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About the Existence of Integrable Solutions
of a Functional-Integral Equation

G. EMMANUELE

ABSTRACT. We improve (in some sense) a recent theorem due to Banas and Knap
([2]) about the existence of integrable solutions of a functional-integral equation,

1. INTRODUCTION

Let 1=[0,1] be. We consider the following functional-integral equation

|
x()=g()+f (1 f( k(hs)x((s))ds) 1€l (1)

where f:IXxR—=R'=[0,+e),k: IX]I=R*, g 1=R ¢: =1 are functions
verifying special hypotheses (see section 2) and we look-for solutions x& L! (1).
As remarked in the paper [2] this equation has been considered by a number
of authors because of its importance in problems in physics, engineering and
economics; further, problems in the theory of partial differential equations
lead, sometimes, to the study of the equation (1). Recently, Banas and Knap
([2]) gave a result of existence of integrable solutions to (1). They were forced
by the techniques used to consider certain monotonicity assumptions on
& /. k (see hypotheses i), ii) and iv) in [2]), that we are able to eliminate
completely here. However, we must observe that Banas and Knap obtain a
monotone solution, a fact that doesn’t follow from our hypotheses. Prof
Banas also observed that under our hypotheses we don’t need to use the
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measure of weak noncompactness he considered in [2] because the operator
we define following [2] actually has a relatively weakly compact range. So it
is enough to apply Tychonoff fixed point Theorem ([5]). We take this
opportunity to thank him very much for this remark that made our proof
simpler.

2. PRELIMINARIES AND MAIN RESULT

As in the paper [2] we define the following four operators

(Kx)(t):flk (t,s)x(s)ds
(Fx)(1)=f(t,x(1))
(Hx)(t):_/'(l,jl k(, s)x(s)ds)

X=Ax=g+Hx(@)=g+ FKx(¢).
We consider the following hypotheses
(i) geL'(D).
(i) f:I1x R —R" satisfies Caratheodory hypotheses (i.e. f'is measurable with
respect to t€1, for all x€R, and continuous in x€ R, for a.a. t €1) and
there are ac L' (1), b=0 such that

ft,x)<a()+b|x| 1t€l, xeR

(this last inequality is a necessary and sufficient condition for F, and so H, to
take values in L'(I) when acting on elements of L' (I); see Theorem [ in [2])

(iit) & verifies Caratheodory hypotheses and there is A € L' (1) such that
k(t, x)<\(1) tae inl xeR

(under (iii) the linear operator K maps L'(I) into L'(I) continuously; let us
denote by || K| its operator norm)

(iv) ¢: 1 =1 is absolutely continuous and there exists B>0 such that ¢’ ()= 8
foraa. t€l.

(v) blK|/B<I.
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The technique used in [2] is the following: under the above assumptions 4
is a weakly continuous operator from a suitable B into itself; furthermore
there exists L& [0, 1] such that B(A (Y))=< LB (Y), (B the measure of weak
noncompactness introduced in [3]), for all nonempty subsets ¥ of B, and
hence results from [1] and [6] can be applied to get a fixed point of the
operator x — g+ FKx(p). The difference between the result in [2] and our
Theorem below resides in the technique we use to obtain the weak continuity
of A; indeed, Banas and Knap consider some monotonicity hypotheses on
g, f, k we are able to dispense with. Further, we do not make use of the
measure of weak noncompactness introduced in [3] as remarked in the
Introduction.

Theorem. Under the assumptions i)-v) above the equation [1] has at
least a solution x€ L' (]).

Proof. As in the paper [2] we can prove that A:B,— B, where
s=(llgll+lall)/ (1 —b]| K|l B"). Furthermore, it is not difficult to see that the
set A(B,) is relatively weakly compact ([5]), since it is bounded and
uniformly integrable. Hence Tychonoff fixed point Theorem ([5]) will
conclude the proof once we have the weak continuity of 4. So, we need only
to show that 4 is weakly continuous from B, into B,, i.e. A maps weakly
convergent nets (x,) C B, into weakly convergent nets (A4 (x,)). It is clearly
enough to show that H is weakly continuous. So let (x,), x,C B, be with
X, xo; if we prove that for any ¢>0, any y*eL=(I), {|y*||=1 and any
subnet (x, ) of (x,), there is another subnet (x ) for which |<H(x )

—H(xy), y*> | <e we are done (proceeding by contradlctlon of course)

To reach our target, we start by noting that the operator x — x(¢) from
L' (D) into itself is bounded and linear; hence it is weakly continuous and so
X, ()Xo (¢) in L' (1). Since B, is bounded in L' (I), the set { x, (@), xo () } is
even bounded in L'(l), by a number M. Now, glven e>0 choose

6>>0 such that meas (D) <86, impliesf 2[a(t)}+bA(1)]dt < —- Furthermore,

choose a closed subset 1, C 1, meas (I\];) < —i, with A | L continuous (use Lusin
Theorem, [4]) Q= max A. Again consider a closed subset I, C I, meas (I\I,) <

6

o With Jiiyet-om. om

closed subset I;C I, meas (l\I;)< , with k . continuous (and so uniformly
3

continuous) (use Scorza-Dragoni Theorem, [6] ). Put Iy= ﬂ I,. I, is a closed

i=1
1

subset of 1. Now, observe that, for ¢/, "€y, if ¥, (1) :f k(t,5)x,(@(s))ds,

Yo (1) ——-fl k (1, 8)xy (o (s)) ds, one has

0

continuous (and so uniformly continuous) and a
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I
[Wa (1) = (1) | Sf(,,"‘("' )=k (1", 5) || X (0 (5)) | ds

(the same is true for ). Since klI I is uniformly continuous and (x,)C B,,
}

the set {i,, Yy} is equicontinuous in C*(1y). It is very easy to see that the same
set is bounded by QM in the norm of C°(ly), hence the Ascoli-Arzela
Theorem can be applied to get a relatively compact subset of C(I,). The net
(t//‘,ﬁ) admits a converging subnet (Wa,, ). On the other hand, for 7€,

I . !
Yq (7)=j k (1, S)x,,(cp(s))ds-ow0(7)=f k (1, 5)x @ (s))ds
{) {)

since x, (@) = xo () in L' (I) and s = k (7, ) is in L*(1). Hence w,,ﬁ — iy in the

C® —norm on I. Now, recall that fI
so we have

Y
is uniformly continuous and
loX[-QM. oM]

lim (¢, Va, (0)=£(t, Yo () uniformly on 2)

Now, take y*€L=(l), with ||y*||«<1, calculate this y* on (f(e, %,, (*))
=f(* ¥ (*)) Y

[ ore s, 0)-6wma|s

SOy )=S0 w0 () di+

T, OIS by D) =f0 0o () | dr =

Sfl., L/, Vo, ()=S0 'Ilo(t))lde;\l" 2[a(n+bA(n)]at.
Now, recall that (2) is true and observe that

3
meas (IN)S 3 m (NS 3 5<8 50 that [, 2000 +AA(D]dr < 7.
I= 0

Hence the last member of the chain of inequalities written above is smaller
than e for v sufficiently large. This is what we need to show that H is weakly
continuous on B,, We are done,
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