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Solidity in Sequence Spaces

. J. MADDOX

ABSTRACT. Relations are established between several notions of solidity in vector-
valued sequence spaces, and a generalized Kothe-Toeplitz dual space is introduced in.
the setting of a Banach algebra.

INTRODUCTION

The study of linear spaces of scalar sequences and their a-duals was
initiated by Kothe and Toeplitz [4].

If s denotes the linear space of all infinite sequences a=(a;) of complex
numbers ¢, and if £'is a linear subspace of s then, following [4]; see also [3]
and [1], we define the a-dual of E as

Er={a€s:3, |a; x| <oo for all x€ E}.
k=1

Two related dual spaces are defined by

EB={acs:3, a, x, converges for all xe £},
k=1

Ev={acs:sup,| 3, a; x;| <oo for all xe E}.
k=1

Topologies on a sequence space, involving 8 and <y duality have been
examined by Garling [2], who noted that E*= EB= E¥ when E is solid (or
normal), i.e. when x& Eand |y | < | x| for all k€ N together imply that v E,
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Thus, for example, the space ¢, of null sequences 1s solid, but the space ¢ of
convergent sequences is not.

We shall be concerned with the more general situation of vector-valued
sequences x = (x;) = (X}, X2,--.) with x, in a complex linear space X. By s(X)
we denote the linear space of all sequences x = (x) with x;, € X and the usual
coordinatewise operations: ax = (ax;) and x+ y=(x, + y,), for each a€ C.

If A =(\,) is a scalar sequence and x€s (X) then we shall write Ax = (Ag x).

In case X is also a normed space we denote by B the closed unit ball of X
and by B(X) the space of all bounded linear operators on X. As usual X*

denotes the continuous dual space of X. Two subspaces of s(X) that we
consider later are

LX) ={xes(X):supellxell <o},
ll()o:{xesm:é x| <0},

These spaces generalize the classical spaces L. and {, which are subspaces of s.

If A=(A,) is a sequence in B(X) we shall write Ax=(A, x;) for each
xes(X).

Some information about types of generalized Kothe-Toeplitz duals
involving sequences of linear operators may be found in Maddox [5].

We now consider the eight statements below, each of which expresses
some notion of solidity for a linear subspace E of s(X). It is statement (5)
which generalizes the original idea of solid (or normal) as given by Kothe and
Toeplitz [4].

The first three statements are meaningful in any complex linear space, but
the last five statements require X to be normed. A statement such as
[l v,Il = || x,ll is an abbreviation for ll¥all = |lx,|| for all n€ N. Also, in (6) to
(8) the A, are elements of B(X).

() xeFand A€ L.imply AxeE

(2) x€Eand |\,| <1 imply AxeE

(3) x€Eand |\, =1 imply AxeE

@) xckEand ||yl =|lx,l imply ye E
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(5) xeEand ||yl <|lx,ll imply ye E
(6) xeFEand (]|4,)€ L imply Ax€EE
(7) x€Eand ||A4,]|<1 imply Ax€EE

(8) xeFEand ||A4,]=1imply AxEE.

EQUIVALENCES

In Theorems I, 2 and 3 we determine the relations between the statements

(1) to (8).

Theorem 1. In any complex linear space X the statements (1), (2)and (3)
are equivalent.

Proof. It is trivial that (1) —(2)—(3). Let us show that (3)—(1). If (3)
holds, x€ E and A € L. then there exists M >0 with |A,|< M for all nEN.
Define

Mn= A"/M:O(,, + I:Bn
where «, and 3, are real. Then {e,} <1 and |B,| =1, so we may choose v,
and 68, with

o+ vi=pB2+62=1.

Define z,= ¢, +ivy, and w,= B, +id,, whence
1z, =1z, = w,| = w,| =1,

and so zx, Zx, wx, wx are all in E. Since F is a linear space it follows that ax,
Bx€ E and so Ax€ E. Hence (3)—(1).

Theorem 2. In any normed linear space X the statements (4), (5), (6), (7)
and (8) are equivalent.

Proof. Let (4) hold, x& Eand ||y,|| =||x,||. If ||x,|| =0 we define A, = |
and if || x, || >0 we define A,,= ||y, |I/|l x,|l, so that in every case 0=<\,,< | and
lyall =N, x,|l. Now define u, such that A2+ u2=1 and write z,= X, + iy,
Then

12 Xl = 112, X1l = [l %11
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and so (4) implies that zx and zZx are in E, whence Ax€E. Since
llvall = lIA, x,]| it follows from (4) that y€ E. Hence (4) — (5).

Now let (5) hold, x€ E and || A,|| < M for all n€ N. Then
1A, (M~ x) Il = 1l x,ll.
Hence M~ (A, x,) € E, so Ax€ E, whence (5) — (6).
It is trivial that (6) —(7)—(8).

Finally, let (8) hold, x&€ F and ||y,|| = || x,||. By the Hahn-Banach theorem
there exists f,€ X* with |[f,ll =1 and f, (x,)=|lx,l|. If ||x,]]| =0 we define
A, =1, the identity operator of B(X), and if ||x,|| >0 we define

An (W) :/n (W)yn/ “ X,,“

for each we X. Then, for all n€ N, it is clear that ||4,]| =1 and y,= A4,,x,,, s0O
it follows from (8) that y=Axe E. Hence (8)—(4), which completes the
proof.

Theorem 3. [n any normed linear space X any one of the statements (4)
to (8) implies all of the statements (1) to (3). But (1) is equivalent to (4) if and
only if X is one-dimensional.

Proof. For the first part of the theorem it is sufficent to show that
(8) —(3). Let (8) hold, xe E and |A,] =1. Now define A,€ B(X) by A, (w)=
A,w for each we&X. Then [JA4,||=|A,|=1, whence (8) implies that
Ax=Ax€E, so (§)—(3).

It is straightforward to verify that if X is one-dimensional then (1) —(4).

Finally, suppose (1) —(4) but assume that the dimension of X exceeds I.
Let {b,, b>,...} be a Hamel base for X and let us define E=s([b,]), so that
xe E is of the form x,=«, b, for all n€ N. It is clear that (1) holds, whence
(4) holds. Now we define, for all n€ N,

X, = lbsllby  and v, =[|b,|| b
Then x€ F and ||x,|| =|y.||, whence y€ E, so y,=«a,b,. Consequently we

have o, b, =||b,]| b, which is contrary to the fact that b, are elements of the
base.
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THE DELTA DUAL

Henceforth we assume that X is an abstract non-commutative normed
algebra, not necessarily containing an identity element. As before x=(x,),
y=(y,) denote elements of the space s(X).

For any non-empty subset £ of s(X) we now introduce its delta dual E°
defined as follows:

E*={yes(X): 3 (lIxll + 1y xill)<oe for all xe E}.
l\il
It is immediate that E° is a linear subspace of s (X) even though E may not

be a linear subspace. Also, it is clear that we have EC E® for any non-
empty E.

If it happens that E= E% we shall define E to be §-perfect.
Theorem 4. [f E'is 6-perfect then E is solid in the sense of (1), (2) or (3).

Proof. Let xc E, [N =1 for all k€ N and y€ E? Then
2 U X bl 1 A 2 D S 3 Ul il v gl <o,
which implies Ax€ E¥¥ = E,

Of course there are solid spaces which are not d-perfect; for example
E=¢y, when X is the complex field C.

Next we examine the relation between the space L.(X) of bounded
sequences and the d-dual of /; (X). Since

Iyl = supg llyillz= Iyl
for each ve [.(X) we have
2, ol + s =203
for each x€/, (X), whence
9) L (X)C £ (X)
for any normed algebra X. In case X contains a certain type of element, which

we shall call an almost identity, we shall be able to prove in Theorem 5 below
that there is equality in (9).
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Given a normed algebra X we say that X has an almost identity z€ X if for
such a z there is a positive constant ¢ such that

clhxl| < I xz|| + llzx]|, for all xe X.

If X has identity e, in the usual sense that xe=ex = x for all x€ X, then e is
obviously an almost identity. We note also that the normed algebra ¢, with
xy:=(x;yx) and ||x|| =sup, |x;| has no almost identity. For if z€¢, were
such an identity then for some positive ¢ we have c||x|| <2|lxz|| for all x€&,.
Choose n with |z,| <c¢/2 and let x=e,, the n-th unit vector in ¢,. Then
¢<=2]z,| <c, a contradiction.

Theorem 5. If X has an almost identity then L.(X)= [ (X).

Proof. In view of (9) we need only show that B(X)CL.(X). Let
y€ E(X), so that for all xe /, (X), '

2 lxell +llyexdh<ee.

- Applying the Banach-Steinhaus theorem, there is a positive constant M such
that for all ne N and all xe/, (X),

Z (bl + =M fxl.

Now take any n€ N and define x,=z and x, =0 for k#n, where z is an
almost identity. Hence we have ¢||y,|| < M||z||, which implies that y € L. (X),
and the proof is complete.

It is interesting to note in the next theorem that there are normed algebras
X without an almost identity such that equality holds in (9).

Theorem 6. L.(cy) = (cy).

Proof. By the argument of Theorem 5 there is a number M such that for
all ne N and all xe€ /;(¢),

2Hxnyn“ = MZ ka”,
A=1
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where we take y€£(¢,). Now take any ne N, any pe N and define x, =0
(k #n), x,=e,, the p-th unit vector in ¢,. Then we have 2|v,,| =M, where

Y= (.Vn 1> Vi ) S o

for each n€ N. Since n and p are arbitrary it follows that ||v,|| < M/2. so
VE L (cy), as required.

If E'is any linear subspace of s(X) then its delta dual generates a natural
locally convex topology on £ determined by the seminorms

Po)= X (vl + ),

for each x€ £ and each ye E%. We shall call this the £E9 topology on E.

In conclusion we give the following result:

Theorem 7. If the normed algebra X has an almost identity z then the
B (X) topology on I\ (X) coincides with the norm topology of I, (X).

Proof.  As usual, the norm topology of /, (X) is given by the norm

1l =3 []xl]
k=1

for each x=(x,)€ /,(X).

First we show that the /£ (X) topology is weaker than the norm topology
of /; (X) even when X has no almost identity. Let e >0 and Vs Vo s I EL (X)),
where

Yi= (,Vi 1> Vi2s )

By the argument of Theorem 5 there are positive numbers M,, ..., M, such
that

Pr(x)= M| x||

fori=1,2,..r and for all xe /, (X). Taking M to be the largest of the M, it
follows that if || x|| <e/M then

SUpApy, (x):i=1,2, ..., r1<e,
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whence, in the usual notation, the sphere S(0, ¢/M) is contained in the
neighbourhood

U(O’p_rla p_rza -“7p»l',.9 6)‘

Conversely, suppose that X has an almost identity z with corresponding
constant ¢, and let € >0 be given. If we define

yv=(z,2,z..)

then y€£(X) by Theorem 5. Hence if x€ U(0, p,, ce) then
2 (Ul 2l 4zl <ce.

and since ¢|| x;||=< | x; z|| + ||zx,|| for all k€ N it follows that [|x|| <e, so that
x€.8(0,¢), and the proof is complete.
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