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ABSTRACT. We study contact normal submanifolds and contact generic normal
submanifolds in Kenmotsu manifolds and in Kenmotsu space forms, Submanifolds
mentioned above with certain conditions in Kenmotsu space forms are shown that
they are CR-manifolds, spaces of constant curvature, locally symmetric and Einstein-
nian. Also, the non-existence of totally umbilicial submanifolds in a Kenmotsu space
form~ 1 is proven under a certain condition,

0. INTRODUCTION

The differential geometry of CR or semi-invariant submanifolds in
Riemannian manifolds such as Kaehlerian (including Hermitian), Sasakian,
product Riemannian and locally product Riemannian manifolds have been
studied by many geometers (concerning the above, see (1] and [10]) Also,
Quaternion CR sub-manifolds of quaternion manifolds and QR-submanifolds
of quaternion Kaehlerian manifolds have been studied ([11). We studied
symmetric twofold CR-submanifolds in a Euclidean space R%" which is a
special quaternion Kaehlerian manifold with global Kacehlerian quaternion
structure ([6]). Also we studied semi-invariant sub-manifolds in K-manifolds,
S-manifolds and T-manifolds ([5]), [7]).

On the other hand, Kenmotsu studied a class of almost contact
Riemannian manifolds ([3]). The almost contact Riemannian manifolds
which belong to the class mentioned above are nowadays called Kenmotsu
manifolds ([2]), [4]). [8]).
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Examples of them were given in [3] and [8]. which we state in the
following: let N be a Kaehler manifold and f: R — R be a function defined by
f(1)=ce', where ¢c€R, ¢>0. Then the warped product M =Rx,Nis a
Kenmotsu manifold.

We studied submanifolds in Kenmotsu manifolds whose structure vector
field & is tangent to the submanifolds ([4]). Papaghiiuc studied submanifolds
in Kenmotsu manifolds whose structure vector field ¢ is tangent to the
submanifolds and normal to them extensively ([8]). Thus, it is natural to
study them further.

The purpose of the present paper is to study, what we call, contact normal
submanifolds and contact generic normal submanifolds in Kenmotsu
manifolds and mainly those in Kenmotsu space forms (the notion of
Kenmotsu space forms is the one which is analogous to Sasakian space forms
in Sasakian geometry and the notion of contact normal submanifolds
corresponds to that of £&--submanifolds in [8]). One of the typical examples of
Kenmotsu space form ¢, M(c), is the hyperbolic space of constant curva-
ture — I (when ¢= —1).

In Section 1, we survey the fundamental properties of Kenmotsu
manifolds, give the fundamental formulas of submanifolds when the ambient
manifolds are Kenmotsu space forms and definitions of contact normal and
contact generic normal submanifolds in Kenmotsu manifolds and finally state
the result which was obtained in [8] for later use.

In Section 2, we treat totally umbilical contact normal submanifolds and
point out that they are extrinsic spheres (totally umbilical submanifolds with
parallel mean curvature vector) if dim. D+ >1 (for the definition of D+, see
Section 1). Also we prove the non-existence of totally umbilical contact
normal submanifolds with dim. D+>1 immersed in M (¢) with ¢##—1 and
that the submanifolds with the same conditions mentioned above are CR-
manifolds (for CR-manifolds, see [1]).

In Section 3, we treat contact normal submanifolds of codimension 2
mainly in M(¢). We prove that if M is a contact normal submanifold of
codimension 2 in M(c) and if either the second fundamental form is parallel
or the mean curvature vector field is parallel, then ¢= —1 or M is anti-
invariant and that M is locally symmetric. And we also prove that if M is a
totally umbilical contact normal submanifold in M(c), then M is a space of
constant curvature if M is proper (the assumption that dim.D+>1 1is
excluded, cf. [8]).

In the final Section 4, we treat contact generic normal submanifolds and
contact generic normal products mainly in M(c). Several results concerning
contact generic normal products such as the integrability conditions of the
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distributions induced on the submanifold, properties of leaves of them and
properties of the canonically induced structures on M etc are obtained. At the
end of this section, we treat hypersurfaces in Kenmotsu manifolds whose
structure vector field is normal to the hypersurfaces. Main results in this case
are that (1) if a hypersurface M normal to the structure vector field ¢ is in

M(c). then M is locally symmetric, (2) M is flat if and only if c= — 1 and (3)
if M is in M(c) with ¢ — 1, then M is Einsteinnian.

1. PRELIMINARES

Let M=M>"" be a (2m+ l)-dimensional almost contact metric
manifold with structure (¢, £ n,<,>), where ¢ is a (1, I) type tensor fields,
£1s a vector field, n is a I-form and <, > is the associated Riemannian metric
on M. Then, by definition ([9]), we have

(L) @?=—I+tn@&nE) =1, ¢6=0,n0¢=0,
(12) <o X dV>=<X, ¥>—-n(X)n(1), n(X)=<X, £>,
where 1 is the identy tensor field and X, Yare vector fields in #7. Let M be an

n-dimensional isometrically immersed submanifold in A. Let 7(M) and
T(M)- be the tangent bundle and normal bundle of M respectively.

Definition 1. M is called to be a contact normal submanifold in M if the
structure vector field & is normal to M and if there exists a differentiable
distribution D on M such that
(1.3  T(M)=D® D-, ¢D=D, ¢D-CT(M)-,

where D- is the complementary distribution of D in T(M).

_ Definition 2. M is called to be a contact generic normal submanifold in
1/ the structure vector field & is normal to M and

(1.4) H(T(M)-YCT(M),
holds.

Definition 3. A contact normal submanifold M is called ¢p—invariant
(resp. anti-invariant) if D-=0 (resp. D=0).
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We call a contact normal submanifold M is proper if it neither ¢—inva-
riant (D+~=0) nor anti-invariant (D=0).

Now, we recall that M is called a Kenmotsu manifold if
(1.5) T P=<oX P>¢-n(?)0X, Tig=X-n(Xe,
where ¥ is the covariant differentiation on M.

Now, the formulas of Gauss and Weingarten are given respectively by
(1.6) U, y=9yY+B(X, V)
(1.7) Uy N=—=AuX+V4N,
where ¥ is the Riemannian connection determined by the induced metric
<,> on the submanifold M, V- is the metric connection on 7'(M)- and both
B and A are called the second fundamental tensors (or forms) satisfying
<B(X, Y) N>=<AyX, Y>, X, Y being tangent vector fields to M and N
being a normal vector field to M.

The mean curvature vector field H is defined by

(1.8) H=-}1- trace B.

M is called minimal if H=0, totally umbilical if B(X, Y)=<X,Y>H
and totally geodesic if B=0 idcnticallE And, the mean curvature vector field
H is called parallel if V4 H=0. Let R(resp. R) be the curvature tensor of
M (resp. M). Then the equations of Gauss, Weingarten and Ricci are given
respectively by

(19) <R(X, Y)Z W>=<R(X,Y)Z W>—
<B(X, W), B(Y,Z)>+<B(Y, W), B(X,2)>,

(1.10)  (R(X, ¥)2)-=xB)(Y.2)-(Vy (X D),

(1.11)  <R(X, Y)N, N'>=<R-(X, V)N, N'>=<[Ay, Ay] X, Y>,
where (R (X, Y) Z)- in (1.10) is the normal component of R(X, Y)Z, and where
(1.12)  (VxB)(Y,2)=V4B(Y,Z)-B(Vx Y, 2)-B(Y,Y, 2),

(113)  R-(X, V)= 95=V395=Vix 11,

(1.14)  [Ay AN]=AyAn—AxAw
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N and N’ being normal vector fields to M. The second fundamental tensor B
is called parallel if Vy B=0 identically. And, if R-=0 identically, then we say
that the normal connection of M is flat (or trivial).

Now, we recall that if M is a Kenmotsu space form ¢, then the curvature
tensor of M has the form

(1.15) 4R (X, V)Z=(c=-3)(<V.2>X-<X Z>P+
et DInX)nZ)T—n(P)n2) X
+n(Y)<RZ>E~n(X)<V,Z>E+<R 02>V~
~<YV¢Z>eX+2<X 0V>07}.

We denote a Kenmotsu space form ¢ by M(c). Then, if the ambient
manifold is a K~cnmotsu space form M(c¢) and M is a contact normal
submanifold in M(c), from (1.9), (1.10), (1.t1) and (1.15) we have

(116) <R(X, Y>2Z, W>=%~(c—3)(< Y, 2> X, W>=< X, Z><Y, W>)
+~i_(¢-+ DK X $Z><BY, W>—<Y,¢Z><dX, W>+
+2< X, 0 Y><Z W>)
+<B(X, W), B(Y, Z)>~<B(Y, W), B(X, Z)>,

(1L.17) @xB) (%, D= Ty B(X, D)= (c+DI<X, 62> (@)~
—<VY, ¢Z>(dX) +2< X, ¢ Y>(¢2)"},

(1.18) <R(X, NN, N'> =7:-(c+ DX, N><¢Y, N'>—
~<Y ON><oX, N'>)
+<[An Ap]X, V>,

where (¢ Y)* in (1.17) denotes the normal component of ¢ Y, etc.

Now, we recall that M is called a CR-manifold if there exist a
differentiable distribution D on M and an endomorphism J such that
J2==1on D, [/, J] (X, Y)=0 and [VX,JY]—[X, Y]eD) (X, YeD)[J, /]
being the Nijenhuis tensor of J(see [1]).

The following result is used later,
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Proposition A ([8]). Let M be a contact normal submanifold in a
Kenmotsu manifold. Then we have

(a) A X=-X, (b) Vié=0, () <H,{>=—1, (d) M is never mini-
mal,

(e) M is totally umbilical if and only if B(X, Y)=—<X, Y>¢ provided
that dim. D->1.

2. TOTALLY UMBILICAL CONTACT NORMAL SUBMANIFOLDS
AND EXTRINSIC SPHERES IN KENMOTSU MANIFOLDS

Let M be a proper contact normal submanifold in a Kenmotsu manifold
and let Ny=§& N, .., N,(r=2m+1—n) be the orthonormal vector fields
normal to M. Then the second fundamental tensor B is expressed by

@1 B(X, Y):ﬁI CAX, Y>N=—<X, Y>§+ﬁ2<A,X, Y> N,
iz =
where we put 4;= Ay, Then the mean curvature vector field H is given by
(2.2) H:% trace B:—g+§2 (trace A N,
And, the length || H|| of H is given by
23)  |HPP=1+ 22 (trace A))?
=

Now, from Prdposition A, (2.1) and (2.3) we immediately have

Proposition 2.1 Let M be a proper contact normal submanifold with
dim. D~>1 in a Kenmotsu manifold M. Then M is totally umbilical in M if
and only if

(2.4) A;=(trace A)1 (=2, .., r).
Proposition 2.2. A4 totally umbilical proper contact normal submanifold

in a Kenmotsu manifold is necessarily an extrinsic sphere provided that
dim. D+> 1.

Theorem 2.3. There exist no proper totally umbilical contact normal
submanifolds in a Kenmotsu space form M(c) with ¢#— 1 if dim. D> 1.



Contact Normal Submanifolds and Contact Generic Normal Submanifolds... 79

Proof. If M is totally umbilical with dim. D> 1, we have B(X, Y)=
=<X,Y>H=-—<X, Y>¢& by Proposition A. Also since Vi¢é=0 by
Propositions A, we have (V, B) (¥, Z)=0 and hence from (1.17) with Z= X,
we have

02%—(('+1)<X,¢Y>(¢>X)L,

from which we must have ¢= —1 because M is neither ¢-invariant nor anti-
invariant, completing the proof.

Lemma 2.4. Let M be a contact normal ¢-invariant submanifold of
codimension r>2 in a Kenmotsu manifold. Then

25) (@) VydpY=¢V,Y(e=Vi$=0),
(2.
(b) B(X.¢Y)—dB(X, Y)=<¢X, Y>¢

holds.

Proof. Using the first equation of (1.4), we have
(Vi) Y=<¢X, Y>E—n(V)pX=<oX, Y>¢
On the other hand, we have
(Vi) Y=V, 0Y— ¢V, Y=ViodY+ B(X.6Y) ¢V Y —dB(X, Y)

Since M is ¢-invariant, we see that ¢B(X, Y)€ T(M)*. Thus, comparing the
above two equations and taking the tangent and normal parts respectively, we
have our assertion, completing the proof.

Theorem 2.5. Let M be a contact normal totally umbilical submanifold
with dim. D* > | in a Kenmotsu manifold. Then M is a CR-manifold with
CR-structure (¢, D).

Proof. This follows from Lemma 2.4 and the definition of CR-
manifolds.

Remark. The assumption that the codimension r>2 in Lemma 2.4 is
essential because there exist no contact normal ¢-invarinat submanifolds of
codimension 2 in Kenmotsu manifolds (see Theorem 3.5 in the next section).



80 M. Kobavashi

3. CONTACT NORMAL SUBMANIFOLDS
OF CODIMENSION 2 IN KENMOTSU MANIFOLDS

Let M be a submanifold of codimension 2 in a Kenmotsu manifold M.
Since M is of codimension 2, we may put

(3.1) B(X,Y)=<ANX, YON+<Ap X, Y>N',
where N.and N’ are orthonormal vector fields normal to M.

From (1.16)—(1.18) and (3.lj. the equations of Gauss, Codazzi and Ricci
are given respectively by

(32 <RX.NZ W>=<R(X,V)Z W>—-<B(X, W) B(Y,Z)>+
+<B(Y, W) B(X Z2)>

=<R(X. V)2 W>—-<AyX, WS<ANY. Z>—
—<AN X W><AN Y. 2>

F<ANY, WA, I>+<Ay Y, WS <Ay X, 2>,
(3.3) (RX.Y)Z)=TxB)(Y.Z)—(VyB)(X, Z)

=<ANY, 2>V N—<ApX, ZOVN+ <Ay Y, 2>V N' —~
~ <A X, Z>U N’

(LW AWY, Z>—<(Vy WX, Z>+<AgpY, 2>
—<AvisX,Z>)N

(@AY, Z> =<y Ap X, 2>+ <AgirY, 2>
—<AvivX,Z>)N’

(34) <R, NNN>=<R(X.NNN>-<[ApnAp]1X, Y2,
where (Ty A)yY=VAnY —Agn Y — AW Y. 1t is seen that UyB=0 «m
(VyA)y=0.

Now, if the ambient Kenmotsu manifold M is a Kenmotsu space form
¢, then from (1.16) — (1,18) and (3.1) —(3.4) we have

(3.5) <R(X,Y)Z, W>=—l—(c—~3)(< Y,Z2><X, W>—
-<X,Z><Y,Z><Y, W>)
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T2<X, 0 Y><¢pZ W>)

F <A, WAV, 75>+ <Ap X, W><Ay Y, I>—
—<ANY, W><Ay X, 7>

<Ay Y. WO<Ay X, 2>

(3.6) <ANY,ZOVUN—<ANX, Z>VN+<Ay Y, Z>VN'—
— <Ay X, ISV N’
+(<(V)(A)NY, Z>—<(V)A)NX. Z>+<Av\\y' 7> —

<AgX,Z>)N

H(K (WA Y, 2>~ <y Ay X, 2>+ <Ay ¥, Z>—

<Aviv X, Z>)N'

= “’«II‘("+ DX, dZ>(pY)—< Y, ¢Z> (0 X)-+2< X, Y > (62)-.
(3.7) <R-(X, VN, N'>=%(¢-+ DX, GN><SY, N'>—

— <Y, QN><AX, N'>) +<[Ay, An-]1X, Y>,

Hereafter we take ¢ and { as unit orthonormal normal vector fields to M.
We first note that

(3.8) (VA Y=WA Y- Av Y- AV Y=—V Y+Vx V=0
by virtue of Proposition A. Now, differentiating <¢,{>=0 covariantly, we

have <¢, V+{>=0 because of Vi £ =0. Since we easily see that <V {,{>=0,
we have

Lemma 3.1. { is parallel in the normal bundle T(M)-.

Hereafter we assume that M is a contact normal submanifold of
codimension 2 with dim.D*>1 in a Kenmotsu manifold and put A=A,
Then the second fundamental form B is expressed by
(3.9) B(X, Y)=<A; X, YO¢+<A X, YO =—<X,Y>E(+<AX, Y>{.

Then, taking account of V{¢=Vy{=0 and using (3.9), we have

¥, B)(X, Y)=V.B(X,Y)— BN, X. Y)—-B(X.VzY)
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= (<X YO H<X VY2 EH(<(VA) X, Y >+
<AV, X, Y>> E+<AX, VYV, Y>) L
+<V, X, YD E—<AV X, YO E+ <X, V, Y > E—
CCAX T, Y S (=< (VA X, Y[

Therefore, by (3.8) and the above identity, we have

Lemma 3.2.  The second fundamental form B is parallel if and only if
Vz A=0

Now, the mean curvature vector field # is given by

1 2n1—1

trace B= S {—<e,e>E+<Ae, e >}

3.10 H=
( ) 2m—1 2m—1 i=1

=—¢+ (trace A),

2m—1
where {e;} is an orthonormal base of 7(M). Then from (3.10) we have

(3.11) HH“2:<1‘I, H>:l+(7rnl-——[)2 (trace A)2

Therefore, from (3.10) and (3.11), we have

Lemma 3.3. The following conditions are mutually equivalent:

(3.12) (a) trace A=0, (b) H=—¢, (¢)||H]|I=]1.

Remark 1. If M is totally umbilical then we have (3.12).

Now, differentiating (3.10) covariantly, taking account of V3 {=V1{=0
and Proposition A, we have

|
2m—1

3.13) () Ay X=X+ (trace A) AX, (b)VH= (traceVXA)é

1
2m—1

Therefore, from Lemma 3.2 and (3.13), we have
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Lemma 3.4. The following conditions are mutually equivalent:
(3.14) (a) B is parallel, (b) H is parallel, (c) VyA=0.
We are now in a position to prove the non-existence of contact ¢-in-

variant normal submanifolds in Kenmotsu manifolds. We have

Theorem 3.5. There exist no contact ¢p-invariant normal submanifolds
of codimension 2 in a Kenmotsu manifold.

Proof. It is clear that ¢p{€ T (M) because of <@, é>=<¢L(,(>=0.
Assume that M is a contact ¢-invariant normal submanifold. Then, for
XeT(M), we have <¢p{, X>=—<(, ¢ X>=0, which implies ¢ {=0. Hence
we have { =0, which is a contradiction.

Hereafter we confine our submanifold M to be a contact normal
submanifold of codimension 2 in a Kenmotsu space form M (¢). Then, putting
N=¢&and N'={1in (3.5)—(3.7), we have
3.15) <R(X,Y)Z W>:4l(('+l){< Y, Z><X, W>—<X, Z><Y, W>)

+<X, 0Z>><pY, W>—-<Y,¢pZ><¢pX, W>+
22X, p Y ><pZ W>}

+<AX, W><AY, Z>—<AY, W><AX, 7>,
(3.16) (<(VyA) Y, Z>—<(Vy A) X, Z>){

:4i((-+ (<X, $Z> (V) —< Y, ¢Z>(dX)-+
T2<X, dY> (7).

(3.17) <RY(X, ¢ >=0,

because of V;: é=V,{=0,4, X= — X and [A4;, A]]=0.

Remark. We see from (3.17) that the normal connection of M is flat.

Also, we have

Theorem 3.6. Let M be a contact normal submanifold of codimension 2.
in a Kenmotsu space form M(c). If the second fundamental tensor B is
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parallel or the mean curvature vector field H is parallel or Vx A=0, then
¢=—1or M is an anti-invariant submanifold.

Proof. By assumption and Lemma 3.4, the left handside of (3.16)
vanishes. Since ¢ { is a tangent vector field to M, putting Z=¢{ in the right
handside of (3.16) we have

RHS. of 3.16) =g (c+ (<X, 1> (@1 =<V, 67{> (@1 +
T2:<X 6 Y>(42))Y)

= L DI=<X > @D +< V(> (@0 —
—-2<X,0Y>{}

=— 2’ (c+ 1)< X, oY>L,

from which we see that ¢=—1 or M is an anti-invariant submanifold,
completing the proof.

Theorem 3.7. Let M be a contact normal submanifold of codimension 2
in a Kenmotsu space form M(c). If the second fundamental tensor B is
parallel or the mean curvature vector field H is parallel or Wy A =0, then M
is locally symmetric.

Proof. By assumption and Theorem 3.7, from (3.15) if c=—1, we have
R(X,Y)Z=<AY,Z>AX~-<AX,Z>AY.

Thus, taking account of V4 {=0, we have

(VyR(X, NZ=VR(X, NZ~RVy X, NZ~R(X, Yy Z~
—-R(X, WV, Z

=VUSAY,Z>AX—<AX,Z>AY)—<AY,Z> AV, X+
+<AVX, Z>AY

—<AVWY, ZDAX+<AX, Z>AVWY—-<AY, VW Z>AX+
+<AX,VyZ>AY

=<(VWA) Y, Z>AX+<AVW Y, ZS>AX+<AY,WZ>AX+
+<AY, Z>AVy X
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— <A X, ZS>AY-<AVWX, ZS>AY-<AX,VyZ>AY-
—-<AX,Z>(Vy A Y

—<AX, ZS AV Y=< AY, Z>AVWX+<AVX Z>AY

— <AV Y, ZSAX+<AX, Z> AV Y—<AY, D Z>AX-
—<AX,VyZ>AY=0,

which shows that M is locally symmetric. In case when M is an anti-invariant
submanifold, then (3.15) becomes to

R(X, }')z=%(<-+ WR(X, Y)Z+<AY, Z>AX~<AX,Z>AY,

where we put R'(X, ) Z=(XAVZ=<Y,Z>X~-<X,Z>Y. 1t is easily
seen that ¥, R’=0. Therefore, we see that in this case we have V, R=0,
completing the proof.

As a corollary of Theorem 3.6, we have

Theorem 3.8. Let M be a contact normal submanifold of codimension 2
in a Kenmotsu space form M(c) with c¢#—1. If the second fundamemal
tensor B is parallel or the mean curvature vector field H is parallel or
Vx A=0, then M is an anti-invariant submanifold and the Ricci tensor S and
the scalar curvature s are given respectively by

(3.18) S(X, Y)=—;— (m=1)(c+1)<X, Y>+(trace A)<AX, Y>—
<AX AY>,

(3.19) s—% (m—1)(2m—1)(c+ 1)+ (trace A)2— trace A2,

Finally, for totally umbilical submanifolds of codimension 2 in #(c), we
have

Theorem 3.9. Let M be a proper totally umbilical contact normal
submanifold of codimension 2 in a Kenmotsu space form M(c). Then M is a

space of constant curvature 7 (¢c+ 1) if dim. D-> | and a space of constant
curvature —1 if dim. D+= |,

Proof. We first assume that dim. D->1, Then we have 4 =0 and hence
VxA =0. Thus we see that M is anti-invariant by virtue of Theorem 3.6. Thus

from (3.15) we see that M is a space of constant curvature ~l~(c+ 1). Next we
assume that dim. D+=1. Then we see that D+={¢{}. Calculating Vo in
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two ways by using (1.5), (1.6) and (1.7) we have Vy ¢{+ B(X, p )= —pAX,
where X€ D. Since M is totally umbilical, B(X, Y)=<X, Y>H=<X, Y>

{—§+2 Lil (trace A)(}. Putting Y=¢{ in the above equation, we have
n

B(X, ¢ )=0 and whence we have Vy ¢ {= — ¢ AX. Then we have

(V.B)(X, 1) = (Vi B) (X, $0) — B(V-X, ) — B(X, V. $0)
= <VX L>— <X, V.pL>E+ 2_‘, (<X, S0 (trace A)L

Hl—

+ -.‘—-l<x, V. 6> (trace A)(+ 2‘ <X, $U>(Ztrace A)L

2m m—1
=0.

Thus, from (3.3), (3.6) with Z=¢{ and taking account of the above
identity, we have é (c+1)<X,¢Y>=0, from which, since M is proper, we

see that M is a space of constant curvature — I, completing the proof.

Remark. If M with dim. D> 1 is in M(—1), then we see from (3.15)
directly that M is flat. Also, we see that there exist no totally umbilical
contact normal submanifolds with dim. D' =1 in M(c¢) with ¢ —1.

4. CONTACT GENERIC NORMAL SUBMANIFOLDS IN
KENMOTSU MANIFOLDS

Let M be a contact generic normal submanifold (not a hypersurface so
that dim. D~>1, where D+ =¢ T(M)') in a Kenmotsu manifold. We denote
by D the orthogonal complementary distribution of D+ in T(M) so that we
may put

4.1y T(M)=DxD: (direct sum).
For a vector field Y tangent to M, we put
42) ¢Y=PY+FY,
where PY(resp. FY) is the tangent (resp. normal) part of ¢ Y. Then we have
(a) <PY,X>=—<PX,Y> (b) PPY=—Y+¢FY, (c) FPY=0,

(4.3)
(b) POoT(M)F={0}, (e) PPY+ PY=0.
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(e) is obtained by applying P to both handsides of (b) and taking account of
(d). Condition (¢) shows that the P is an f=structure on M (see, [1] or [10]).

The following lemma is valid (see [8]):
Lemma 4.1. Let M be a contact generic normal submanifold of a
Kenmotsu manifold M. Then we have
(@) AyyY=AyyX for X, YEDL, (b) D! is always integrable,
(4.4) (c) Disintegrable if and only if B(X, ¢ Y) — B(¢X, N=2<¢X, Y>¢,

(d) M is totally umbilical if and only if B(X, Y)= —<X, Y>§ for
vector fields X, Y tangent to M provided that dim. D> 1.

Now we have
Theorem 4.2. [f the distribution D is integrable, then the leaves of D are
totally geodesic in M if and only if
(4.5) B(X,¢Y)=<PX,Y>¢ forVX, YeD.
Proof). For Z=¢pN(NeT(M)'), we have
<W,Y, z>:<.vx Y, N> = —<Y, T dN>= — <V, (Vy ) N+ U N>
——<Y,<pX, N>E—n(N)pX — dANX T SV N>
=Y, dX>n(N)+ <Y, PAyX>—<Y, ¢V N>
=<Y, PX>n(N)—<B(PY, X), N>
=<Y, PX>EN>—<B(PY, X),N>
=<Y, PX>¢— B(PY, X), N>,
from which we see that the leaves of D are totally geodesic in M if and only
if (4.5) holds.
Theorem 4.3.  The leaves of the distribution D+ are totally geodesic in M
if and only if

(4.6) <B(D, D), $D->={0}.
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Proof. Let Z=¢N, W=¢N' (N, N'€ T(M)') and XeD. Denote by B’
the second fundamental form of a maximal integral submanifold M+ of D+
in M. Then we have

<B(Z, X),oW>=<U, X, o W>= —<X, T o W>=
= -<X,(V,0) W+ ¥, w>

=—<X, <¢Z WS E—-n(W)dZ+ ¢V, W+ B(Z, W)>
=—<X, ¢V, W>=<o¢X,V, W>=<oX, B'(Z W)>,

from which we see that the leaves of D* are totally geodesic in M if and only
if (4.6) holds.

We now put (Vy P) Y=y PY~ PUx Y and (Vy A Y=V} FY— FU,Y. We
call P (resp. F) is parallel, if (Vy P)Y=0 (resp. (Vx F) Y=0). We have

Lemma 4.4. The following relations hold:
47 WP Y=Apy X+6B(X, 1),
4.8) (WP Y=—B(X. PN+<PX, Y>¢

Proof. We have

Vo V=0 PY+U, FY=Vy PY+ B(X, PY)— Apy X+ Vi FY
=(WWP) Y+ PUY+B(X, PN~ Apy X+ A Y+ FU, Y,

On the other hand, using (1.5), we have

TVvor=T o) Y+o¥) Y=<¢X, Y>¢—n() X+ VY +0B(X, 1)
=<PX, Y>E+ PUY+ FU Y+ 6B(X, V).

Therefore, comparing the above two equations and taking the tangent and
normal parts, we have (4.7) and (4.8) respectively.

Proposition 4.5.  If'Fis parallel, then the distribution D is integrable and
its leaves are totally geodesic in M.

Proof. Since F is parallel, from (4.8), we have B(X, PY)=<PX, Y>¢
for¥X, YeD and hence we have B(X,PY)— B(Y, PX)=<PX, Y>¢-
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<PY, X>¢E=2<PX, Y>¢, which shows that D is integrable and its leaves
are totally geodesic in M by virtue of (c) of (4.4) and Theorem 4.2, which
completes the proof.

Lemma 4.6. The f-structure P is parallel if and only if
(4.9) <B(D,D), $D->={0} and < B(D, D+), $D* >={0}.
Proof. For atangent vector field Uto M, making an inner product from
this with (4.7), we have
<SP Y, US=<Ap X, U>S~<B(X, V), 6U>.
Thus, if we put U= WeD-, then we have

(WP Y, W>=<A, X, W>-ZB(X, V), 6 W>.

=<A/:'y W, X>“<A/rW Y, X>=<Ary W“‘A/wa, X>=0
by virtue of (a) of (4.4). And, if we put U= Ve D, then we have
SO P Y, VS=<Ap X, V> -<B(X, V), 0 V>

=<Apy X, V>=<B(X, V), FY>=<B(X, V) ¢ Y>.

Since X is a tangent vector field to M, we see that P is parallel if and only if
(4.9) holds, which completes the proof.

Corollary 4.7.  [f the f-structure P is parallel, then the leaves of D+ are
totally geodesic in M.

Corollary 4.8. [f both P and F are parallel, then D is integrable and the
leaves of both D and D- are totally geodesic in M.

Definition. M is called to be a contact generic normal product if D is
integrable and M is locally a Riemannian product of an invariant sub-
manifold M and an anti-invariant submanifold M+, where M™ (resp. M~) is
a leaf of D(resp. D).
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Theorem 4.9. The following statements are mutually equivalents.

(a) M is a contact generic normal product.

(4.10) (b) B(X,dN=<oX, Y>Eand Ar,;Y=0forVX, YEDand Ze€ D+,
(c) B(X.o N=<oX, Y>Eand B(X, Z)=0for¥X,YeD and ZcD-.

Proof. Assume that (a) holds. Then we have
B(X,¢Y)— B(dX, V)=<¢X, Y>¢—-<o¢Y, X>E=2<¢X, Y>¢,
from which we see that D is integrable and its leaves are totally geodesic in M
by virtue of (¢} of (4.4) and Theorem 4.2. Moreover, making an inner product
with WeD- in Ax, Y =0, we have
0=<Ag,Y, W>=<B(Y, W), FZ>=<B(Y, W), ¢Z>,
that is, <B(D,D~), ¢ D- >=1{0}, which shows that the leaves of D~ are
totally geodesic in M by virtue of Theorem 4.3. Thus M is a contact generic
normal product. Conversely, assume that A is a contact generic normal
product. Then we have Yy X€D and V,Z€D* for XeD, ZeD~ and
UeT(M). Putting Y=Zc D' and X=U in (4.7), we have
(Vo P) 2=N PZ— PN Z=Ar,U+$B(U, Z)
from which we have

(*) A/-‘ZU:*QbB(U» Z),

because of PZ=0 and V;, Z& D~. Then, making an inner product from this
with ¢ Y (Y€ D), we have

<A U GY>=—<¢B(U Z),dY>=—<B(U Z), Y>+n(B(U Z))n(Y)
=0.

Putting Z=¢N(Ne€ T(M)-) in the above equation, we have

0=<A, U ¢Y>=<B(U ¢Y), FZ>=<B(U ¢pY),dp>N>=
<B(U, oY), —N+tn(N)E>

=—<B(U,¢Y), N>+n(N)<B(U, ¢Y),E>

=—<B(U ¢Y)  N>—n(N)] U, ¢Y>
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=—<B(U V) N>—<&N><U V>
=—<B(U ¢Y)+<U pY>& N>,

from which we have

(**)  B(U. ¢V = —<U ¢Y>E=<oU, Y>¢.

Setting U= X< D in the above equation, we have B(X, ¢pY)=<o¢X, Y>E
Replacing Y by ¢ Y in this equation, we have B(X, ¥)=<X, ¥> £. Thus we
have.
(F*%) A, X, Y>=<B(X,Y), FZ>=<B(X, Y),¢pZ>=

=<IX, Y>¢EpZ>=<X, Y><§& pZ>=0.

Also, setting U=Z€& D" in (**), we have B(Z, ¢ Y)=0. Then, replacing Y
by ¢ Y in this equation, we have B(Z, Y)=0. Therefore, for WeD!', we have
</4/sz, W>:< Y, AI/W>:< Y, A/;1Z>:<B(Y, Z), FW>:O ThiS,
together with (***), implies A,,¥Y=0. Finally, to show ApzX=0

“=B(X,Z)=0, we look back at (*) and put U=XecD. Then we have
0=A,,X=—9¢B(X, Z). Applying ¢ to 0=¢B(X, Z), we have

0=¢2B(X, Z)=—B(X, Z)+n(B(X,Z))é=— B(X, Z)+ < B(X, Z), £ > ¢

=—B(X, 2)+<X,Z>¢=—B(X, Z).

Thus, (a) & (b) is established, which completes the proof.

Remark. A contact generic normal submanifold with parallel P and F is
a contact generic normal product (Cor. 4.8).

Proposition 4.10. A rtorally umbilical proper contact generic normal
submanifold in a Kenmotsu manifold is a contact generic normal product if
dim. D> |.

Proof. Since M is totally umbilical, we have B(X, ¥V)=—<X, Y>¢.
Then we have B(X, ¢Y)=—<X,¢pY>E=<opX, Y>E Moreover, for a
tangent vector field U to M we have

<Ap, X, U>=<B(X,U), FI>=<—-<X, U>¢¢Z>_
—< X, V>EPpZ>=0.

Whence, by Theorem 4.9, we see that M is a contact generic normal product.
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Theorem 4.11, Let_M be a proper contact generic normal product in a
Kenmotsu space form M(c). Then c=—1. and

@4.11) <R(X.Y)Z W>=—(KY,Z>5<X, W>-<X,2Z><Y, W>)+
+<B(X, W) B(Y,.Z2)>

~< B(Y, W), B(X,2)>,

@.12) S(X. V)=—(n=1)<X, Y>+n<B(X, V), H>—
S <B(X,e) B(Y.e)>.
i=1

n

(4.13) s=—(n—=Dn+n<H H>-=3 | B(e,e)l?
/=1
where {e;} is an orthonormal basis of T(M).

Proof. Since M is a contact generic normal product we have (Vi B)
(Y. Z)=0for X, YeD and Z€ D+ by virtue of Theorem 4.9. Therefore, (2.21)

reduces to l(c+l)<)( PY>FZ=0. Replacing Y by PX in the above
equation, we have (¢+ 1) || X||?FZ=0, from which, since M is proper, we

have ¢= —1, Then (4.11) —(4.13) follow from (1.16) with ¢ =—1, completing
the proof,

As for the normal connection of M. we have

Proposition 4.12. Let M be a contact generic normal product in a
Kenmotsu space form M(c). Then ¢ =—1 and the normal connection of M is
flat if and only if Weingarten maps are commutative, i.e., [Ay, Ay]=

Proof. This follows from Theorem 4.9 and (1.18).

Theorem 4.13. Let M be a totally umbilical proper contact generic
normal product with dim. D->1 in a Kenmotsu space form M(c). Then M
is flat.

Proof. By assumption, we have B(X, ¥Y)=~<X, Y>¢, so that substi-
tuting this into (4.11) of Theorem 4.11, we have R=0, which means that M
is flat.
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Hereafter let M be an orientable hypersurface in a Kenmotsu manifold M
whose structure vector field ¢ is normal to M. It is easily see that H=—¢,
because M is a hypersurface. First, we have

Theorem 4.14. Let M be a hypersurface in a Kenmotsu manifold M
whose structure vector field  es normal to M. Then M is an extrinsic sphere,
that is, M is totally umbilical and the mean curvature vector field H is
parallel,

Proof. Differentiating H=—fco§ariantly with respect to a tangent
vector field X, we have

%H:-—A,,X+V;H=—v,\'f=AfX'Vva

from which, comparing the tangent and normal parts and taking account of
A X=—X and V;§{=0, we have A, X=X and Vi H=0. Thus, M is an
extrinsic sphere, completing the proof.

Theorem 4.15. Ler M be a hypersurface in a Kenmotsu space form M(c)
whose structure vector field £ is normal to M, Then we have

(4.14) R(X, Y)Z=-v‘l‘ (c+ WKV, ZS>X-<X,Z>Y+<X, ¢pZ>¢Y—
—<Y, ¢Z>0X+2< X, 0Y> 027},

4.15) S(Xx, }’)=~21 (e+D(m+ DN X, Y>,
(4.16) s=(+)mm+1).

Proof, Since M is totally umbilical by Theorem 4.14, substituting
B(X,Y)=<X,Y>H into (1.16) and taking account of <H, H>=1, we
obtain (4.14) directly,

Theorem 4.16. Let M be a hypersurface in a Kenmotsu space form M(c)
whose structure vector field £ is normal to M. Then M is locally symetric.

Proof. Since (VwR)(X. NZ=VWR(X,Y)Z~R(WuwX.Y)Z~
R(X.VyY)Z— R(X, Y)VyZ, by direct calculations, we have
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(VwR)(X, N Z= j'— (ec+ D{<X, &WP)AZ> PY— <Y, (VwP)Z>PX+
+< X, PZ>(VyP) Y
<Y, PZ> (VP X+2<X, (@WP) Y>PZ+2<X, PY>(@WP) Z}
= % (et D{<X,oB(W,Z)>PY—<Y,¢B(W, Z)>PX
+<X, PZ>¢B(W, Y)—<Y, PZ>B(W, X)
+2<X,0B(W, Y)>PZ+2<X, PY>¢pB(W, Z)}
=0 (since ¢pB(X, Y)=0, etc..),
which shows that M is locally symmetric, completing the proof.
Theorem 4.17. Let M be a hypersurface in a Kenmotsu space form Mc)

whose structure vector field & is normal to M. Then M is flat if and only if
c= —1 or, equivalently, the scalar s of M is 0.

Proof. 1f c=— 1, then we have R=0 by (4.15). Conversely, we assume
that M is flat, R=0. Then, putting Z= X and Y=¢X in (4.15), we have

0:71. (+DI<BX, X>X—<X, X>dX+<X, pX>p2X —
L X XS X2 X, X DX ]

=—(ctDIX|* ¢X,

from which we have ¢= —1. And, ¢=—1e=ss=0 is trivial by (4.16),
completing the proof.

Corollary 4.18. A hypersurface M in a Kenmotsu space form M(c) with
¢+ — | whose structure vector field ¢ is normal to M is Einsteinian.

Proof. This follows from (4.195).
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