with the monodromy zeta-function of the
germ of the function o: {F = 0} — C, at the origin. The main theorem of [8] provides
a formula for the zeta-functions of germs of functions on complete intersections in non-
degenerate cases. One can apply this formula to the germ o and verify that the formula
(2) agrees with the one of M. Oka. But (2) can not be deduced from the result of M.
Oka because the function o does not satisfy the condition of “convenience” ([8, page
17)).

Ezxample 2.4.

(i) Let F(o,z) = f(z) — 0. The monodromy zeta-function of the deformation f,
coincides with the (ordinary) monodromy zeta-function ¢;(¢) of the germ f on (C",0)
(see, e.g., [9]). In this case the [-dimensional faces I'L (F') (where [ = |I| -1 > 0) are
cones of integer height 1 over the corresponding (I —1)-dimensional faces Fi\lfﬁ)}io} (f)-
One has:

Vi(PL(F) = Vi (TR () /1,
*l{ko=0}
with a(9/0ko) = min(alrrioy(py). This means that in this case the equation (2)
coincides with the Varchenko formula ([9]).

(ii) For a deformation F'(o,z) of the form fo(z) — o f1(z), the fibre
({o} x {fo =0}) N B:

is the disjoint union of the sets

{o} x{fo/fr =0}) N B
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and

({o} x {fo=f1=0})NB-.

If fo(0) = f1(0) = 0, then (f |..(t) = (1 = 1) X {(fo/f1)|en (t), otherwise (.. (t) =
Clfo/f1)len (1) (the zeta-function of the meromorphic function fo/f1: [2]).

For I € {0,1,...,n} such that 0 € I, and for a covector o € P!, assume that the
face T, (F) has dimension I, where [ = |I|—1 > 1. Then I'. (F)) is the convex hull of

the corresponding faces Al ;= {0} x rio (fo) and AL, = {1} x rio (f1),

O“{k =0} a\{k =0}
which lie in the hyperplanes {ko = 0} and {Oko = 1} respectively. It is not difficult to
show (see, e.g., [4, Lemma 1]) that V}(T'L (F)) = VI /I, where

Vo{ = Vz—l(Aé,Ov R AQ,O) + Vz—l(Aé,Ov R Aé,m A(Ix,l)
+o o+ Vie(AL g ALy, AL V(AL ALY,

Here V;_; denotes the (I — 1)-dimensional Minkowski’s mixed volume: see, e.g., [8].
Moreover, a(d/0ko) = min(a|pn o (s,)) — min(alpnioy(g,)), thus (2) coincides with
the main result of [2].

3. A’Campo type formula

Proof of Theorem 2.2 uses an A’Campo type formula ([1]) written in terms of the
integration with respect to the Euler characteristic ([3]).

For a constructible function ® on a constructible set Z with values in a (multiplica-
tive) Abelian group G, its integral f P $IX with respect to the Euler characteristic X
is defined as [[ ¢ g¥(®7 (@) (see [10]). Further we consider G = C(t)* to be the
multiplicative group of non-zero rational functions in the variable .

Let F be a germ of an analytic function on (C™*!,0) defined on a neighbourhood
U of the origin. Let Y be a hypersurface in C". Denote S = (C, x Y) U {o = 0}.
Consider a resolution 7: (X, D) — (U, 0) of the germ of the hypersurface {F = 0}US
at the origin, where D = 771(0) is the exceptional divisor.

Theorem 3.1. Assume 7 to be an isomorphism outside of 7=1(UNS). Then

ot (= | o™, 3)

where W is the proper preimage of {F = 0} (i.e., the closure of 7= 1(V), V =
({F=0}nU)\9)), S =0om, Z=7"1CyxY) and (Sl 2, 2(t) is the monodromy
zeta-function of the germ of the function 3 on the set W\ Z at the point x € DNW.

Proof. The map 7 provides an isomorphism W\ (Z U {¥ = 0}) — V, which is also
an isomorphism of fibrations provided by the maps ¥ and o over sufficiently small
punctured neighbourhood of zero D5 C C,. Therefore the monodromy zeta-functions
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of this fibrations coincide, (y, (.., (t) = (x|, () (the monodromy zeta-function of
the ”global” function ¥ on W'\ Z).
Applying the localization principle ([3]) to X we obtain:

Chalenyy (1) = /Wﬂ{E—O} CE\w\z,z(t)dX' (4)

The integration is multiplicative with respect to subdivision of its domain. One
has WN{X=0}=(DnNW)U(WnN{X=0})\ D). Thus the right hand side of (4)
is the product

ax | . dx
[/DHWCEW\Z’JCQ) ] an({z—o}\mczw\z’w(t)

The first factor coincide with the right hand side of (3); we prove that the second
factor equals 1.

For a point = € D, its neighbourhood U(z) C X with a coordinate system
UL, U, -« . ., Upy1 1S called convenient if each the of manifolds D, Z can be defined on
U(x) by an equation of type u¥ = 0 and each of the functions ¥, F = For has the
form au¥, where a(0) # 0. One can assume that X is covered by a finite number of
convenient neighbourhoods.

For an arbitrary convenient neighbourhood Uy, choose an order of coordinates u;
on it such that D = {ujus - --u; = 0}.

Proposition 3.2. The zeta-function (x|, ,, +(t) at a point x € Uy\D is well-defined
by the coordinates wjy1,Ui42,...,Un+1 Of T.

Proof. The germ of the manifold Z at the point z is defined by an equation

k1141 Kint1
wy g = 0.
I ighbourhood of has F = D Y SN S B S
n a neighbourhood of = one has = aupyy Uil = bu; Ui

where a(z) # 0, b(z) # 0, ki; € {0,1}; ka,j, k3 j > 0. The zeta-function (s, «(t)
is well-defined by the numbers k; ;,¢ = 1,2,3,j =1+ 1,...,n+ 1, which do not
depend on wuq,...,u;. O

For a rational function Q(t), we define a set
Xo={reWn{E=01\D) [y ,.2(t) = Q1)}.

It follows from the proposition above that for any convenient neighbourhood Uy we
have x(UyN X¢q) = 0. Thus for all Q(¢) we have x(X¢g) =0 and

/ CE\W\Z7w(t)dX = HQX(XQ) =1
WA({S=0}\D) 9
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4. Proof of Theorem 2.2

Using the Newton diagram T'(F') of the germ F on (C™*1,0), one can construct a uni-
modular simplicial subdivision A of the set of covectors with non-negative coordinates
(R™1)* (see, e.g., [9]). Consider the toroidal modification map

p: (Xa, D) — (C",0),

corresponding to A. Let U C C"*! be a small enough ball with the centre at the
origin, X = p7*(U), 7 = plx. Let ¥ = {z129-++2, = 0} C C?. Then S =
(Y x C,) U{o = 0} is the union of the coordinate hyperplanes of C"*1. Since F
is non-degenerate with respect to its Newton diagram I'(F), 7 is a resolution of the
germ S U {F = 0} (see, e.g., [8]). Finally, 7 is an isomorphism outside of S, so the
resolution (X, ) satisfies the assumptions of Theorem 3.1.

Compute the right hand side of (3). Let « € D N be a point of the torus Ty of
dimension n—1[+1, corresponding to an [-dimensional cone A € A. Let A be generated

by integer covectors a1, ..., q; and let A lie on the border of a cone X' € A generated
by a1,...,q,...ant1. Let (ug,...,up41) be the coordinate system corresponding to
the set (aq,...,an41). There exists a coordinate system (uy, ..., u;, Wit1, ..., Wnt1)

in a neighbourhood U’ of the point = such that w;(z) = 0,i =14+ 1,...,n+1
and F = For = au]fl‘lugl‘z ---uf“ -wﬁlﬂﬂ (where a(0) # 0). The zero level
set {¥ = 0} is a normal crossing divisor contained in {ujusg---u; = 0}. Therefore

kon K k
Y=0om=u""uy"* - u;”". One has: WNU' = {wy,41 =0} and

(ZU{E=0}H)nNU"= {uug---u;, = 0}.

Thus (s 4.2 (t) = Colgu, 20,21 (t), where g is the germ of the following function of n

3 . ka1 ka2 ko
variables: g(w1, ..., up, W1, .., W) = Uy uy - uy
Assume that one of the exponents ko 1,ke2...,ka; (say, keo1) is equal to zero.

Then g does not depend on u;. We may assume that the monodromy transformation
of its Milnor fibre also does not depend on u;. Denote h = g|f,,—oy . The mon-
odromy transformations of the fibre of g|(yyuy...u;20) and one of hlpyyuy..u 20y are
homgtopy §quivalent7 SO Coltuyus. w0} (t) = .Chm?usmu#o} (t). On the other hand the
multiplicative property of the zeta-function implies that

Cg\{u#o,igz}(t) X Ch\{u2u3..-ul¢o}(t) = <0|{u2u3..-ul¢o}(t)’

and thus Cgmi#o’ig}(t) =1.
Now assume that all the exponents ko 1,k2,2..., k2, are positive. Then the non-
zero fibre of the function g does not intersect {uius...u; =0}, 80 Copp, Lo oy () =

Cg(t). In the case I > 1 one has (,(¢) = 1. In the case | = 1 one has: g = u]f”,

Cg(t) =1tk
We see that the integrand in (3) differs from 1 only at points z that lie in strata of
dimension n. From here on [ = 1. If all the components of o = «; are positive, then
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Ty C D. Otherwise, T\ N D = (). From here on o € P01} (see the definitions
before Theorem 2.2).

Using the coordinates (ug,...,u,4+1) on the torus T\ = {u; = 0} we obtain:
TxNW = {Q, = 0}, where for the power series F' = 3 Fa*0 2" ... 2F» we denote
Q. = Zkerff ,,,,, "} () Fkua2(k) asl) uifll(k). So T, NW is the zero level set of

the Laurent polynomial Q. Usmg results of [5,6] we obtain:
X(TNW) = (=1)"" 'l Vo (A(Qa)),

where A(-) denotes the Newton polyhedron. Since the polyhedra A(Q,) and T, =

I‘{O’l’ n}(F) are isomorphic as subsets of integer lattices, their volumes are equal:
Vo (A(Qn)) = Vi(Ty). In a neighbourhood of a point & € T\ N W one has ¥ =
u‘f‘(a/ako), where a(z) # 0. Therefore (s, , «(t) =1 — t(9/0ko) " Thus one has:

[ G ® = (1 = 2 = (1 el e, ()
T\NW
Multiplying (5) for all strata T\ C D of dimension n we get (1).
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