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ABSTRACT

We give lower and upper bounds, involving moduli of asymptotic uniform con-

vexity and smoothness, for the Kottman separation constant of Orlicz sequence

spaces equipped with the Luxemburg norm.
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1. Introduction

The Kottman separation constant of a normed space (X, ‖ . ‖) is defined by

K(X) = sup
(xn)⊂SX

{

inf
m 6=p

{‖xm − xp‖}

}

,

where SX denotes the unit sphere of X . In this paper we are interested in the study
of K(X) when X is an Orlicz sequence spaces (see Section 3 for definitions). We refer
to [11] and to [13], and references therein, for detailed works in this topic. Our main
result is Theorem 4.1, which provides an estimation in terms of moduli of asymptotic
uniform convexity and smoothness of the space (see Section 2 for definitions and
for two lemmas which may be of independent interest). Section 3 is devoted to
the characterization of asymptotically uniformly convex (respectively smooth) Orlicz
sequence spaces in connection with the condition ∆2 (respectively ∇2). Moreover,
we give here some quantitative estimates of the moduli. In Section 4 we give the
statement and the proof or our main result. In Section 5, we discuss the accuracy of
our estimate. Moreover we prove the analogue of our main theorem in the setting of
Musielak-Orlicz sequence spaces.
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2. The moduli of asymptotic uniform smoothness and convexity

Milman in [9] introduced two moduli for the study of an infinite-dimensional Banach
space X . Johnson, Lindenstrauss, Preiss and Schechtman investigated these moduli
in [7] and called them modulus of asymptotic uniform convexity, given for t > 0 by

δX(t) = inf
‖x‖=1

sup
Z⊂X

co-dim Z<∞

inf
z∈Z
‖z‖≥t

‖x + z‖ − 1

and modulus of asymptotic uniform smoothness, given for t > 0 by

ρX(t) = sup
‖x‖=1

inf
Z⊂X

co-dim Z<∞

sup
z∈Z
‖z‖≤t

‖x + z‖ − 1.

The Banach space X is said to be asymptotically uniformly convex if δX(t) > 0
for every 0 < t < 1, and asymptotically uniformly smooth if ρX(t)/t → 0 as t → 0.
For example, if X is a subspace of ℓp, with 1 ≤ p < ∞, then, for every t ∈ [0, 1],
ρX(t) = δX(t) = (1 + tp)1/p − 1. In particular, ℓ1 is asymptotically uniformly convex.
If X is a subspace of c0, then, for every t ∈ [0, 1], ρX(t) = δX(t) = 0. In particular,
c0 is asymptotically uniformly smooth.

Lemma 2.1. Let X and Y be infinite-dimensional Banach spaces such that X con-

tains almost isometric copies of Y . Then, for every 0 < t < 1

δX(t) ≤ δY (t) ≤ ρY (t) ≤ ρX(t).

Proof. Fix 0 < t < 1. The inequality δY (t) ≤ ρY (t) is given in [7, Proposition 2.3.(1)].
Let us show the inequality δX(t) ≤ δY (t). Fix ε > 0. There exists an isomorphism
ϕ : Y → ϕ(Y ) ⊆ X such that for every y ∈ Y

‖y‖ ≤ ‖ϕ(y)‖ ≤ (1 + ε)‖y‖.

For every y ∈ Y such that ‖y‖ = 1 and for every z ∈ Y

‖y + z‖ ≥
1

1 + ε
‖ϕ(y) + ϕ(z)‖

≥
‖ϕ(y)‖

1 + ε

∥
∥
∥
∥

ϕ(y)

‖ϕ(y)‖
+

ϕ(z)

‖ϕ(y)‖

∥
∥
∥
∥

≥
1

1 + ε

∥
∥
∥
∥

ϕ(y)

‖ϕ(y)‖
+

ϕ(z)

‖ϕ(y)‖

∥
∥
∥
∥

. (1)

There exists a finite co-dimensional subspace Z ⊂ ϕ(Y ) which depends on y, ε and t
such that for every z ∈ ϕ−1(Z) with ‖z‖ ≥ t

∥
∥
∥
∥

ϕ(y)

‖ϕ(y)‖
+

ϕ(z)

‖ϕ(y)‖

∥
∥
∥
∥

≥
1

1 + ε
sup

U⊂ϕ(Y )

co-dim U<∞

inf
u∈U

‖u‖≥ t
1+ε

∥
∥
∥
∥

ϕ(y)

‖ϕ(y)‖
+ u

∥
∥
∥
∥

≥
1

1 + ε

(

δϕ(Y )

(
t

1 + ε

))

.
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Using (1) and the fact that ϕ−1(Z) is a finite co-dimensional subspace of Y , we obtain

δY (t) ≥
1

(1 + ε)2

(

δϕ(Y )

(
t

1 + ε

))

.

Recall that ϕ(Y ) ⊆ X . According to [7, Proposition 2.3.(2)], for every 0 < s < 1,
δϕ(Y )(s) ≥ δX(s). So

δY (t) ≥
1

(1 + ε)2

(

δX

(
t

1 + ε

))

and letting ε tends to 0 the inequality δY (t) ≥ δX(t) is done. The last inequality
ρY (t) ≤ ρX(t) is given by similar arguments.

Remark 2.2. According to the James theorem, see for example [8, Proposition 2.e.3],
if a Banach space X contains an isomorphic copy of c0 (respectively of ℓ1) then X
contains in fact almost isometric copies of c0 (respectively ℓ1). Using this result and
Lemma 2.1, we can state that a Banach space that contains an isomorphic copy of c0

(respectively of ℓ1) admits no asymptotically uniformly convex (respectively smooth)
equivalent renorming.

Next lemma is connected to Lemma 2.1 and Remark 2.2 in [3]. Following the
terminology of [3], we denote by X a Banach space with a finite-dimensional de-
composition (En) and, for all n ≥ 1, we consider the subspaces Hn = ⊕n

i=1Ei and
Hn = ⊕∞

i=n+1Ei, the closure of ⊕∞
i=n+1Ei. We denote by SX the unit sphere of X

and we consider D the dense subset of SX defined by D = ∪∞
n=1Hn ∩ SX . We say

that x∗ ∈ X∗ has finite support if there exists n ≥ 1 such that Hn ⊆ kerx∗.

Lemma 2.3. Let X be a Banach space with a finite-dimensional decomposition such

that elements with finite support are dense in X∗. Then, for every t > 0

ρX(t) = sup
x∈D

inf
n≥1

sup
z∈Hn

‖z‖=t

‖x + z‖ − 1

and

δX(t) = inf
x∈D

sup
n≥1

inf
z∈Hn

‖z‖=t

‖x + z‖ − 1.

Proof. Fix t > 0. Our starting point is Lemma 2.1 in [3] which states that

ρX(t) = sup
x∈D

inf
Z⊂X

co-dim Z<∞

sup
z∈Z
‖z‖=t

‖x + z‖ − 1 (2)

and
δX(t) = inf

x∈D
sup
Z⊂X

co-dim Z<∞

inf
z∈Z
‖z‖=t

‖x + z‖ − 1. (3)
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Let us consider eρX(t) = sup
x∈D

inf
n≥1

sup
z∈Hn

‖z‖=t

‖x + z‖ − 1

and eδX(t) = inf
x∈D

sup
n≥1

inf
z∈Hn

‖z‖=t

‖x + z‖ − 1.

For all n ≥ 1, Hn is a finite co-dimensional subspace of X , so by (2) we have ρX(t) ≤eρX(t) and by (3) we have δX(t) ≥ eδX(t). To show reverse inequalities, we fix ε > 0,
x ∈ D and Z a finite co-dimensional subspace of X . There exist z1, . . . , zm in SX

and z∗1 , . . . , z∗m in X∗ such that Z = ∩m
i=1 ker z∗i , z∗i (zi) = 1 and z∗i (zk) = 0 for

all i = 1, . . . , m and k 6= i. By the density assumption, there exist Üz∗1 , . . . ,Ýz∗m in
X∗, each with finite support, such that for all i = 1, . . . , m and for every x ∈ X ,

‖z∗i (x) − Üz∗i (x)‖ ≤ ε
m‖x‖. Consider n ≥ 1 such that Hn ⊆ ∩m

i=1 ker Üz∗i . For every
z ∈ Hn with ‖z‖ = t we can write

z = z −

m∑

i=1

z∗i (z)zi +

m∑

i=1

z∗i (z)zi,

with
∑m

i=1 z∗i (z)zi ∈ X such that
∥
∥
∥
∥
∥

m∑

i=1

z∗i (z)zi

∥
∥
∥
∥
∥
≤ εt

and z −
∑m

i=1 z∗i (z)zi ∈ Z such that

(1 − ε)t ≤

∥
∥
∥
∥
∥
z −

m∑

i=1

z∗i (z)zi

∥
∥
∥
∥
∥
≤ (1 + ε)t.

To summarize, for every x ∈ D, for every finite co-dimensional subspace Z ⊂ X and
for every ε > 0, there exists n ≥ 1 such that

sup
z∈Hn

‖z‖=t

‖x + z‖ − 1 ≤ sup
z∈Z

‖z‖≤(1+ε)t

‖x + z‖ − 1 + εt. (4)

Taking successively the infinimum over n, the infinimum over Z, the supremum over
x and letting ε tend to 0 we obtain eρX(t) ≤ ρX(t). Concerning the modulus of
asymptotic uniform convexity, (4) is replaced by

inf
z∈Hn

‖z‖=t

‖x + z‖ − 1 ≥ inf
z∈Z

‖z‖≥(1−ε)t

‖x + z‖ − 1 − εt.

We conclude taking successively the supremum over n, the supremum over Z, the
infinimum over x and letting ε tend to 0.
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3. The setting of Orlicz sequence spaces

We refer to [8] for all the background about Orlicz sequence spaces. Let us recall
that a continuous function M : [0,∞) → [0,∞) is called an Orlicz function whenever
M is convex and satisfies M(0) = 0 and limt→∞ M(t) = ∞. Moreover we suppose
that M(u) = 0 if and only if u = 0. We denote by p the right-derivative of an Orlicz
function M so that, for every u > 0, M(u) =

∫ u

0
p(t)dt. The Orlicz sequence space

ℓM is defined as the space of all real sequences x = (xi) such that there exists λ > 0

satisfying
∞∑

i=1

M (|xi|/λ) < ∞. Equipped with the Luxemburg norm

‖x‖ = inf

{

λ > 0 :

∞∑

i=1

M

(
|xi|

λ

)

≤ 1

}

,

ℓM is a Banach space. We denote by hM the closed subspace of ℓM consisting of all

real sequences x = (xi) such that for every λ > 0,
∞∑

i=1

M (|xi|/λ) < ∞.

Recall that an Orlicz function M is said to satisfy the ∆2 condition at zero, we
write M ∈ ∆2, if there exist K > 0 and t0 > 0 such that for every t ∈ [0, t0],
M(2t) ≤ KM(t). If M ∈ ∆2, then ℓM = hM . The complementary function of M is
the Orlicz function defined for t ∈ [0,∞) by M∗(t) = sup{tu − M(u) : u ∈ [0,∞)}.
The condition M∗ ∈ ∆2 is denoted by M ∈ ∇2.

The set D defined above is dense in the unit sphere of hM . If M ∈ ∇2, then
elements with finite support are dense in the dual space of hM . So, if M ∈ ∆2 ∩∇2,
then Lemma 2.3 may be used in hM = ℓM . We begin with the following lemma.
These inequalities can be found, for example, in [4]. We give a proof for the sake of
completeness.

Lemma 3.1. Let M be an Orlicz function.

(i) If M ∈ ∆2, then there exists 0 < β < +∞ such that for every λ ∈ [0, 1] and for

every u ∈
[
0, M−1(1)

]
, M(λu) ≥ λβM(u).

(ii) If M ∈ ∇2, then there exists 1 < α < +∞ such that for every λ ∈ [0, 1] and for

every u ∈
[
0, M−1(1)

]
, M(λu) ≤ λαM(u).

Proof. Observe that by the case of equality in Young’s inequality, we have for every
t > 0

tp(t)

M(t)
= 1 +

M∗(p(t))

M(t)
︸ ︷︷ ︸

f(t)

.

First, assume M ∈ ∆2. Following [8, page 140], we obtain that there exist K > 0

and t0 > 0 such that for every t ∈ (0, t0],
tp(t)

M(t)
≤ K. If t0 ≥ M−1(1), take β = K.
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Otherwise, if t0 < M−1(1), by the boundedness of f on
[
t0, M

−1(1)
]
, we obtain the

existence of 0 < β < +∞ such that for every t ∈
(
0, M−1(1)

]
,

p(t)

M(t)
≤

β

t
. (5)

Fix λ ∈ (0, 1] and u ∈
(
0, M−1(1)

]
(when λ = 0 or u = 0 the desired inequalities are

obvious). We conclude by integrating (5) between λu and u.
Second, assume M ∈ ∇2. This implies that there exist ε > 0 and t0 > 0 such that

for every t ∈ (0, t0],

1 + ε ≤
tp(t)

M(t)
. (6)

If t0 ≥ M−1(1), take α = 1 + ε. Otherwise, if t0 < M−1(1), by the fact that
f(t) ≥ M∗(p(t0)) > 0 for every t ∈

[
t0, M

−1(1)
]
, we can suppose that (6) holds for

every t ∈
(
0, M−1(1)

]
,with 1 + ε replaced by some 1 < α < +∞. We conclude by

integrating as above.

Proposition 3.2. Let M be an Orlicz function. The following are equivalent

(i) M ∈ ∆2.

(ii) hM is asymptotically uniformly convex.

Proof. We write X = hM for readability. First, assume M ∈ ∆2. Consider 0 <
β < +∞ given by Lemma 3.1. Fix x = (xi) ∈ D. There exists n ∈ N such that
x ∈ Hn ∩ SX . Fix h = (hi) in Hn ∩ SX , t ∈ [0, 1] and λ > 0. By the disjointness of
supports of x and h we have

∞∑

i=1

M

(
|xi + thi|

1 + λ

)

=
∞∑

i=1

M

(
|xi|

1 + λ

)

+
∞∑

i=1

M

(
t|hi|

1 + λ

)

.

Note that for every i ∈ N, |xi|, |hi| ∈
(
0, M−1(1)

]
.

∞∑

i=1

M

(
|xi + thi|

1 + λ

)

≥
1

(1 + λ)β

∞∑

i=1

M (|xi|) +
tβ

(1 + λ)β

∞∑

i=1

M (|hi|) .

As M ∈ ∆2, for every z = (zi) ∈ SX , we have
∑∞

i=1 M(|zi|) = 1. This gives

∞∑

i=1

M

(
|xi + thi|

1 + λ

)

≥
1 + tβ

(1 + λ)β
.

Take λ = (1 + tβ)1/β − 1 to obtain that for every x ∈ D, there exists a finite co-
dimensional subspace of hM such that for every z in the unit sphere of this subspace
and for every t ∈ [0, 1] we have

‖x + th‖ − 1 ≥ (1 + tβ)1/β − 1.
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By the equality (3), in the proof of Lemma 2.3, we have δX(t) ≥ (1 + tβ)1/β − 1, and
the asymptotic uniform convexity of hM follows.

Second, assume M /∈ ∆2. Then, according to [8, Theorem 4.a.9], hM contains an
isomorphic copy of c0. Using Remark 2.2 we conclude that hM is not asymptotically
uniformly convex.

Proposition 3.3. Let M be an Orlicz function. The following are equivalent

(i) M ∈ ∇2,

(ii) hM is asymptotically uniformly smooth.

Proof. We write again X = hM . First, suppose that M ∈ ∇2. Consider 1 < α < +∞
given by Lemma 3.1. Proceed exactly as above, with the fact that for every z =
(zi) ∈ SX , we have

∑∞
i=1 M(|zi|) ≤ 1, to obtain that for every x ∈ D, there exists a

finite co-dimensional subspace of hM such that for every z in the unit sphere of this
subspace and for every t ∈ [0, 1] we have

‖x + th‖ − 1 ≤ (1 + tα)1/α − 1.

By (2), in the proof of Lemma 2.3, we have for every t ∈ [0, 1], ρX(t) ≤ (1+tα)1/α−1.
As α > 1, we have limt→0 ρX(t)/t = 0. Thus hM is asymptotically uniformly smooth.

Second, assume M /∈ ∇2. Then hM contains an isomorphic copy of ℓ1. Using
Remark 2.2 we conclude that hM is not asymptotically uniformly smooth.

Remark 3.4. Following [4, page 81] or [11, page 239], we consider two indices of
Simonenko type: fAM = inf

{
tp(t)

M(t)
: 0 < t < M−1(1)

}

and ÜBM = sup

{
tp(t)

M(t)
: 0 < t < M−1(1)

}

.

Quantitatively, we have proved that

(i) If 1 < fAM < +∞, then X = hM is asymptotically uniformly smooth for every
t ∈ [0, 1]

ρX(t) ≤ (1 + tÜAM )1/ÜAM − 1.

(ii) If 0 < ÜBM < +∞, then X = hM (which equals ℓM here) is asymptotically
uniformly convex for every t ∈ [0, 1]

δX(t) ≥ (1 + teBM )1/eBM − 1.
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4. Separated sequences in the unit sphere of Orlicz sequence

spaces

The modulus of asymptotic uniform convexity of an infinite-dimensional Banach space
X is connected with K(X) by

1 + δX(1) ≤ K(X). (7)

The complete proof is given in [1]. We sketch it for the sake of completeness. Fix
α < 1 + δX(1) and x1 ∈ SX . By definition, there exists a finite co-dimensional
subspace Z1 ⊂ X such that for every −z ∈ SZ1

, ‖x1 − z‖ ≥ α. Starting from x1,
a sequence (xn) such that, for every m 6= p, ‖xm − xp‖ ≥ α, is constructed by
induction in SX . For every n ∈ N, xn+1 is taken in the unit sphere of Zn, with (Zn)
a non-increasing sequence of finite co-dimensional subspaces of X , starting from Z1,
obtained by induction, using the fact that for every Z ⊂ X , 1+δZ(1) ≥ 1+δX(1) > α
(see Proposition 2.3.(2) in [7]). As this construction is done for every α < 1 + δX(1),
the inequality (7) is proved. More can be said in the setting of Orlicz sequence spaces.

Theorem 4.1. Let M ∈ ∆2 be an Orlicz function and X = ℓM the associated Orlicz

sequence space. Then

1 + δX(1) ≤ K(X) ≤ 1 + ρX(1).

To prove this theorem we need the following technical lemma.

Lemma 4.2. Let X be a Banach space and x, y ∈ X be such that 0 < ‖x‖ ≤ 1,
0 < ‖y‖ ≤ 1 and ‖x − y‖ ≥ 1. Then

∥
∥
∥
∥

x

‖x‖
−

y

‖y‖

∥
∥
∥
∥
≥ ‖x − y‖.

Proof. We can suppose that
‖x‖

‖y‖
≥ 1. Let us consider φ : t 7→ ‖x − ty‖ − ‖x‖, which

is a convex function of t ∈ [0,∞) such that φ(0) = 0. We have
∥
∥
∥
∥

x

‖x‖
−

y

‖y‖

∥
∥
∥
∥
− ‖x − y‖ =

1

‖x‖

(

φ

(
‖x‖

‖y‖

)

+ ‖x‖

)

− ‖x − y‖

≥
1

‖y‖
φ(1) + 1 − ‖x − y‖ by convexity of φ,

=

(
1

‖y‖
− 1

)

‖x − y‖ + 1 −
‖x‖

‖y‖

≥
1

‖y‖
−

‖x‖

‖y‖
(because ‖y‖ ≤ 1 and ‖x − y‖ ≥ 1)

≥ 0 (because ‖x‖ ≤ 1).
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Proof of Theorem 4.1. The left-hand side inequality has been discussed before (see
[1]).

First, suppose that M /∈ ∇2. As explained above, this implies that ℓM = hM

contains almost isometric copies of ℓ1. According to Lemma 2.1, we have ρℓ1(1) = 1 ≤
ρℓM

(1). So, in this case, the right-hand side inequality is trivial because K(X) ≤ 2.
Second, suppose that M ∈ ∇2. This allows us to use Lemma 2.3 in the sequel.

We proceed by contradiction to prove the right-hand side inequality. Suppose that
K(X) > 1 + ρX(1). There exists β such that 1 + ρX(1) < β < K(X). According to
[14] (see also [12] or [5] or [6]) if M ∈ ∆2,

K(X) = sup
(xi)=x∈SX

{

λx > 0 :
∞∑

i=1

M

(
|xi|

λx

)

=
1

2

}

. (8)

So there exists (xi) = x ∈ SX such that

∞∑

i=1

M

(
|xi|

β

)

>
1

2
. (9)

Claim 4.3. We can suppose that there exists p ≥ 1 such that x ∈ Hp and ‖x‖ = 1.

Indeed, fix ε > 0 and p ≥ 1 such that

1

2
+ ε <

∞∑

i=1

M

(
|xi|

β

)

and

∞∑

i=p+1

M

(
|xi|

β

)

< ε.

Consider x̃ ∈ Hp given by x̃ = (x1, . . . , xp, 0, 0, . . .). Then ‖x̃‖ ≤ ‖x‖ = 1 and, as M

is non-decreasing, x above can be replaced by
x̃

‖x̃‖
∈ SHp

. The claim is proved.

Now, as 1 + ρX(1) < β, according to Lemma 2.3, there exists n ≥ 1 such that for
every z ∈ SHn , ‖x−z‖ < β. Let us consider Z = Hn∩Hp. For every z ∈ SZ we have

∞∑

i=1

M

(
|zi|

β

)

+

∞∑

i=1

M

(
|xi|

β

)

=

∞∑

i=1

M

(
|zi − xi|

β

)

≤ 1.

Then, using inequality (9), we obtain that for every z ∈ SZ

∞∑

i=1

M

(
|zi|

β

)

≤
1

2
.

The characterization (8) for Z, seen itself as an Orlicz sequence space, implies

K(Z) ≤ β < K(X).

As Z is a one complemented finite co-dimensional subspace of X , this contradicts the
following
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Claim 4.4. Let X be a Banach space and Z be a one complemented finite co-

dimensional subspace of X. Then K(Z) = K(X).

Indeed, denote by Π : X → Z the canonical projection. Consider 1 < α < K(X).
There exists ε > 0 and a sequence (xn) ∈ SX such that for every m 6= p

1 < ε + α ≤ ‖xm − xp‖

≤ ‖(xm − Π(xm)) − (xp − Π(xp))‖ + ‖Π(xm) − Π(xp)‖ .

The projection Π is a continuous linear operator with a norm less than 2 because
Z is one complemented in X . Thus the sequence (xn − Π(xn)) takes values in a
compact subset of X . After relabeling, as Z is one complemented in X , we can
suppose that for every n ≥ 1, Π(xn) > 0, Π(xn) ≤ 1 and for every m 6= p,
‖(xm − Π(xm)) − (xp − Π(xp))‖ ≤ ε. This implies that for every m 6= p,

1 < α ≤ ‖Π(xm) − Π(xp)‖ .

Let us consider the sequence

(
Π(xn)

‖Π(xn)‖

)

⊂ SZ . Using Lemma 4.2, for every m 6= p

we have ∥
∥
∥
∥

Π(xm)

‖Π(xm)‖
−

Π(xp)

‖Π(xp)‖

∥
∥
∥
∥
≥ ‖Π(xm) − Π(xp)‖ ≥ α.

This implies that α ≤ K(Z) for every α < K(X) and so K(X) ≤ K(Z). As the
reverse inequality is clear, the claim is proved and Theorem 4.1 too.

5. Comments

Recall that for every 1 ≤ p < +∞ and for every t > 0, δℓp
(t) = ρℓp

(t) = (1+tp)1/p−1.
If X = ℓp, then inequalities in Theorem 4.1 are accurate:

K(X) = 1 + δX(1) = 1 + ρX(1) = 21/p.

It is not often true as explained below.
By Remark 3.4 and Theorem 4.1, we have proved that if X = ℓM is an Orlicz

sequence space built on an Orlicz function M ∈ ∆2 ∩∇2, then

21/eBM ≤ 1 + δX(1) ≤ K(X) ≤ 1 + ρX(1) ≤ 21/ÜAM . (10)

Left and right inequalities in (10), involving ÜBM and fAM , are in connection with the
better estimates of K(X) given in [11, Theorem 2.3; 13, Theorem 2.5]. Moreover, it
must be said that there is often a gap between 1 + δX(1) and 1 + ρX(1). Indeed, let
us consider an Orlicz function M ∈ ∆2 ∩∇2. Following [8, page 143] we set

αM = sup

{

p : sup
0<λ,t≤1

M(λt)

tpM(t)
< ∞

}
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and

βM = inf

{

q : inf
0<λ,t≤1

M(λt)

tqM(t)
> 0

}

.

According to Theorem 4.a.9 in [8] and comments after its proof (page 144), X = ℓM

(which coincide with hM here because M ∈ ∆2) contains almost isometric copies of
ℓp for every p ∈ [αM , βM ]. Thus, according to Lemma 2.1,

1 + δX(1) ≤ 21/βM ≤ 21/αM ≤ 1 + ρX(1).

Moreover, using Proposition 1 in [5] and the fact that Λ(X) =
K(X)

2 + K(X)
, we obtain

K(ℓαM
) = 21/αM ≤ K(X). Thus if αM 6= βM , we have

1 + δX(1) ≤ 21/βM < 21/αM ≤ K(X) ≤ 1 + ρX(1),

so that the left-hand side of (10) is not accurate.

The equality (8) plays an essential role in the proof of Theorem 4.1. Hudzik,
Wu and Ye, in [6], give an analogue of (8) in the setting of Musielak-Orlicz sequence
spaces. We refer to [10], [8], [6] and [3] for some background about modular sequence
spaces. Let us recall here that a sequence of Orlicz functions (Mi) is called a Musielak-

Orlicz function. The Musielak-Orlicz sequence space ℓ(Mi) is defined as the modular
sequence space of all real sequences x = (xi) such that there exists λ > 0 satisfying
∞∑

i=1

Mi

(
|xi|
λ

)

< ∞. Equipped with the Luxemburg norm

‖x‖ = inf

{

λ > 0 :

∞∑

i=1

Mi

(
|xi|

λ

)

≤ 1

}

,

ℓ(Mi) is a Banach space. The modulus of asymptotic uniform smoothness of the
corresponding space h(Mi) is studied in [3]. Let X = ℓ(Mi) be a Musielak-Orlicz
sequence space built on (Mi) satisfying the assumptions of Theorem 1 in [6], and
satisfying the assumptions of our Lemma 2.3, then we have

1 + δX(1) ≤ K(X) ≤ 1 + ρX(1).

Indeed, as explained before, the left-hand side inequality is valid for all infinite-
dimensional Banach spaces. To prove the right-hand side inequality, our starting
point is Theorem 1 in [6] which gives the analogue of (8). Namely

K(X) = inf
n∈N

sup
(xi)=x∈SX

sup
m∈N

c(x, m, n), (11)
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where, for every (xi) = x ∈ SX and m, n ∈ N

c(x, m, n) = inf

{

c > 0 :

n+m∑

i=n

Mi

(xi

c

)

≤
1

2

}

.

We proceed as in the proof of Theorem 4.1. Toward a contradiction, assume that
there exists 0 < β < +∞ such that 1 + ρX(1) < β < K(X). With (11) this gives in
particular

β < sup
(xi)=x∈SX

sup
m∈N

c(x, m, 1).

So there exists (xi) = x ∈ SX and there exists m ∈ N such that

∞∑

i=1

Mi

(
xi

β

)

≥

m+1∑

i=1

Mi

(
xi

β

)

>
1

2
.

Claim 4.3 remains true. We use the inequality 1+ρX(1) < β as before to obtain a one
complemented finite co-dimensional subspace Z of X such that for every (zi) = z ∈ SZ

and for every m ∈ N,

m+1∑

i=1

Mi

(
zi

β

)

≤

∞∑

i=1

Mi

(
zi

β

)

≤
1

2
.

So for every z ∈ SZ and for every m ∈ N, c(z, m, 1) ≤ β. The equality (11) applied
with Z gives K(Z) ≤ β < K(X), which contradicts Claim 4.4.

According to [2], 1 < K(X) for every infinite-dimensional normed space X . So, the
inequality K(X) ≤ 1 + ρX(1) is false for infinite-dimensional Banach spaces X such
that ρX(1) = 0, like for example X = c0. We conclude with the following question:
is the inequality K(X) ≤ 1+ ρX(1) true for every infinite-dimensional Banach spaces
X such that 0 < ρX(1) ?
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