On the Homological Category of 3-Manifolds

JOSÉ CARLOS GÓMEZ LARRAÑAGA* Y FRANCISCO JAVIER GONZÁLEZ ACUÑA

ABSTRACT. Let M be a closed, connected, orientable 3-manifold. Denote by $n(S^1 \times S^2)$ the connected sum of n copies of $S^1 \times S^2$. We prove that if the homological category of M is three then for some $n \ge 1$, $H^*(M)$ is isomorphic (as a ring) to $H^*(n(S^1 \times S^2))$.

Let X be a topological space. The (complete) homological category of X [1] is the smallest cardinal n such that there is a family \mathcal{F} of open sets of X with the following properties:

- i) $\bigcup_{U \in \mathcal{T}} U = X$.
- ii) The cardinality of \mathcal{F} is n.
- iii) For every $U \in \mathcal{F}$, i > 0 and every ring of coefficients R, the inclusion induced homomorphism $H_i(U; R) \to H_i(X; R)$, in singular homology is zero.

We denote by cath X the homological category of X. Let M be a closed, connected, orientable 3-manifold. From the existence of a Heegaard splitting of M, it is clear that cath $M \le 4$. Also, cath M = 2 if only if M is a homology 3-sphere [1]. Therefore, it suffices to characterize 3-manifolds M with cath M = 3. Denote by $n(S^1 \times S^2)$ the connected sum of n copies of $S^1 \times S^2$. We will prove in Theorem 1 that if cath M = 3 then for some $n \ge 1$, $H^*(M)$ is isomorphic (as a ring) to $H^*(n(S^1 \times S^2))$. We work in the PL-category.

^{*} Supported by the Heinrich Hertz Stiftung

¹⁹⁹¹ Mathematics Subject Classification: 57N10, 55M30. Editorial de la Universidad Complutense. Madrid, 1991.

I. PRELIMINARIES

Let A be a finitely generated abelian group A. From now on, we will denote by tor A (resp. rank A) the torsion subgroup of A (resp. the number of summands Z in A/tor A).

The following lemma is used in the proof of Theorem 1. We feel it has independent interest; it can be used, for example, to calculate the homology of the complement of a 1-complex K in a closed orientable 3-manifold in terms of the cokernel of $H_1(K) \rightarrow H_1(M)$.

Lemma 1. Let K be a compact proper 3-submanifold of the closed, connected and orientable 3-manifold M. Denote by b_i (resp. b_i') the i-th Betti number of K (resp. M-K). Then

$$H_1(M-K)\oplus Z^{b_2}\approx C\oplus Z^{b_1+b_0'-1}$$

where ζ is the cokernel of the inclusion induced homomorphism $H_1(K) \rightarrow H_1(M)$. In particular, tor $H_1(M-K) \approx tor \zeta$.

Remark. The conclusion can also be stated as

$$H_1(M-K) \approx \zeta \oplus Z^{b_0+b_0'-1-1/2[\chi(\partial K)]}$$

where, in case m < 0, $\zeta \oplus Z^m$ is interpreted as the unique group A such that $A \oplus Z^{-m} \approx \zeta$.

Proof. We have tor $(H_1(M-K) \oplus Z^{b_2}) \approx \text{tor } H_1(M-K) \approx \text{tor } H^2(M,K) \approx \text{tor } H_1(M,K) \approx \text{tor } \zeta \approx \text{tor } (\zeta \oplus Z^{b_1+b_0-1})$. The penultimate isomorphism being a consequence of the exact sequence

$$H_1(K) \to H_1(M) \to H_1(M, K) \to H_0(K)$$

where $H_0(K)$ is free abelian.

Also $b'_1 = \text{rank } H_1(M-K) = \text{rank } H^2(M, K) = \text{rank } H_2(M, K)$, rank $H_2(M) = \text{rank } H_1(M)$, rank $H_3(M, K) = b'_0$ and the alternating sum of the ranks of the groups in the exact sequence

$$0 \to H_3(M) \to H_3(M, K) \to H_2(K) \to H_2(M) \to H_2(M, K) \to H_1(K) \to H_1(M) \to \mathcal{C} \to 0$$

is zero. This yields $1-b_0'+b_2+b_1'-b_1$ —rank C=0 and, therefore, rank $(H_1(M-K) \oplus Z^{b_2}) = b_1'+b_2 = \text{rank } C+b_1+b_0'-1 =$

$$= \operatorname{rank} (C \oplus Z^{b_1 + b'_0 - 1}).$$

Hence $H_1(M-K) \oplus Z^{b_2} \approx C \oplus Z^{b_1+b_0'-1}$. This completes the proof.

The following lemma is known ([4], p. 173, Corollarie V.8).

Lemma 2. Let W be a compact, orientable 3-manifold with $H_1(\partial W) \approx \mathbb{Z}^{2g}$. Then, the image of the inclusion induced homomorphism $H_1(\partial W) \to H_1(W)$ has rank g.

Let M be a closed n-manifold. We follow [3] for the definition and properties of an n-filling of M.

Lemma 3. Let $\{T_i\}_{i=1}^3$ be a 3-filling of the closed, connected and orientable 3-manifold M. Let W be a regular neighbourhood of $F = \bigcup_{i=1}^3 \partial T_i$. Then, the image of $H_1(\partial W) \to H_1(W)$ contains tor $H_1(W)$.

Proof. Let $F_k = T_i \cap T_j$, where $\{i, j, k\} = \{1, 2, 3\}$. Let C_i be a product neighbourhood of ∂T_i in T_i . We may assume $W = \bigcup_{i=1}^3 C_i$. Write $\partial_i W = C_i \cap \partial W$. We have the commutative diagram

$$H_{1}(\partial T_{1}) \to H_{1}(F) \to H_{1}(F, \partial T_{1})$$

$$\downarrow \approx$$

$$H_{1}(C_{1})$$

$$\uparrow \approx$$

$$H_{1}(\partial_{1} W) \to H_{1}(W)$$

where the upper row is exact and the vertical arrows are isomorphism. Since $H_1(F, \partial T_1) \approx H_1(F_1, \partial F_1) \approx H^1(F_1)$ is free, the image of $H_1(\partial T_1) \to H_1(F)$ contains tor $H_1(F)$ and, therefore, the image of $H_1(\partial_1 W) \to H_1(W)$ contains tor $H_1(W)$ from which the result follows.

II. MAIN RESULT

Theorem 1. Let M be a closed, connected, orientable 3-manifold. If cath M=3 then for some $n \ge 1$, $H^*(M)$ is isomorphic (as a ring) to $H^*(n(S^1 \times S^2))$.

Proof. By the arguments of [3] (see also [2]), there exists a 3-filling $\{T_i\}_{i=1}^3$ of M, where T_i is a cube with handles and $H_1(T_i) \to H_1(M)$ is trivial for i=1,2,3. Let W be a regular neighbourhood of $\bigcup_{i=1}^3 \partial T_i$ in M and let K be a closure of M-W. Thus K is a disjoint union of three cubes with handles $\{K_i\}_{i=1}^3$. Let g_i be the genus of ∂K_i and $g=g_1+g_2+g_3$. Consider the commutative diagram with exact rows.

$$H_{2}(M, W) \xrightarrow{j} H_{1}(W) \rightarrow H_{1}(M)$$

$$\uparrow \approx \qquad \uparrow i \qquad \uparrow 0$$

$$H_{2}(K, \partial W) \rightarrow H_{1}(\partial W) \rightarrow H_{1}K$$

From the fact that the right vertical homomorphism is trivial we obtain $\operatorname{Im} i \subset \operatorname{Im} j$, and, since the left vertical homomorphism is onto, $\operatorname{Im} j \subset \operatorname{Im} i$. Hence $\operatorname{Im} j = \operatorname{Im} i$, which by lemmas 2 and 3, is isomorphic to $Z^g \oplus \operatorname{tor} H_1(W)$. Since $H_2(M, W) \approx H^1(K) \approx Z^g$, $\operatorname{Im} j$ can be generated by g elements and, therefore, we must have $\operatorname{tor} H_1(W) = 0$. By lemma 1, it follows that $\operatorname{tor} H_1(M) \approx \operatorname{tor} H_1(W) = 0$ so that $H_1(M)$ is free abelian. The rank n of $H_1(M) \approx H_1(M) \approx H_1(M)$ must be positive since, otherwise, cath M would be two. Hence $H^1(M) \approx Z^n$ for i = 1, 2, that is the cohomology of M is additively the same as that of $n(S^1 \times S^2)$.

Let $\{a_1,...,a_n\}$ be a basis of $H^1(M)$ and let $\{b_1,...,b_n\} \subset H^2(M)$ be the dual basis; that is $a_i \smile b_j = \delta_{ij} \nu$ where $\nu \in H^3(M)$ is the fundamental class. For $r=1,2,3,\ H^1(M) \to H^1(T_r)$ is trivial so that a_i is the image of an element $a_i^{(r)} \in H^1(M,T_r)$ under $H^1(M,T_r) \to H^1(M)$. Then, for any $i,j,k,a_i \smile a_j \smile a_k$ is zero since it is the image, in $H^3(M)$, of $a_i^{(1)} \smile a_j^{(2)} \smile a_k^{(3)} \in H^3(M,T_1 \cup T_2 \cup T_3) = 0$.

Moreover, for any *i*, *j*, $a_i \sim a_j = 0$ because, if we write $a_i \sim a_j = \sum_{k=1}^n n_k b_k$, then $0 = a_k \sim a_i \sim a_j = n_k \nu$ so that $n_k = 0$ for k = 1, ..., n. This proves that the cohomology ring of M is isomorphic to that of $n(S^1 \times S^2)$. This completes the proof of the theorem.

Aknowledgement. The first author wishes to thank the Ruhr-Universität Bochum for support and hopitality during the preparation of this report.

References

- [1] Fox, R. H.: «On the Lusternik-Schnirelmann category», Ann. Math, 42 (1941), 333-370.
- [2] MONTEJANO, L.: «A quick proof of Singhof's cat $(M \times S^1) = \text{cat } (M) + 1$ theorem» Manuscripta Math. 42 (1989), 49-52.
- [3] SINGHOF, W.: «Minimal coverings of manifolds with balls», *Manuscripta Math.* **29** (1979), 385-415.
- [4] THOM, R.: «Espaces fibrés en sphères et carrés de Steenrod», Ann. Sci. Ecole Norm. Sup. (3) 69 (1952), 109-182.

INSTITUTO DE MATEMATICAS Universidad Nacional Autónoma de México Ciudad Universitaria 04510 México, D. F. México.

Recibido: 3 de septiembre de 1990