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Coverings of S® Branched over Iterated
Torus Links

CARMEN SAFONT

ABSTRACT. Coverings of S° branched over iterated torus links appear naturally and
very often in Algebraic Geometry. The natural graph-manifold structure of the
exterior of an iterated torus link induces a graph-structure in the branched covers. In
this paper we give an algorithm to compute valued graphs representing a branched
cover given the monodromy representation associated to the covering. The algorithm
is completely mechanized in order to be programmed, and can also be used for
finding representations of groups of iterated torus links.

1. INTRODUCTION

Iterated torus links constitute a class of links whose more important
examples are algebraic links, that is, links (in the sense of Algebraic
Geometry) of isolated singularities of algebraic complex curves in C2.

Coverings of S3 branched over algebraic links appear naturally in the
study of singularities of complex surfaces. Given any isolated normal
singularity of an algebraic complex surface (¥, p), the singularity link (i.e., the
boundary of suficiently small regular neighborhood of p in ¥) is a well
defined three-manifold which can be represented as a covering of S3 branched
over an algebraic link whenever ¥V is endowed with a finite map into C2.
Through this paper, branched coverings are understood in the sense of Fox
(see [F1]). The (normal) 2-dimensional singularity has a unique minimal
resolution. Associated to it there is the so called dual graph of the resolution.
This graph can be also thought as a plumbing graph, and the plumbed three-
manifold represented by it is precisely the singularity link.

Iterated torus links are obtained by a sequence of iterations, or satel-
lizations. So, a given iterated torus link is (roughly) the last of a sequence of
iterated torus links, each obtained from the preceding one by an iteration.
The exterior of a link obtained by a sequence of iterations in endowed with
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a natural structure of graph-manifold. A graph-manifold is defined (in [W])
to be a connected compact orientable 3-manifold with a finite system of tori
that decomposes the manifold into S'-bundles. Any graph-manifold can be
described by a valued graph, which determines the manifold up to
homeomorphism. A finite covering of S3 branched over an iterated torus link
induces a graph-manifold structure in the cover. Thus, the topological type of
the cover is described by a valued graph. In this paper we work out an
algorithm to find graphs of the cover for any given finite covering of §3
branched over an iterated torus link, starting from the monodromy
representation of the link group into a symmetric group. Our algorithm
provides at the end Waldhausen graphs of the cover. When the cover is a
singularity link, one can go further and obtain plumbing graphs, and obtain
explicitely the graph of the singularity resolution. The algorithm for this last
step is contained in [Ne].

In fact there is a theoretical procedure for constructing coverings of a
triangulable manifold using a «splitting complex» of the manifold, due to
Neuwirth ([Neu], [Mon]). But most times this procedure cannot be carried
out practically; it depends on how complicated the manifold obtained from
cutting open along the splitting complex is. Instead of using a splitting
complex, we use for the exterior of an iterated torus link its decomposition
into S'-bundles, which can be determined algorithmically.

In brief, our procedure is the following. We completely codify the given
iterated torus link by means of a sequence (§2). Then we uniquely associate
to this sequence a graph-structure of the link exterior. In §3 we derive an
inductive presentation of the link group which allows reading the generators
of the fundamental group of each torus of the graph-structure-and computing
the permutations associated to them by the monodromy representation of the
link group- in terms of a set of meridians of the link. This is applied in §6 to
compute, for a given S'-bundle of the graph-structure of S3, the characteristic
numbers of the S!-bundles which cover it, and also the matrices which
describe the gluing of the family of S'-bundles of the covering manifold.

This procedure was already used in the author’s thesis to give an
algorithm for describing cyclic branched coverings. The problem of describing
non abelian covers is less easy in its first step, when computing the
monodromy representations induced on the fundamental group of each S'-
bundle of the link exterior. In the abelian case one does not need to care
about conjugation, and the work can be greatly simplified ([S]).

The inductive presentation of the fundamental group of the link exterior
derived in §3 can also be used for finding representations of iterated torus link
groups into symmetric groups in an algorithmic way. It has to be remarked
that there is no systematic procedure for finding representations of a knot or
link group, apart from the cyclic and metacyclic ones ([F2]). This may help
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to represent locally an algebraic complex surface as a branched covering
of C2

This work is an expansion of part of the doctoral dissertation, written
under the direction of Prof. José Montesinos, whose guidance the author
deeply appreciates. The author would like to thank also Prof. C. Weber and
E. Artal for helpful suggestions, and J. Mas for help when programming the
algorithm.

2. ITERATED TORUS LINKS

We take the concept of iterated torus link (ITL, for short) as it appears in
[M-W]. Let us recall the definition in order to establish notation.

(2.1) For integers A,u,n, where n>0, A and u coprime, L(A, u;n)
denotes an n+2 component link EUIUN,U...UN,. Here E and [ are the
components of a Hopf link in an oriented S* such that the linking number
Lk(E,I)=+1 and N;, 1 <i<n, are parallel torus knots lying on unknotted
torus separating E and 7, such that

Lk(E, Ny=A\
Lk (I, N)=p

In [M-W] it is always assumed that A>0 and p##0.

(2.2) For alink L in oriented S3 we will denote by N (L) a closed tubular
neighborhood of L, and N°(L) its interior. For an oriented knot K, a mer-
idian m is assumed to be oriented in such a way that Lk (K, m)= +1.

The components E and 7 of a link L (A, u;n) are each a trivial knot. We
will take always their canonical framings. On the other hand, §°— N° (EU )
is an S'-bundle over an annulus with fibers isotopic to N, i=1,...,r. So

dN (N,)is also fibered, and we will take any of these fibers as a framing for N,

Let K be an oriented knot in S and / a framing of K on dN (K). Set

X=83—N(K)
X' =83—=NO(L(\, pu;n))

Then d.X and dN (E) are tori endowed each with meridian-longitude pairs
(m, D) and (m’,l) respectively. There exists an essentially unique homeo-
morphism ¢: dN (E)— d X permuting meridians and longitudes, and XU, X
is the complement in S3 of a link K’ which is said to be obtained by satel-
lization of L (A, u;n)on K.
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(2.3) An iterated torus link is defined to be any link obtained by
perfoming the following operations:

1) A finite number r of satellizations are made succesively. The first one
is a satellization of a link L(A, u;;n,) on the trivial knot. For
2=<i=r, the ith-satellization can be perfomed with a link L(\,, u;n;)
on any component of the link already obtained.

2) After having performed all the satellizations, some link components
can be deleted or some orientation reversed.

(2.4) For our purposes it is convenient to perform the satellizations
using L(A, u): =L (A, u,1). We will continue assuming A >0 and x5 0. Ob-
viously, the same class of ITL is obtained.

After a satellization of L (A, 1) on a knot K, the components I and N of
L (A, ) become components of the new link which we will denote K again
and K (A, p) respectively. The images of the framings selected in (2.2) for
and N after the satellization will be called toral framings of K and K(A, p),
respectively. It will be assumed throughout this paper that satellizations in
ITL are perfomed using these framings. This choice of the framings in ITL is
the most suitable for a topological study of this class of links, and seems to
have been used first by Eisenbud and Neumann. Other framings are some-
times used (see [M-W]).

(2.5) Once the choice of framings has been made, four vectors of r+1
entries suffice to reconstruct a given ITL obtained by a sequence of r
iterations performed using L (A, u;), 1 <i=<r. These vectors will be named iz,
la, mu and ep, and will be next defined. We will refer to them as the toral
sequence of the ITL and will use them as the data for introducing the ITL to
a computer.

Definition

1)
it(0):=0
J if the ith-satellization is made on the
it (i) = component introduced in the jth-satellization
0 if the ith-satellization is made on the trivial knot.

2) la):=1, la@i):=\ for 1<i<r

3) mu0):=0, mu@)=u forl<i<r

4) ep(i):=0,1 or—1according to whether the component introduced in
the ith-satellization (or the starting trivial knot, if i=0) is after all

deleted, conserved with the same orientation or with reversed
orientation.
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Algebraic links are a specially important family of iterated torus links. In
[M-W] it is given a criterion to decide whether an ITL is algebraic or not.

3. GRAPH-STRUCTURE OF THE EXTERIOR OF AN ITL
(3.1) Let L be an ITL given by a toral sequence.

If L is not the trivial knot there is a sequence of links Ly, L, ,..., L, such
that L, is the trivial knot and L; is the result of a satellization of L (A; ;) on
some component of L;_;, for | <i<r, and L is obtained from L, by possibly
neglecting some components and reversing the orientation of some others.
The sequence of satellizations provides expressions

S3I—NO(L)=X,U W U...UW,
S3I—NO(L) = X,UW,U..UW,UU

where X, is the exterior of the trivial knot in 3, each W; is a copy. of the
exterior of L (\;, ) in 3 and U is a disjoint union of solid tori, tubular
neighborhoods of the components of L, neglected to get L. Fori=1,....r, W,
is an S'-bundle over an annulus with a hole. Therefore the union written
above shows a graph-manifold structure of the exterior of the /TL. We will
refer to it as the graph-structure associated to the toral sequence of the link.

(3.2) Let us look at the exterior of L(A, p) in 3, which we will denote
W. Since IU N is a closed braid with braid axis E, W is homeomorphic to a
mapping torus

H = HxI
" (x,0)=(n(x),1)

of a disc H with A+1 holes, where I=[0, 1] and n denotes the automorphism
of H defined by the braid, (0% 0\ ... 0, 9;)*. We follow the notation of [B] for
braids. Let g be a basepoint for H and x ,..., X\, X4+ be a basis for m (H, g)
such that
o(x)=x; if j#£i i+l
Oi(X)=X;Xiy 1 Xi
0;i(Xi+1)=X;

Let / denote the homotopy class of the loop

— H,
1—[(g. 0]
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Then a presentation of  (H,, [(g, 0)]) is the following one:

|x1 ,...,xA,le,I:?x,-l:xm, l:1,,)\+1'

where xm denotes the image of x; under (the homomorphism)n. The braid
group acts on the right on , (H, g). If O denotes the set {x|, x, ..., X\, Xp+1, [}
of the generators and T the set {Ix;/=x;m, i=1,...,A+1} of relations, the
above presentation of m; (H,, g) is briefly written |O:T].

Figure 3.1 represents W. u =3 in the picture.

(3.3) Figure 3.1 represents W. Through a homeomorphism from H, to
W, the basepoint g of H, / and x; ... x, x)+; go to the points and loops denoted
the same way in figure 3.1. This is how the generators of the presentation
|O:T| of m (W, g) must be read.

We will denote by 7, T, and T, the boundary tori of W, which are,
respectively, dN(E), dN(I) and IN(N). We take g, a and c in figure 3.1 as
basepoints for 7, T, and 7. Fix paths @ and o’ in W joining respectively a and
cto g Let

6:m(Tg) — m(Wg)
8y m (T, @) — m (W, g)
8. :mi(Te, ¢) — m (W, g)
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denote inclusion induced homomorphisms followed by the isomorphisms of
change of basepoint associated to the fixed paths. Let m be as in figure 3.1.
Then m and / form a coordinate system of 7. Lét /, be a toral (i.e. canonical)
framing of I based at a on T, and m, be a meridian of / based at a such that
xy+1 =am,a~!. Then m, and [, form a basis of (T, a). Finally, m_ and /.
provide a basis for m (T,, c), where m, is a meridian of N such that
xy=a'm, o’~" and /, is a toral framing of N on T based at c.

Lemma

l) 6(m)=x, vee XA Xn+1
s()=1

i) 8,(my) =X\t

£ (gt - X0 X)) (Xp o Xa Xae ) I >0
8. (l)=
IRty o 3 Gasr o Bagr) X5y o 1<<O

where |p| =tA+a, t=20, 0<a<A

iii) 6.(m/)=x,

8. (1) =P (xy ... xx Xx+1

Proof. We will derive only the formula for 8, (/,), since the others are
immediate. We can think of 8,(/,) as the pictorical longitude of the [/
component of L(\, i) projected as the closure of the braid (o oy—; ... 0, 0)*
together with its axis. We will look at the closure of this braid inside a solid
torus. Assume first u>0. Then §,(l,)=0a, a,...a,l, where a; are the fol-
lowing:

= Xr41 Xp Xpt

For 1<r<X,a,=(a,— @3 ... & Xrt1) Xaertr (a1 @) oo 2 0y)

FOI’)\,< r, a,= (d,_| &,_2 o'z, x}\-i-l) Qoo O\ 4] O dr—}\-H

e G (00 @ 0 @)

See figure 3.2
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Figure 3.2. Top and botton are identified by translation.

If r=tA+a, 0<a<A, then
0, =Gy .. G XL Xp—ar XU (@) o).
This follows from an easy induction, using the fact that

(a, a,,_,) a, (da—l dl)ZX')\.H Xa—at1 Xa+1 for 0<a=<A.

Therefore, if p=tA+a>0, 0<a<A,

0 0 @y = (0 ) (e - O ZL Xnmgtr X)) (@)
=0 Xaman X0 (0 o) =
=Z0N Conmgtr - X XN R (e 0) XL
2 o X)) X3 Bap (X X0) Xy =

= X008 Ooaat 1 o X0 Xa1) (7 o0 X0 Xpg )

Finally, &, (1,)= % (Xa—at1 .- Xx Xas1) (X1 oo X)Xy 1) L
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If ©u<0, 8,(L)=1(y...7v,)"", where
V1= X1 X)X+
Ye=(Tr=t o V1 Bat) Xnmrt1 a1 V1 oo V) for 1<r=A
V= (V=1 71 k1) V1 e Va1 VA Va1 -
N & SO N Y fora<r.

(See figure 3.3).

Figure 3.3. (A, u)=(3,—4). Top and botton are identified by translation.
As before, if r=tA+a>0, 0<a<<A,
Ve = (Fret o V1) XN Xncatr X0 (V1 Vi)

Voo Vil = Y1 oo Y9ul—t Vit - 71 X Xnat1 XL (V1o V=) =
=X Xacart X (V1 Viu-1)s
where |u] =tA+a, 0<<a=A. As we can see, the formulas are the same as
those for ;5. Hence

Voo Vi = X0 (gt - Xa Xa) (g X0 X))’
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Finally,

O (I )=1(v1 ... Y1) "= 1(Fnt1 Zn oo X)) (Fngs B oo Bagrr) XA,

(3.3) Going back to the ITL L of (3.1), for i=1,...,r S>—=NO(L)=
S3— NO(L;,_)U W,, where W, is a copy of the exterior of L(\;, ;) in S3. The
pattern of W, has been described in (3.2). All the elements introduced in (3.2)
will be used for W, after labelling them with the subscript or superscript i.
Thus, were write dW;=T'UT;UT!; the basepoints in T/ T} T! will be
respectively g; a; ¢; and so on. The group (W, g;) is presented by

|xi1,xi2,---,xix,-,xfmﬂ), L: 7ixijli=xij7h, J=1, L N+
Let Oi:{xil seens Xikps Xigh 1) l;} and let Ti={7ixijli(xij’7i), J=1,,0+1
Then m (W)=0,: T}|.
Fori=1,..,r, $3— N°%(L)=X,U W,U...U W, The piece W, is attached
through 7 to a boundary torus of X; (wheni=1) or X,U W ,U..UW,_,. Itis

possible to determine to which torus it is attached. In order to do this, we
define a function

££:{1,2,.0,r} = 10,1,2,....r — 1}

recursively as follows, with the aid of an auxiliary function cf:{0,1,...,7} —
{1,2,...,r}.

Define cf (0) =0. To define ff (i), assume cf (i} is defined for all i"<<i. Then
ff(i)=cf (it (7))
Redefine cf on i and it (i) by
cf@)=i cf(itQ))=i

and continue the inductive definition of ff.

Now we claim that if ff(i)= j, the bundle W, is attached to the bundle W,
through TJ if it (i) does not coincide with it (i) for any 7<i, and through
T} otherwise. Note that cf(i)=j if and only if N (K,)C dW,. Moreover,

T ifi<j

IN(K)= T ifie
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Set Gy=m (S*—N°(Ly)) and G,=m(S?— N°(Ly)), for i=1,.,r. A
presentation of G; can be obtained inductively as follows. The group Gj is
isomorphic to Z. Let x be a generator of G, (a meridian of L), and S,={x}.
Since $3— N°(L)=(83— N°(L._,))U W,, G; can be obtained from G, ; and
(W) by the Seifert-Van Kampen theorem (assume the selected basepoints
in the attaching tori are matched). For 1 <i<r, define S;=S;_,U O;. Then §;
is a set of generators of G,, with defining relations R;, which is next described
inductively:

Ry=1
Ri=T\WU{h=1, Xy ...xin X100+ =X}
Ri=Ri_\UTU{Li=8}(1), Xi1 ... Xix; Xipn+ 1) = Xjon+1) }
if W, is attached to W, through T}, and
Ri=R_\UT,U{L=08L(l), X1 ... Xpn, Xinj+ 1) = Xj;
if W} is attached to W, through T

In particular, we obtain that m(S3— N%(L))=1S,: R,|. Let S be the
subset of S, which consists of the elements representing meridians of L, — L.
Then |S,: R,, S| is a presentation of m ($3— N°(L)).

4. REPRESENTING GRAPH-MANIFOLDS

A connected compact oriented 3-manifold M is called a graph-manifold if
it contains a system {7} ,..., T,} of disjoint properly embedded tori such that
each component of M — N°(T), where T=T\U...UT,, is a fiber bundle with
fiber S! and base a connected surface. The system {7y,..., T,} is a graph-
structure for M. The definition is due to Waldhausen [W].

We will call m-graph any connected graph with vertices y,,..., 4, and
edges 7| ,..., 7,, Where each vertex p; carries a triple of integer numbers (g; r; €;),
r,=0, and each edge 7; is oriented and carries a matrix 4,€ GL(2,Z)—SL (2,Z).
(The prefix m- is to suggest a graph with matrices).

Given a graph-manifold, construct an m-graph as follows:

1. Represent each component M;, i=1,...,n, of M— N°(T) by a vertex
M

2. Eachtorus T}, j=1,...,r is adjacent to two components (possibly the
same) of M — N°(T). Call them, arbitrarily, M}, and M;_. This means
that the boundary of N(T;) (N(T;)=T?x I) shares one torus T}
with dM,, and the other, T;-, with d M;_. Then represent the torus 7}
by an edge 7; joining u; and u;-, oriented towards p;y.
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Fix an orientation for the fiber of each S'-bundle whose base is an
orientable surface and choose a coordinate system (@j+, fi+) on T} such that
Ji+1s a fiber of M, (with the fixed orientation if the base of M;, is orientable,
and with an arbitrary orientation otherwise), and Ji+ a5 =1 where « denotes
the intersection pairing on d M, (M} inherits an orientation from M, which
induces an orientation on dMy). Choose (a;_, /=) in the analogous way.
Under the natural isomorphism, both coordinate systems are related in H, (T)
by a matrix of GL(2,Z)— SL(2,Z),

7= () [7]
Jird T \ oy Bi] LS~
Put the matrix (71' 61') on the edge 7;.

@ B

3. Let g; be the genus of the base of the S'-bundle M, which is negative
if this base is nonorientable. Let r; be the number of boundary
components of M lying in M,. If r;=0, let ¢; be the Euler number of
the S'-bundle obtained from M, after collapsing the curves parallel to
a;+(y whenever j+_,=1i. Then, value the vertex u; with the triple
(€50,e) i=1,...,n If r;0, value it with the triple (g;, r;,, —).

Remark. Suppose r;=0. Note that, if a, ..., a, are the horizontal curves
of the selected coordinate systems in the boundary tori of M,, then
a+..+ a,=—e; f; in H,(M).

Actually, the m-graph constructed represents the manifold M. which, up
to o.p. homeomorphisms, is the graph-manifold constructed as follows. For
each vertex u,; take an oriented S'-bundle over a closed connected surface of
genus g;, with Euler number e,. Choose a pseudosection S;. If g;= 0, choose an
orientation for it, which induces an orientation for the fiber declaring that the
orientation of S; followed by the orientation of the fiber coincides with the
orientation of the S!'-bundle. Then remove the interior of a tubular
neighborhood of r;+n; disjoint fibers, where #, is the number of edges of the
m-graph incident at the vertex u; (loops are counted twice). The result is an
S'-bundle M,. Then, for each edge 7, joining vertices u;, u; choose a torus T;
in dM; and a torus Ty ;in d M,. Glue M,, M, along these tori according to the
homeomorphism defined by

7= () 7]
o;

where zf 8 €GL(2,Z)— SL(2,Z) is the matrix assigned to the edge 7; and

. ‘] ] - - . . .
(@i, f) is a coordinate system on T; j such that f; is a fiber of M, (oriented if
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2:=0), and a;; is the curve S;N T;; oriented in such a way that fiea;;=1 ondM,
The system (ay;, fi) is chosen on T}; in the analogous way.

This way of representing graph-manifolds justs generalizes the way
Waldhausen represented almost all reduced graph-manifolds in [W]. Wald-
hausen defined reduced graph-manifolds by excluding a number of cases
which can occur in a graph-structure. But for the purposes of this paper it is
convenient to be able to represent any graph-manifold. Part (6.3.3) of
theorem (6.3) of [W] statres the following: «For a graph-manifold (M, T) and
a choice of homeomorphisms of each component of M — T with S'-bundles,
one can construct in a finite number of steps the manifolds N,,..., N,, such
that for j=1,...,n N, is either homeomorphic to a reduced graph-manifold
or a lens space or $2x S!». We devote the next section to work out an
algorithm to apply efectively this theorem for the family of manifolds which
is the object of our study, namely the covers of S3 branched over ITL.

5. WALDHAUSEN GRAPHS

The covers of $3 branched over iterated torus links are in a natural way
graph-manifolds. Suppose that L is an ITL and pr: M—S* is a covering
branched over L. If

S3— N (L)=XoUW,U..UW,uU

is, with the notation of §3, the graph-structure associated to a toral sequence
of the link, then

M=pr' (Xp)Upr (W)U...Upr (W)Uupr- (U)Upr—' (N (L))

exhibits M (which is connected, closed and orientable) as a union of Sl-
bundies. The base of each of these S!-bundles is an orientable surface.
Therefore, and thanks to theorem (6.3) of [W], parts (6.3.1) and (6.3.2), for
these graph-structures the cases to be excluded from reduced graph-structures
are the following. Here (M, T) denotes the graph-manifold and M, M,
denote S!-bundles of the graph-manifold adjacent to a torus T of the graph-
structure.

R1. M,# M,, and M, is homeomorphic to the product of an annulus
and the cercle S'.

R2. The fiber of M, is homologous on T; to the fiber of M,.

R3. M, is a solid torus, and a meridian curve of M, intersects the fiber
of M, transversally once.
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R4. M, is a solid torus, and a meridian curve is homologous to the fiber
of M2.

R5. M;= M, is homeomorphic to the product of a torus and I=[0, 1],
and there exists an element of H;(T}) sent to itself or its inverse by the
natural gluing automorphism of H, (7).

R6. M, and M, an solid tori.

R7. T+#0 and M is an S!'-bundle with base S2..

Suppose that G is an m-graph répresenting (M, T), u, and u, the vertices
of G representing M| and M,, respectively, valued (g, 0, €,), (g5, 0, e,); 7, the
edge representing 7. Suppose M, = M, and M, = M,_, with the notation of
§4; (ay, 1)) and (a,, f>) coordinate systems on T}, T7, respectively, such that
firay=10ndM, and f5-a,=1 on dM,: In H, (T,) both systems are related by

a matrix,

[7l=(2 ) [

Al \e B |2
and the matrix z z) €GL(2,Z)— SL(2,Z) valuates 7, oriented towards u,.
Thus, G has the form

)
(g1,0 el) (a B) (g2’ 0 82)

‘
o-' @ oo

-

The condition Ri) is equivalent to the following condition Gi) on the
graph, i=1,2,3,4,6,7.
Gl. p;# u,,21=0 and u, has valence 2.
G2. a=0if yy#uy, a=0and B=11if yy=pu,
G3. u, hasvalence 1, g =0 and whenever ¢; =0, then y=¢, e {1, — 1}.
G4. p; has valence 1, g, =0 and whenever ¢, =0, then v =0.
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G6. u;F# uy, both have valence 1 and g, =g,=0
G1. Gis ©0.0,¢)

0,0,e)

When RS occurs, G is O (‘Y Z) Then M is a torus bundle,
o

and when e=0, the matrix is a monodromy matrix. The classification of
torus bundles up to homeomorphism from their monodromy matrices is well
known.

Different choices of coordinate systems lead to different m-graphs for
(M, T). We would like to decide whether the graph-manifold is or not reduced
by looking at an m-graph. One can realize that checking conditions G1 to G7
is independent of the coordinate systems chosen, and that one can easily get
an m-graph where e; =0. In fact

(1,0, ) (z Z’) (82, 0,e2)
() ¢ - ()

and

Y—ea d—ef

(£1,0,0) ( o B )(82,0’32)
@-. - = < ®-----

represent the same graph-manifold. Also the m-graphs

(£1,0,¢)
O D
@..(ig.l:()’())@ (7‘;91 a 5—3‘31 B)

and
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represent the same graph-manifold. Finally, in an m-graph there is a choice
in the orientation of the edges, which corresponds to the choice of M, as M.
Only checking condition G2 is afected by this choice, and one can verify that

G2 holds for (7 Z) if and only if it holds for its inverse (_B g) Therefore,
a a —

from any m-graph representing (M, 7), either we see that the manifold is a
torus bundle and know a monodromy matrix, or otherwise we can immedi-
ately decide whether the graph-structure is reduced by obtaining first an
m-graph where all vertices of valence 1 are valued (0,0, 0) and checking on it
conditions G1, 2, 3,4, 6, 7.

For the graph-structure of M induced by the branched covering
pr: M—S? over an ITL, we know that R1, R5 and R7 do not occur.
However, we may find that the graph-manifold is not reduced. In this case we
try to eliminate superfluous tori of the graph-structure and, ultimately, to
obtain the decomposition of the manifold into connected summands which
are either S2x S!, or lenses, or reduced graph-manifolds, as Waldhausen’s
theorem (6.3) in [W] guarantees. We can do this algorithmically as next
described. And, in this reduction process, cases R1, R5 and R7 may appear.

Reduction rules. They are stated without proof because it is contained in
the proof of Waldhausen’s theorem. For the formula in 4) see [Ne], prop. 2. 1.

1) If Gl occurs, obtain from G an m-graph of (M, T) of the from

vy—ea 6—ep

@ (g; 0, e) B (09 0’ 0) ( ] B ) (g25 0 eZ)

ce - @ < < < — -

with B€ GL(2,Z)— S L(2,Z). Then the manifold represented by

(ga 09 e) B’ (gZa 0, eZ)
IREET . ( *‘.""

where B'=B (_(1) (1)) (7—6' « 6_;' B), is homeomorphic to M.
(43

2) If G2 occurs, then the manifold represented by the m-graph

(81+82,0,e,+e;—0)
O©-1I®

is homeomorphic to M.
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3) If G3 occurs, then the manifold represented by the m-graph

(82,0, e,+¢€d)
SING

is homeomorphic to M.
4) If G4 occurs, obtain a graph of the form

0 €
(050’0) (f B) (g2, 0’ €
H £

.

representing (M, T). Here I'y;, j=1,..., k, is a connected m-graph, joined to y,
by k; edges. Then M is homeomorphic to N, # ... # N;# (#* S?x §1), where N; is
the manifold represented by the m-graph I';;, and

k:2g2+2l (k;—1)

6) If G6 occurs, then M is a lens space. Compute a fraction determining
it.
7) If G7 occurs, then M= L(e, 1).

Notice that these reduction steps reduce the number of tori of the graph-
structure and keep the orientable character of the base of the S'-bundles.
Therefore other cases than R1-R7 from Waldhausen’s list never appear. In a
finite number of steps we will get a disjoint union of m-graphs, each of them
representing either a lens space, or S' X §?, or a reduced graph-structure. And
this is easily decidable from an m-graph which does not fall in any of the cases
G1-G4. For the only graph-structures of a lens space such that the bas. s of
the S'-bundles are orientable are Seifert structures with base S? with at most
two exceptional fibers ([Se], [W]).

Consider an m-graph representing a reduced graph-manifold which is
neither a torus bundle over S' nor a Seifert fibration over S? with three
exceptional fibers, Then, according to [W], §9, we can associate to the graph-
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manifold a valued graph which classifies the manifold up to homeomorphism.
And this graph can be obtained from the m-graph as follows. Look at an edge
7; of the m-graph joining vertices w;; and u; . This edge represents a torus 7;
adjacent to S'-bundles M;. and M, .

Case 1. One of the S!-bundles M, or M,_is a solid torus (only one,
since the graph-manifold is reduced). Then the solid torus is chosen to be M.
Let h be a meridian curve of M;,. Among the systems (a;_, f;_) chosen as in
§4, there are exactly two (and one of them is obtained from the other by
changing the orientation of both curves) such that

h =€j(ala/_+[3]f]_)

where o; and B; are integers such that 0<B;<a@;, and ¢;==x1. In
Waldhausen’s notation, w4, 4, and 7; appear as follows (k=j_):

(o), By) (&, 0, Si)

° —

{ . . .
Case 2. Neither M}, nor M;_ are solid tori. Then there are (unique up to
change of orientation of both curves in the system) coordinate systems
(a;_, f;_) and (a;y, fj+) on T;-, T;*, respectively, such that, in H;(T),

Ji=¢_(_a_+B_f)
Ji-= € (@ @+ B fi4)

where €t €{l,—1}and 0= Bj(t,< L Then w4, u; and 7; appear as follows,

if j_=k and j,=i.

(gi: 09 ei) (aj—, Bj—) (gk’ 0’ ek)
- @ < Q---
or
(gi: 0, ei) (aﬁ"a ﬂﬂ-) (gk’ 0) ek)
- ® > 9---
As Waldhausen derives, €. =¢,_=: ¢, and a; =o;_=: «; and B; is the

inverse of 8;; mod «;.

Call A the graph obtained. A homomorphism H, (A4)— Z, is defined by
assigning to a cycle formed by edges 7;,..., 7;, the product ¢; -...-¢;,. The
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Waldhausen graph consists of the graph 4 with valued vertices, oriented and
valued edges, and the homomorphism H; (4)—Z,.

6. COVERINGS OF S® BRANCHED OVER ITL

Let L be a link in $3, and pr: M— S? be a finite covering branched over
L. 1t is determined by the unbranched covering of the exterior of the link,
which very often is given by a transitive representation w: m;(S*— N°(L)) — Zn.
Here 3n denotes the symmetric group on n letters, n the number of sheets of
the covering.

It is a folklore result that any finite covering of a graph-manifold
branched over a union of fibers induces a graph-structure in the cover. The
analogous result for Seifert manifolds was proved by Gordon-Heil [G-H],
and the result for .graph-manifolds follows from the proof of their theorem.
As a consequence of this and of (3.1), if L is an ITL the cover is a graph-
manifold. The aim of this section is to develop an algorithm to compute an
m-graph for it.

(6.1) Consider an ITL L given by a toral sequence. Take for L the
notation of §3. From the toral sequence we derive a closed braid presentation
of L, by the following inductive procedure. Start with the one- stnng braid
presentation of the trivial knot Ly. Once a braid with closure L,_, is obtained,
look at the strings which close to the component K of L;_;, j=it(i). For all
of them but one do the following: replace it by A;+1 parallel strings. Replace
the other string by the (N\;+1)-braid A* (02 oy, ;...0207)*, where
A=(0y,... 020" (a full twist in a (A;+1)-braid), and k is the integer
verifying that the toral minus the canonical framing of K; is k times the
meridian of K;in H,(S*— K}). Then what is obtained is a brald whose closure
is L. By repeatmg this, finally arrive to a braid whose closure is L,. Associate
to each string of the braid an (oriented) meridian of L,. Then a representation
of m; (8% — L,) into a symmetric group is determined by a suitable assignation
of a permutation to each string of the braid. This assignation will provide also
a representation of (2 — L) if, for any string corresponding to a compo-
nent of L, which is to be deleted do get L, the permutation assigned is the
identity. This procedure to obtain a braid whose closure is L, reflects the
gluing of the S'-bundles of the graph-structure described in §3, and the
strings of the resulting braid are grouped in a nice way which will allow to
obtain, from the permutations associated to the strings of the braid, the
permutation associated to each element of the generator system S, defined
in §3.

(6.2) The starting data of our algorithm will be the toral sequence of
the link L together with the assignation of a permutation to each string of
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the braid (whose closure is L,) corresponding to a component of L, We
will assume that this assignation comes from a transitive representation
w: my ($*— L) — 3n. The toral sequence of our ITL consists of vectors of r+1
entries, r= 1, and we will use the notation of §3 for the graph-siructure of the
exterior of L. The cover M associed to w is then the union M =pr'(X,)
Upr ' (W)U...Upr- ' (W)Upr'(N(L,))). The pieces pr-'(Xy), pr-'(W),
i=1,...,r and pr! (N(L,)) are S'-bundles which most often will be non
connected. They are pasted through tori, the preimages under pr of the tori
of the graph-structure downstairs. The vertices of a graph representing this
graph-structure of M are in one-to-one correspondence with the set of con-
nected components of pr—!'(Xy), pr' (W), i=1,...,r, and pr-! (N(L,)). The
edges are in one to-one correspondence with the connected components of the
preimages of the tori of {T%, T/, Ti, i=1,...,r}

(6.3) The monodromy representation w will be our tool to construct the
graph of M. We will repeteadly apply the following

Basic fact. If we are given a homomorphism W: (X, x) - Zn, where X
is a connected space, say a manifold_for simplicity, and x€ X, there is a
(possibly non connected) covering pr: X — X associated to w. The group Im w
acts on {1,2,...,n} determining a partition &, ={P, ,..., P,} of this set. Then
pr-1(X) has D connectcd components, each labelled by an element of #,.No
matter which basepoint is taken in X, the covering is determined by w up to
equivalence of coverings. Howewer, fundamental groups of X based at
different points are isomorphic but not ini a canonical way; two isomorphisms
differ in an inner automorphism. And a subgroup of %n conjugate to Im w
yields in general a different partition when acting on {1,2,...,n}.

If Yis a (connected) subspace of X and y € ¥, the inclusion €: (Y, y) — (X, )
induces

wes: m (Y, y)—m (X, y)—Zn
which is the monodromy representation of the covering
pr: pr-'(Y)—Y

The partition &, ; of {1,2,...,n} associated to we, is a refinement of &,
in the sense that each set of 2, is a union of elements of _@M A component
Y of pr-!(Y) is a subspace of a component X of pr1(X) if and only if the
element of #,, which labels Y is a subset of the element of %, which labels
X. Note that the procedure to obtain the partition &, is algorithmic if one
starts from a set o,,..., 0, of permutations which generate Im w.

(6.4) Look at the closed braid projection obtained for L, in (6.2). We can
visualize on it the graph-structure of the exterior of L,. For as L, is obtained
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from L,_, by replacing a component of it by a (\,+1)-braid, it appears a solid
torus containing this braid, such that L, ; is obtained from L, by colapsing
this solid torus to its core. The solid torus minus an open tubular
neighborhood of the (A,+1)-braid is W,. The same way one sees W,_,,..., W,
X,. A natural way to choose basepoints on each torus of the graph-structure,
and paths joining them, is the following. Fix a point * over the plane of
projection of L,. Fix a level of the closed braid that does not contain any
multiple point of the projection. Join the point * to each string of the closed
braid at the fixed level by a linear path. These linear paths intersect each inner
most torus (the tori of (S?*— Ny(L,)) in one point, which will be taken as
basepoint on this torus. Then proceed inductively as indicated in figure 6.1:

section of T* section of T

Of all sections of T% take the closest to the braid axis of L, and, on this
curve, the basepoint for 7. The paths joining the basepoints on the tori will
be the linear segments joining them. Then isomorphisms between the
fundamental groups of S3—N°(L,) based at the different basepoints we
handle have been fixed. We are in the situation of (3.3) and know exactly
what the elements of S, represent. It is clear how to compute{(x, w(x)),
x € S,}, using the relations of R, for the longitudes.

(6.5) Since paths joining the basepoints at the bundles or tori of the
graph-structure of §— N®(L) have been fixed, the inclusion induced homo-
morphisms followed by w are unambiguously defined. We will look first at
the associated unbranched covering of S — N9(L,), and at the end we will
look at the branch locus. Thus, for W;and T%, Tiand T}, i=1,...,r we have
respective partitions Q;, ¥, ¥ and ¥}, i=1,..,r, of {1,2,...,n}whose
elements (subsets of {1, 2, ..., n}) label the components of the preimage under
pr of the piece considered.

Compute the partitions ¥, @i and %!, respectively, from the sets of
permutations
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A'={w (' (m)),w ()}
Ai={w(8;(m)), 0 (5;(1)) }
Ai={w(8{(m)), w(8:())}

where 8! (m,), 6;(m}), 8;(lf), 6i(m}) and 8;(l!) are to be understood as words
on letters of O;C S;C .S, given by Lemma 3.3. This is a calculation from the
data{(x, w(x)), x€ S, }. The sets A’, A} and A} generate the image under w of
m (T, g), m (T}, a)) and = (T}, c;), respectively. Since W; is a trivial bundle,
A'UAFU Al generate the image under w of m (W, g;) and so Q; can be
computed from this set of permutations. Since X, and each component of
N(L,) are solid tori, the partition associated to them coincides with the one
associated to their respective boundary torus.

Let _ ) _
@':{E{,...,E;(w)}
PI={E{" s E¥ o)}
@5={E1ic 3vees Eic(i, c)}
Di={Vi,..Viy}

fori=1,...,r. Then r(i,0), r(i, a), r(i, ¢) and r (i) are the number of compo-
nents of pr=! (T, pr=1 (T}), pr—'(T¢) and pr-'(W)), respectively.

Construct a simplicial graph supporting the valued graph representing M
as follows:

1. For i=1,...,r, draw vertices v, ...v;; corresponding to the sets
Vi,.., Vi, Draw also vertices vp,..., Uoy,0) COIresponding to the
elements of &', to represent the components of pr—! (Xp).

2. Fori=1,..,r, W;is attached to Wy, where ff is the function defined
in (3. 4) for 1<l<r(1) 1<I<ff(i), join v; to vy by k edges if
ViV is the union of k sets of &',

3. The link L, has r+1 components. There are r+1 partitions of type &}
which were not involved in point 2. For each of these, draw r (i, c)
vertices and join k of them to vy, 1</=<r(i)if ¥V}, is the union of k
elements of &,

(6.6) Fix i, 1<i<r. Let W, denote the component of pr—! (W) labelled
by Vi€ Q.. The number of boundary components of W, is n;=k,+k,+k; if
¥, the union of k, (respectively k», k;) sets of & (respect. i, F)).

The curve [} is a fiber of W, Write the permutation w (8(1})) as a product
of disjoint cycles, d,, of which have ﬁgures in V}. Then pr—'(l}) has d,
connected components in W, each of them is a flber
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Lemma. Let F be an S'-bundle over a sphere with b holes. Let pr: F— F
be a covering such that, if f is a fiber of F, pr~! (f) has d components. The base
B of the S'-bundle F has Euler characteristic

x(B)=(2—b)-d

Proof. The surface B is homotopically equivalent to a 1-complex where
the number of O-cells is d, and the number of 1-cells is (b—1)-d.1

The base of the S'-bundle W, is an orientable surface whose Euler
characteristic is, according to the Lemma, (2 — 3) - d;=—d;;. Hence its genus
is '

1
gu=1+ ?(dil_ n;;)

(6.7) The choice of coordinate systems for the boundary tori of W,
i=1,2,...,r as in (3.4) was made to make easy the computation of the
homomorphism w on the fundamental groups of these tori. Howewer these
coordinate systems are not appropiate to represent the gluing of the S'-bundles
of the graph-structure of S®— N?(L) the way of Waldhausen. Appropiate
coordinate systems are obtained as follows.

Let P; be a cross-section of the (trivialisable) S'-bundle W;, oriented in
such a way that d ;N T} is the oriented curve —m/, in the notation of (3.4).
Orient- the fibers of W, so that the orientation of P; followed by the
orientation of the fibers gives the orientation of W, induced by that of 3. Let
u;=dP;,NT; and v;=dP;N T} (oriented curves). Then

u,~+v,-—-mc" =3P,

and therefore, if the homology classes of the curves are denoted the same way
as the curves themselves,

u+v,—mi=0 in H((W)
Let f; denote the fiber of W, In an unambiguous way we can denote by
f; this fiber in any of the tori 7% T, T.. Note that f; is homologous to /! on

Ti. Henceforth we will take (u; f), (v, f) and (—m{, f) on T%, T} and T,
respectively. The following relations are verified

[;‘";] = (—Z: ——i:) [nZ'] in H (T?)

(7] = (2 ¥)[%] e



204 Carmen Safont

for some intergers <y;, 6; such that y;\;—u,;8,=—1, 1 <i<r. Hence the first
matrix has determinant 1, and the second has determinant —1. Since the
fundamental group of a torus is abelian, these relations suffice to compute the
permutations w (&;), w (v;).

We know that W, is attached to the solid torus Xj in such a way that /|
becomes a meridian of X;. On the other hand, for i=2 T' coincides with

either T or Ti, j=f{f(i) (see(3.4)). Since satellization permutes meridians
and longitudes of the gluing tori (cf. (2.2)), in the first case the relation

[ = (2 o) %]

. J , J
Hence [m’] = [ a ] or [’7'] = [ ch ], and the following relations derive

I; I
from these and relations (1) given above in this paragraph:
U —yi —8\ [ mi —Yi —O\ (vi O\ Y
[f:] - My )\i) lﬁ ] - ( Mi )‘i) (/v‘j )\j) /;]

2
0

HE NI

The first equation holds in the first case, the second in the second case.

(6.8) Let T be an oriented torus, and pr: T— T a covering associated to
a transitive representation w: H, (7)—Zs. Let (a, f) be a coordinate system on
T such that a-/=1, where the dot denotes intersection on 7. Suppose we are
given 0,= w (a) and o,= w (f), and oy is the product of disjoint cycles of length
p. Then p divides s. Let pry: H,(T)—H,(T) be induced by pr.

Lemma

i) prx(D=pf
ii) There is a simple closed curve @ on T such that, if+denotes the

intersection pairing on T with the orientation inherited by that of T
and pr,



Coverings of S* Branched over Iterated T orz;s Links 205
a-f=1
pr*(&)Z%a—af
where a is determined by the conditions 6,7 (1)=0/ (1) and 0<a<p
iii) If ¢ is a closed curve on T such that c=xa+y fin H,(T), then
pr-'(c) =px&+(-;~ y+ax) f in H\(T).
Proof: The proof is based on constructing the covering pr: T—T using

the subcomplex aU! as a splitting complex for 7. Call X the square obtained
as the result of cutting T along this splitting complex (figure 6.2)

a a+
Fig 62 &S T . Wi f~ X f+
a a—

Then 7 is the union of s copies X| ,..., X, of X glued in this way: the edge
a4 of X, is glued to the edge a_ of X4, and the edge f5 of X is glued to the
edge f_ of X, k). The result is a big square like the one in figure 6.3, where
each column is made of p squares, and there are 5 columns. Top and bottom

are identified by translation, and the vertical edges of the big square represent
f These vertical edges are to be identified takmg the side f, of X,, where r=

(1) to the side f_ of X,, where r' =g, g (1.

An orient straight line from a point on the edge f. of X, to its
corresponding point on the edge fi of X, provides an oriented simple closed
curve a on T satisfying the statement of the lemma. Actually, a is covered by
the curves pa+af. Therefore

sa=prx (pa+af)=p pr«(a)+a pr« () =
=pprx(@+apf

Hence pr« (@)= % a— af. Part iii) is a simple calculation derived from i) and
ii). 1
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!

Fig. 6.3

Xo(1)

xl xan(l) ...... xr

(6.9) Up to now we have determined, for each i=1,...,r, partitions 2,
Pi Piand PP associated to W; T, T. and T!, respectively. We have
described how to find from them a simplicial graph representing the S'-
bundles and tori of the graph-structure of M. Moreover we have selected in
Ti (resp. T/, T}) appropriate coordinate system (u;, f}) (resp. (v;, f3), (—m/,
/) and the permutations associated to them. We can decide, from the func-
tions ff and cf, whether one of these tori is a component of 4 (§3—n®((L,)) or
it is the same torus as 7Y, T/ or T/ for some j+#i.

Now let us fix an index i and look at an element of Z,, say Vi;itis a
subset of {1,2,...,n} and labels a component W;, of pr=!(W)). We can algo-
rithmically find the elements of i @i and 9| that are subsets of Vi
Consider an element E of one of these partitions such that EC ViC{1,2,...,n}.
Then E labels a component of the preimage of a torus of dW,, say T Let us
denote 7 the component of pr—! (T) labelled by E. Next we are going to find
a coordinate system on T and what is needed to valuate the edge of the graph
of M representing the torus 7. Three cases can occur: either 7Cd (S3—N°(L,)),
or T="T,, or T coincides with a torus T"= T/, T} or T/ for some j#i. There
is a selected coordinate system on T, call it (@, f). Truncate the permutations
w(a), w(f), written as a product of disjoint cycles, taking the cycles whose
figures lie in E. Then a permutation o, is obtained from w(a), and o, from

w(f).

Casel. TCI(S*— N°(L,)). Then either T= T, or T=T;. Set m=m, or
m/. Express m as a linear combination of (a, f), using equations (1) in (6.7).
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Apply lemma (6.8) to obtain a transversal @ in T, and to express (pr/ T) (m)
as a linear sum of 4 and f Let /7 be a connected component of (pr/ 7)~! (m).
Normalize if necessary @ to another transversal @n such that m=e(aan+p8 f)
with 0=8<a, e=*1. The integer « is different from 0 since / is not
homologous to f (otherwise m would be homologous to f). To label the edge,
representing 7, which is incident to v;;, oriented outwards v;; with a matrix

complete (a, B8) to (‘; g ) €GL(2,Z)—SL(2,Z). Compute prx(an)=Aa+ Bf.

Keep associated to E the pairs (a, ), (4, B).

Case 2. T'=T'. Equations (1) in (6.7) allow to express /; as a function of
(u, f1). Take m=1, and proceed as in case 1.

Case3. T=T". Let f” denote the fiber in T’. Equations (2) in (6.7) allow
to express f” as a linear combination of (a, f). Take m = f” and proceed as in
case 1. Keep associated to T the pairs (a, B), (A4, B) and e. Analogously, the
selected coordinate system (a’, /) in T’, express f as a linear combination of
(a’, f) and obtain the corresponding (o, 8), (4’, B). Then a'=a, B/'=—

and one can obtain & such that (Z g) €GL(2,Z)—SL(2,Z). This matrix

valuates the edge associated to E, oriented towards the vertex representing
Wi.

(6.10) Once step (6.9) has been carried out for all parts @i @i and P
which are subsets of ¥}/, we have got a series of transversals, one for each
boundary torus of W;; and corresponding to them, a series of pairs (4;, B), ...,
(Ang i Bug,p)- Due to the relation u;+v;,—m}=0 in H, (W), the sum B, +...+
B, y=— pisei, Where ¢;; is the Euler number associated to v;;(W;) in the
graph of M. (see the remark in section 4; p;; is the integer such that

pr+ f = purf).
(6.11) Next proposition generalizes theorem 1 of [Ne].
Proposition. Any cover of S3 branched over an ITL es irreducible.

Proof: Let M be a branched cover of 3 over an ITL L. Let T be the
graph-structure on M induced by the covering and the graph-structure T
associated to some toral sequence of L. In order to prove that M is not a
connected sum, we begin by checking that R4 is never satisfied by (M, 7).

Suppose that T is a torus of T which separates M in a solid torus ¥ and
the union of the other S'-bundles of the graph-manifold. Then T=pr(7T”) is
a torus of 7, the graph-structure of the link exterior, and T is either a
component of d(§*— NO(L,)), or T= T, with the notation on §3 and the
present section. Let (a, f) be the coordinate system on T chosen as in (6.9).



208 Carmen Safont

Case 1. TCa(S3— N°(L,)). Then either T=T! or T=T.. Let m be the
meridian of the corresponding component of L,. Since m is not homologous
to the fiber of W,, pr-!(m) is neither a multiple of the fiber of pr—! (W), and
therefore the meridian of ¥ will never be homologous on 7” to a fiber of the
adjacent S'-bundle.

Case 2. T=T" Let m be a meridian of Xj. It is not homologous to the
fiber of W, because u;#0. Again, the meridian of ¥V, a component of
pr—! (m), is not homologous to the fiber of the adjacent S'-bundle, which is
a component of pr—! (W)).

Now, if L is not the trivial knot, the proof of theorem (7.1) of [ W] serves
as a proof that M is irreducible. On the other hand, all branched covers of 3
over the trivial knot are S3, which is irreducible.ll

Corollary. S2X S! never appears as a branched cover of S* over an
ITL.A

Corollary. Any branched cover M of S3 over an ITL is either a lens
space or a manifold homeomorphic to a reduced graph-manifold. Moreover,
the reduction process described in §5, applied to an m-graph of the branched
cover obtained by the algorithm of this section, decides wheter M is a lens
spaces, or a torus bundle, or a Seifert fibered space over S? with three
exceptional fibers (and give the invariants), or otherwise, ends in a
Waldhausen graph of a reduced graph-structure of M. R

By an irreducible link we mean a link whose exterior is an irreducible
manifold. The next corollary is a well known result

Corollary. Any ITL is prime and irreducible.

Proof: It is known that a link is prime and irreducible if and only if its
2-fold branched cover (or any virtually regular branched cover) is an
irreducible manifold (see [Lo-S]). B

7. FINDING REPRESENTATIONS

The algorithmic procedure described in §3 for finding a presentation of
the fundamental group of the exterior of an ITL has been used in §6 to
develop an algorithm or computing branched covers of S? over ITL. Another
application is an algorithm for finding representations of the groups of
iterated torus links into symmetric groups.

Suppose we are given an ITL and we are asked for all coverings of $3
branched over it with a fixed number of sheets, say n. Let us take the notation
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of §3 for the ITL, that is, let us call L the ITL, and Ly, L, ..., L, the sequence
of links of the satellization process carried out to obtain L, given a toral
sequence. The group m; (83— N°(L)) is generated by S; with relators R,
i=0. The procedure consists in checking inductively which maps from S; into
3, fori=0,1,...,r, subject to the restriction that x;;, x;, ,..., X;\, be mapped to
conjugate permutations (i.e., permutations of the same type), preserve the
relators of R, Those maps which pass the test for S;, R; are tried to be
extended to S;;,. The maps of S, into X, which preserve the relators of R, and
S yield representations of the group of L into %,,. The ones that are transitive
correspond to n-fold coverings of S branched over L. A non transitive
representation gives rise to several branched covers whose number of sheets
divides n.

On the other hand, one may be interested in determining the iterated torus
link which admit a branched covering of a certain type, for instance of a given
branch index type. Then we work in the reverse direction. For simplicity, let
us look first for iterated torus knots. Such a knot K is uniquely determined
by a sequence (A, 1), ..., (A, ;). Then 83— NO(K)=X,UW, U.. . UWUU,
where W, is attached to W,_, through T;~', for i>0. Fix the order of the
symmetric group, %,,. We begin looking for pairs (A,, &,) and maps from O,
into 3, which map x, p,+) to the identity permutation, send X, ... X,), t0
conjugate permutations of the type required by the branch index conditions,
and which preserve the relators 7,. Then the inductive step is to find the pairs
(A, ;) for which it is possible to extend the map from S,— S, to S,—S,_;.
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