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ABSTRACT

For a one-parameter deformation of an analytic complex function germ of several

variables, there is defined its monodromy zeta-function. We give a Varchenko

type formula for this zeta-function if the deformation is non-degenerate with

respect to its Newton diagram.

Key words: Deformations of singularities, monodromy, zeta-function, Newton diagram.

2000 Mathematics Subject Classification: 14B07, 32S30, 14D05, 58K10, 58K60.

1. Introduction

Let F be the germ of an analytic function on (Cn+1, 0), where Cn+1 = Cσ ×Cn
z
, σ is

the coordinate on C, and z = (z1, z2, . . . , zn) are the coordinates on Cn. The germ F
provides a deformation fσ = F (σ, ·) of the function germ f = f0 on (Cn, 0). We give
formulae for the monodromy zeta-functions of the deformations of the hypersurface
germs {f = 0} ∩ (C∗)n and {f = 0} at the origin in terms of the Newton diagram
of F . A reason to study deformations of hypersurface germs and their monodromy
zeta-functions was inspired by their connection with zeta-functions of deformations
of polynomials: [3].

Let A be the complement to an arbitrary analytic hypersurface Y in Cn: A =
Cn \ Y . Let V = {F = 0} ∩ (Cσ × A) ∩ Bε, where Bε ⊂ Cn+1 is the closed ball of
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radius ε with the centre at the origin. Let D∗
δ ⊂ Cσ be the punctured disk of radius

δ with the centre at the origin. For 0 < δ ≪ ε small enough the restriction to V of
the projection Cn+1 → Cσ onto the first factor provides a fibration over D∗

δ ([7]).
Denote by Vc the fibre over the point c. Consider the monodromy transformation
hF,A : Vc → Vc of the above fibration restricted to the loop c · exp(2πit), t ∈ [0, 1], |c|
is small enough.

The zeta-function of an arbitrary transformation h : X → X of a topological space
X is the rational function ζh(t) =

∏

i≥0(det(Id−th∗|Hc
i (X;C)))

(−1)i

, where Hc
i (X ; C)

is the i-th homology group with closed support.

Definition 1.1. The zeta-function of the monodromy transformation hF,A will be
called the monodromy zeta-function of the deformation fσ on A: ζfσ |A(t) = ζhF,A

(t).

For a power series S =
∑

cky
k, yk = yk1

1 · · · ykm
m , one defines its Newton diagram

as follows. Denote by R+ ⊂ R the set of non-negative real numbers. Denote by Γ′(S)
the convex hull of the union ∪ck 6=0(k + Rm

+ ). The Newton diagram of the series S is
the union of compact faces of Γ′(S). For a germ G on Cm at the origin, its Newton
diagram Γ(G) is the Newton diagram of its Taylor series at the origin.

For a generic germ F on (Cn+1, 0) with fixed Newton diagram Γ ∈ R
n+1
+ the

zeta-functions ζfσ |(C∗)n
(t), ζfσ |Cn (t) are also fixed. We provide explicit formulas for

these zeta-functions in terms of the Newton diagram Γ.

2. The main result (a Varchenko type formula)

Let F be a germ of a function on (Cn+1, 0). Let k = (k0, k1, . . . , kn) be the
coordinates on Rn+1 corresponding to the variables σ, z1, . . . , zn respectively. For
I ⊂ {0, 1, . . . , n} , denote by RI and ΓI(F ) the sets {k | ki = 0, i /∈ I} ⊂ Rn+1 and
Γ(F ) ∩ R

I respectively.
An integer covector is called primitive if it is not a multiple of another integer

covector. Let P I be the set of primitive integer covectors in the dual space (RI)
∗

such that all their components are strictly positive. For α ∈ P I , let ΓI
α(F ) be the

subset of the diagram ΓI(F ) where α|ΓI (F ) reaches its minimal value: ΓI
α(F ) = {x ∈

ΓI(F ) | α(x) = min(α|ΓI (F ))} (for ΓI(F ) = ∅ we assume ΓI
α(F ) = ∅). Consider

the Taylor series of the germ F at the origin: F =
∑

Fkσk0zk1
1 . . . zkn

n . Denote:
Fα =

∑

k∈Γ
{0,1,...,n}
α

Fkσk0zk1
1 . . . zkn

n .

Definition 2.1. A germ F of a function on (Cn+1, 0) is called non-degenerate with
respect to its Newton diagram if for any α ∈ P I the 1-form dFα does not vanish on
the germ {Fα = 0} ∩ (C∗)n+1 at the origin (see [9]).

For I ∈ {0, 1, . . . , n} such that 0 ∈ I, we denote:

ζI
F (t) =

∏

α∈P I

(

1 − tα( ∂
∂k0

)
)(−1)l−1l! Vl(Γ

I
α(F ))

,
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where l = |I|−1, ∂
∂k0

is the vector in RI with the single non-zero coordinate k0 = 1,
and Vl(·) denotes the l-dimensional integer volume, i.e., the volume in a rational l-
dimensional affine hyperplane of RI normalized in such a way that the volume of the
minimal parallelepiped with integer vertices is equal to 1. We assume that V0(pt) = 1
and for n ≥ 0 one has Vn(∅) = 0.

Theorem 2.2. Let F be non-degenerate with respect to its Newton diagram Γ(F ).
Then one has

ζfσ |(C∗)n
(t) = ζ

{0,1...,n}
F (t), (1)

ζfσ |Cn (t) = (1 − t) ×
∏

I : 0∈I⊂{0,1,...,n}

ζI
F (t). (2)

Remarks 2.3.
(i) The equation (1) implies the equation (2) because of the following multi-

plicative property of the zeta-function. Let h : X → X be a transformation of a
CW-complex X . Let Y ⊂ X be a subcomplex of X . Assume that h(Y ) ⊂ Y,
h(X \ Y ) ⊂ (X \ Y ). Then ζh|X (t) = ζh|X\Y

(t) × ζh|Y (t).

One can see that ζfσ |{0}
(t) = (1 − t) × ζ

{0}
F (t). In fact, in the case Γ{0} = ∅ one has

ζfσ |{0}
(t) = (1 − t) , ζ

{0}
F (t) = 1. Otherwise ζfσ |{0}

(t) = 1, ζ
{0}
F (t) = (1 − t)−1.

(ii) The zeta-function ζfσ |Cn (t) coincides with the monodromy zeta-function of the
germ of the function σ : {F = 0} → Cσ at the origin. The main theorem of [8] provides
a formula for the zeta-functions of germs of functions on complete intersections in non-
degenerate cases. One can apply this formula to the germ σ and verify that the formula
(2) agrees with the one of M. Oka. But (2) can not be deduced from the result of M.
Oka because the function σ does not satisfy the condition of “convenience” ([8, page
17]).

Example 2.4.
(i) Let F (σ, z) = f(z) − σ. The monodromy zeta-function of the deformation fσ

coincides with the (ordinary) monodromy zeta-function ζf (t) of the germ f on (Cn, 0)
(see, e.g., [9]). In this case the l-dimensional faces ΓI

α(F ) (where l = |I|−1 > 0) are

cones of integer height 1 over the corresponding (l−1)-dimensional faces Γ
I\{0}
α|{k0=0}

(f).

One has:
Vl(Γ

I
α(F )) = Vl−1

(

Γ
I\{0}
α|{k0=0}

(f)
)

/ l,

with α(∂/∂k0) = min(α|ΓI\{0}(f)). This means that in this case the equation (2)
coincides with the Varchenko formula ([9]).

(ii) For a deformation F (σ, z) of the form f0(z) − σf1(z), the fibre

({σ} × {fσ = 0}) ∩ Bε

is the disjoint union of the sets

({σ} × { f0/f1 = σ}) ∩ Bε
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and

({σ} × {f0 = f1 = 0}) ∩ Bε.

If f0(0) = f1(0) = 0, then ζfσ |Cn (t) = (1 − t) × ζ(f0/f1)|Cn (t), otherwise ζfσ |Cn (t) =
ζ(f0/f1)|Cn (t) (the zeta-function of the meromorphic function f0/f1: [2]).
For I ⊂ {0, 1, . . . , n} such that 0 ∈ I, and for a covector α ∈ P I , assume that the
face ΓI

α(F ) has dimension l, where l = |I|−1 > 1. Then ΓI
α(F ) is the convex hull of

the corresponding faces ∆I
α,0 = {0} × Γ

I\{0}
α|{k0=0}

(f0) and ∆I
α,1 = {1} × Γ

I\{0}
α|{k0=0}

(f1),

which lie in the hyperplanes {k0 = 0} and {k0 = 1} respectively. It is not difficult to
show (see, e.g., [4, Lemma 1]) that Vl(Γ

I
α(F )) = V I

α /l, where

V I
α = Vl−1(∆

I
α,0, . . . , ∆

I
α,0) + Vl−1(∆

I
α,0, . . . , ∆

I
α,0, ∆

I
α,1)

+ . . . + Vl−1(∆
I
α,0, ∆

I
α,1, . . . , ∆

I
α,1) + Vl−1(∆

I
α,1, . . . , ∆

I
α,1).

Here Vl−1 denotes the (l − 1)-dimensional Minkowski’s mixed volume: see, e.g., [8].
Moreover, α(∂/∂k0) = min(α|ΓI\{0}(f0)) − min(α|ΓI\{0}(f1)), thus (2) coincides with
the main result of [2].

3. A’Campo type formula

Proof of Theorem 2.2 uses an A’Campo type formula ([1]) written in terms of the
integration with respect to the Euler characteristic ([3]).

For a constructible function Φ on a constructible set Z with values in a (multiplica-
tive) Abelian group G, its integral

∫

Z
Φdχ with respect to the Euler characteristic χ

is defined as
∏

g∈G gχ(Φ−1(g)) (see [10]). Further we consider G = C(t)
∗

to be the
multiplicative group of non-zero rational functions in the variable t.

Let F be a germ of an analytic function on (Cn+1, 0) defined on a neighbourhood
U of the origin. Let Y be a hypersurface in C

n. Denote S = (Cσ × Y ) ∪ {σ = 0}.
Consider a resolution π : (X, D) → (U, 0) of the germ of the hypersurface {F = 0}∪S
at the origin, where D = π−1(0) is the exceptional divisor.

Theorem 3.1. Assume π to be an isomorphism outside of π−1(U ∩ S). Then

ζfσ |Cn\Y
(t) =

∫

D∩W

ζΣ|W\Z , x(t)
dχ

, (3)

where W is the proper preimage of {F = 0} (i.e., the closure of π−1(V ), V =
(({F = 0} ∩ U) \ S)), Σ = σ◦π, Z = π−1(Cσ×Y ) and ζΣ|W\Z , x(t) is the monodromy
zeta-function of the germ of the function Σ on the set W \Z at the point x ∈ D∩W .

Proof. The map π provides an isomorphism W \ (Z ∪ {Σ = 0}) → V , which is also
an isomorphism of fibrations provided by the maps Σ and σ over sufficiently small
punctured neighbourhood of zero D∗

δ ⊂ Cσ. Therefore the monodromy zeta-functions
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of this fibrations coincide, ζfσ |Cn\Y
(t) = ζΣ|W\Z

(t) (the monodromy zeta-function of
the ”global” function Σ on W \ Z).

Applying the localization principle ([3]) to Σ we obtain:

ζfσ |Cn\Y
(t) =

∫

W∩{Σ=0}

ζΣ|W\Z, x(t)
dχ

. (4)

The integration is multiplicative with respect to subdivision of its domain. One
has W ∩ {Σ = 0} = (D ∩W ) ⊔ ((W ∩ {Σ = 0}) \D). Thus the right hand side of (4)
is the product

[
∫

D∩W

ζΣ|W\Z, x(t)
dχ

]

·

[

∫

W∩({Σ=0}\D)

ζΣ|W\Z , x(t)
dχ

]

.

The first factor coincide with the right hand side of (3); we prove that the second
factor equals 1.

For a point x ∈ D, its neighbourhood U(x) ⊂ X with a coordinate system
u1, u2, . . . , un+1 is called convenient if each the of manifolds D, Z can be defined on
U(x) by an equation of type uk = 0 and each of the functions Σ, F̃ = F ◦ π has the
form auk, where a(0) 6= 0. One can assume that X is covered by a finite number of
convenient neighbourhoods.

For an arbitrary convenient neighbourhood U0, choose an order of coordinates ui

on it such that D = {u1u2 · · ·ul = 0}.

Proposition 3.2. The zeta-function ζΣ|W\Z , x(t) at a point x ∈ U0\D is well-defined
by the coordinates ul+1, ul+2, . . . , un+1 of x.

Proof. The germ of the manifold Z at the point x is defined by an equation

u
k1,l+1

l+1 · · ·u
k1,n+1

n+1 = 0.

In a neighbourhood of x one has F̃ = a u
k2,l+1

l+1 · · ·u
k2,n+1

n+1 , Σ = b u
k3,l+1

l+1 · · ·u
k3,n+1

n+1 ,
where a(x) 6= 0, b(x) 6= 0, k1,j ∈ {0, 1}; k2,j , k3,j ≥ 0. The zeta-function ζΣ|W\Z , x(t)
is well-defined by the numbers ki,j , i = 1, 2, 3, j = l + 1, . . . , n + 1 , which do not
depend on u1, . . . , ul.

For a rational function Q(t), we define a set

XQ = {x ∈ W ∩ ({Σ = 0} \ D) | ζΣ|W\Z , x(t) = Q(t)}.

It follows from the proposition above that for any convenient neighbourhood U0 we
have χ(U0 ∩ XQ) = 0 . Thus for all Q(t) we have χ(XQ) = 0 and

∫

W∩({Σ=0}\D)

ζΣ|W\Z, x(t)dχ =
∏

Q

Qχ(XQ) = 1.
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4. Proof of Theorem 2.2

Using the Newton diagram Γ(F ) of the germ F on (Cn+1, 0), one can construct a uni-
modular simplicial subdivision Λ of the set of covectors with non-negative coordinates
(Rn+1)∗+ (see, e.g., [9]). Consider the toroidal modification map

p : (XΛ, D) → (Cn+1, 0),

corresponding to Λ. Let U ⊂ Cn+1 be a small enough ball with the centre at the
origin, X = p−1(U) , π = p|X . Let Y = {z1z2 · · · zn = 0} ⊂ Cn

z
. Then S =

(Y × Cσ) ∪ {σ = 0} is the union of the coordinate hyperplanes of Cn+1. Since F
is non-degenerate with respect to its Newton diagram Γ(F ), π is a resolution of the
germ S ∪ {F = 0} (see, e.g., [8]). Finally, π is an isomorphism outside of S, so the
resolution (X, π) satisfies the assumptions of Theorem 3.1.

Compute the right hand side of (3). Let x ∈ D ∩ W be a point of the torus Tλ of
dimension n−l+1, corresponding to an l-dimensional cone λ ∈ Λ. Let λ be generated
by integer covectors α1, . . . , αl and let λ lie on the border of a cone λ′ ∈ Λ generated
by α1, . . . , αl, . . . αn+1. Let (u1, . . . , un+1) be the coordinate system corresponding to
the set (α1, . . . , αn+1). There exists a coordinate system (u1, . . . , ul, wl+1, . . . , wn+1)
in a neighbourhood U ′ of the point x such that wi(x) = 0, i = l + 1, . . . , n + 1

and F̃ = F ◦ π = a u
k1,1

1 u
k1,2

2 · · ·u
k1,l

l · w
k1,n+1

n+1 (where a(0) 6= 0). The zero level
set {Σ = 0} is a normal crossing divisor contained in {u1u2 · · ·ul = 0}. Therefore

Σ = σ ◦ π = u
k2,1

1 u
k2,2

2 · · ·u
k2,l

l . One has: W ∩ U ′ = {wn+1 = 0} and

(Z ∪ {Σ = 0}) ∩ U ′ = {u1u2 · · ·ul = 0}.

Thus ζΣ|W\Z,x(t) = ζg|{ui 6=0, i≤l}
(t), where g is the germ of the following function of n

variables: g(u1, . . . , ul, wl+1, . . . , wn) = u
k2,1

1 u
k2,2

2 · · ·u
k2,l

l .
Assume that one of the exponents k2,1, k2,2 . . . , k2,l (say, k2,1) is equal to zero.

Then g does not depend on u1. We may assume that the monodromy transformation
of its Milnor fibre also does not depend on u1. Denote h = g|{u1=0} . The mon-
odromy transformations of the fibre of g|{u2u3···ul 6=0} and one of h|{u2u3···ul 6=0} are
homotopy equivalent, so ζg|{u2u3···ul 6=0}

(t) = ζh|{u2u3···ul 6=0}
(t). On the other hand the

multiplicative property of the zeta-function implies that

ζg|{ui 6=0, i≤l}
(t) × ζh|{u2u3···ul 6=0}

(t) = ζg|{u2u3···ul 6=0}
(t),

and thus ζg|{ui 6=0, i≤l}
(t) = 1.

Now assume that all the exponents k2,1, k2,2 . . . , k2,l are positive. Then the non-
zero fibre of the function g does not intersect {u1u2 . . . ul = 0}, so ζg|{ui 6=0, i≤l}

(t) =

ζg(t). In the case l > 1 one has ζg(t) = 1. In the case l = 1 one has: g = u
k2,1

1 ,
ζg(t) = 1 − tk2,1 .

We see that the integrand in (3) differs from 1 only at points x that lie in strata of
dimension n. From here on l = 1. If all the components of α = α1 are positive, then
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Tλ ⊂ D. Otherwise, Tλ ∩ D = ∅. From here on α ∈ P {0,1,...,n} (see the definitions
before Theorem 2.2).

Using the coordinates (u2, . . . , un+1) on the torus Tλ = {u1 = 0} we obtain:
Tλ ∩ W = {Qα = 0 }, where for the power series F =

∑

Fkσk0zk1
1 · · · zkn

n we denote

Qα =
∑

k∈Γ
{0,...,n}
α (F )

Fku
α2(k)
2 u

α3(k)
3 · · ·u

αn+1(k)
n+1 . So Tλ ∩ W is the zero level set of

the Laurent polynomial Qα. Using results of [5, 6] we obtain:

χ(Tλ ∩ W ) = (−1)n−1n! Vn(∆(Qα)),

where ∆(·) denotes the Newton polyhedron. Since the polyhedra ∆(Qα) and Γα =

Γ
{0,1,...,n}
α (F ) are isomorphic as subsets of integer lattices, their volumes are equal:

Vn(∆(Qα)) = Vn(Γα). In a neighbourhood of a point x ∈ Tλ ∩ W one has Σ =

a u
α(∂/∂k0)
1 , where a(x) 6= 0. Therefore ζΣ|W\Z , x(t) = 1 − tα(∂/∂k0). Thus one has:

∫

Tλ∩W

ζΣ|W\Z , x(t)dχ = (1 − tα( ∂
∂k0

))χ(Tλ∩W ) = (1 − tα( ∂
∂k0

))(−1)n−1n! Vn(Γα). (5)

Multiplying (5) for all strata Tλ ⊂ D of dimension n we get (1).
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