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Monotonicity in Time and Stationary
Solutions for a Quasilinear Heat Equation
with Source

VICTOR A. GALAKTIONOV and SERGEY A. POSASHKOV

ABSTRACT. We consider the Cauchy problem for the quasilinear parabolic heat
equation with source u,= Aw' "+ uf in R¥x (0, T), 6>0, 8> 1 are fixed constants,
with nonnegative bounded symmetric initial function. Two properties of monotone
behaviours of the solution u(]x|,7) for x=0 are investigated. {. Monotonicity of
large solutions: there exists a constant M, >0 such that if u(0,1,)= M, for some
1,€[0, 7), then u,(0,1)=0 for all 1€[¢,, 7). 2. u(0, r) does not decrease in (0, 7). It is
shown that sufficient conditions for these properties are quite different for five cases:
) 1<B<o+1, i) B=o+1, iii) c+1<B<LB,, iv) B=B., v) B>B., where
Bi=(@+1)(N+2)/(N=2) for N>2 (B.=o0 for N=1,2) is the critical Sobolev
exponent. '

1. INTRODUCTION. MAIN RESULTS

In this paper we consider the Cauchy problem for the quasilinear
parabolic heat equation with source ’

u=Auw"+uf in R¥x(0,T n
u(x,0)=uyy(x)=0 in R, : (2)

where 6>0 and B>1 are fixed constants. Equation (1) is well-known
equation arising in the theory and in different applications of the processes of
the heat conduction and combustion in a medium, where the heat
conductivity coefficient k(u)=(c+1)u° and the power of the energy
emission Q(u)=uf depend upon the temperature of the medium
u=u(x1)=0.
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We shall assume the initial function (2) satisfies the following hypotheses:
uy=1uy(r)=0 in‘ RN, r=|x|; M, =sup uy<ce;
uy (r) is the continuous function in R} =(0, ). 3)
(1§ up) (0)=0.

Under these hypotheses, there exists the unique weak local (in time)
solution u=u(r, 1) of the problem (1), (2), which is nonnegative continuous
function in R¥x (0, T), where T'€(0, <] is a finite or an infinite existence time.
See a full list of references given in [11]. Notice that u(r, ¢) is the classical
solution at any point (r, £) where u (r, 1) is strictly positive.

"The main results of the paper are devoted to the analysis of the behaviour
with time of the temperature at the single point x=0. This yields the
conditions on the initial temperature for the ignition of the combustion
process at the single point x=0.

We shall consider two types of the monotone behaviours of u (0, 7).

Property (ML) (Monotonicity of the Large solution): there exists a
constant M, >0, depending on the initial function, such that if « (0, 7)) = M,
for some 1,€[0, T), then

u,(0,1)=0 for all t€[ry, 7). 4)

Property (M) (Monotonicity for arbitrary t):
u(0, 1) doesn’t decrease in (0, 7). 5

We show that above properties (ML) and (M) depend on the initial
function u,, the dimension of the space N==1 and exponents o, 8 of equation
(1). These properties are quite different for five cases: i) 1 <<B<o+ I, 1)
B=oc+1,ii) o+t <B<B,, iv) B=B., v) B> B., where

B.=(c+ 1) (N+2)/(N—2) for N>2 (B.=co for N=1,2) (6)

is the critical Sobolev exponent for the nonlinear elliptic operator in the right-
hand side of (1).

Let B.= {r<e} be the ball in R" of a radius £¢>0 with the boundary
S.={r=¢}, D,= R"\ B, and denote

H (r) = ¢o P~ =2 201D for >0,
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N(N—2)1(N=2) 4o+ 1)
('*:[¥]( N> 2):

4
h(r)=c r2B-6+Dl for >0,
)

L_:[ZN(oJrl)]l‘[lL(aﬂ)] (B> o+ 1):

B—(c+1)

Moo (F) = Coo P2 1B=(0+ D] for r>0,

, _{ 2(0+l)[B(Nf2)—N(o+l)]}-lf[B—(oH)]
o [B—(o+D]? ’

(B>(0+1) N/(N—2) for N>2).

We now state the main results of the paper.

Theorem 1 (/1 <<B<o+1). Let I<B<o+ 1 and let (3) holds. Then

(i) If uy(r) satisfies

there exists a large constant R>0 such that u§*' is

(8)
uniformly Lipschitz continuous in Dy,
then (ML) holds.
(i) If u§™'(r)e C! and

g™ ()| =0 (r®remDiet =) a5 r—+oo, €

then (ML) holds.
(iii) If ug*'(r)e C' and
W) +ubr) IN>0 in {r>030{u,>03}, (10)

then (M) holds.

Theorem 2(B=oc+!). Let =0+ 1 and let (3) holds. Then

(1) If uy(r) satisfies
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there exists small enough € >0 such that

an

udtis Lipschitz continuous in {zy—e<r<zyl,

where z,>( is the first zero of Bessel function Jy_; . then (ML) holds.
(i) If u3*' (r)e C' and
W3 () +ugt (1) rIN>0 in {0<r<zy}Niu,>0}, (12)
then (M) holds.

(iii) If u,(r) is the nondecreasing function in {0<r<zy}, then (M) holds.

Theorem 3 (o+ [<B<B.). Let 6 +1<B<B. and let (3) holds. Then

(i) If for some small €20

ult! (r) is Lipschitz continuous in B,, (13)
then (ML) holds.

(i) If u§™' (r)e C! and

(3™ (1) +u (1) r/N>0 in {r>0} N {uy>0}, (14)
then (M) holds.

(iii) If u,(r) is the nondecreasing function in {r <ly},
where

lo= ¢, (uy (0)) A= 1112 (15)

and ¢;= ¢, (0, B, N) is some positive constant, then (M) holds.

(iv) If uy(r) is the nondecreasing function in {r>0\|u,(r)<h(r)}, then
(M) holds. :

(v) Let l.=sup{a>>0| u,(r) is the nondecreasing function for r € (0, a)} > 0.
Then (ML) holds for

My = (¢;] 1)/ 1B—to+ D1,
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Theorem 4 (B=.). Let B=PB. for N=3 and let (3) holds. Then
(1) If uy(r) satisfies (I3)for some €>0 and
uy(r)>0 for all r>0, (16)

there exists constant my>0 such that
' (16)
Uy (r)>my-r—(N=21+1) for any large r>0,
then (ML) holds. )
(i) Assertion (ii) of Theorem 3 is valid.

(iii) If u,(r) is the nondecreasing function in {r>0| u,(r)< h*(r)}, then
(M) holds.

Theorem 5 (8> B.). Let 8> B. for N=3 and let (3) holds. Then

(i) Let uy(r)=hw(r) for a unique point r=r.>>0, uyc C’ in a small
neighbourhood of r=r« and uy(r+)> hs (rs). Let for any sufficiently small
£>0 the set {r>01juy(r)/ho(r)—1|<<e} be a finite connected interval
containing the point r=r«. Then (ML) holds.

(ii) Assertion (ii) of Theorem 3 is valid.

(iii) If uy(r) is the nondecreasing function in {r>0|u,(r)<h (r)}, then
(M) holds.

Proofs of Theorems 1-5 are based on intersection comparison of the
solution u(r, t) with the set of the stationary solutions {U}. Therefore, we
begin with the analysis of the set {U}.

2. SOME PROPERTIES OF THE SET OF THE
STATIONARY SOLUTIONS

We now describe some well-known properties of the stationary solutions
U(r; \) satisfying

AUt + UB=rI=N(r¥=1 (U HY)), + UB=0 for r>0,
U(0;\)=A>0, (17
U, (0:A) =0,

where A >0 is an arbitrary fixed constant.
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One can see that equation (17) is invariant under the self-similar
transformation and hence

U(r: A)=\ U(ram; 1), m=[B—(a + 1)]/2, for any fixed A>0.  (18)

It is well-known (see e.g. [10]) that for 8= B, any solution of (17) is strictly
positive for all r>0 and U(oe;A\)=0. For 1 <B<B, the function U(r;\)
vanishes at some point r=/(A), where

I(N)=c¢ - A", (19)
¢ (0,8, NN=1(1)>0 is given in (15). In this case we let U(r;A\)=0 for
r>1(\). For B= B, we formally let /(A)=+oc.

Thus, for 8> 1 we have introduced one parametric set of the stationary
solutions { U(r; \); A=0} (U(r;0)=0). In all cases for arbitrary fixed A>0
U(r; \) is the monotone decreasing function in the domain of positivity. The
function U(r;\) is the continuous function with respect to r and A. From
well-known properties of solution of the Cauchy problem for the ordinary
differential equation (17) we get that there exists the continuous dependence
on A of the solution U(r;\) in any compact from R} and the derivative
(U°+"), in any compact from the domain w (M) =[0,/(A)) of positivity of the
stationary solution.

The case Be (1, 0+1). For Be(1,0+1) from (19) it folloWs that
[(\) — + o monotone as A —+oo. (20)
Identity (18) yields the following conditions
U (r;\) — + oo uniformly in [0, //2] as A — + oo, @2n
(Uet1),(r; N) — — oo uniformly in [//2,/] as A — +oe. (22)
Introduce for a fixed constant M >0 the set g(A, M)={r>0|
0< U (r;\)< M}. From (18), (19) one can obtain the following estimates:
if re g(A, M) then
r=I(\) (I1+o(l))—oc0as A—oo,

(227)
|(U°+I),- (r: )‘)l :kl r—(Btot1) Zm(l +0([))—>oo as \ — oo,

where k, =k, (o, B, N)>0 is some constant.

. The case B=o+ 1. In this case equation (17) has the explicit solution

U(r; M= Us(r ) =M (N[ 2)2vr (0}, r€[0, zp), (23)
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where v=(N—2)/2, I'(N/2) is Euler’s Gamma function, zy is the first zero of
Bessel function J,(r) (U(zy; A)=0).

For any fixed arbitrary small e>0
Us— o0 yniformly in re[0,zy—¢] as A —+ oo, (24)
(Ug™"), — —oco uniformly in r€ [zy—e, zy) as A — + oo. (25)
The case B€(o+1, B.). Then it follows from (19) that
/(A\)— 0 monotone as A — + oo, (26)
and properties (21), (22) are also valid.

The case B=B.(N=3). It is well-known [[2] that for 8= B*, N=3,
equation (17) admits the explicit strictly positive solution

N(N-=2) (N=2).2(c+ 1)
U(r;\)=A- [ T ] 27)
for r>0. It has the following properties:
U(rsN)=c; A= p= V=200 (140 (1)) as r— oo, (28)
where ¢, =[N (N—2)](N-2. 20t 1)
U(r;A)— 0 uniformly in any set [§, + o) as A — oo,
(UoH1), (F: \) — —oo unifor;nly in any set (29)

(r>0m<U(r\)<m,} as A — oo,
where 8, m, <m, are arbitrary fixed positive constants.

The case > fB,, N=3. Then U(r;A)>0 for any r >0, U(+o;A)=0 and
there hold [10] :

U(r;N)=ha (r) (1 +0(1)),
(30)
U (r;\)=he(r) (1 +0(1)) as r—+oo,

where the function A..(r) is given by (7). From (18), (30) one can easily verify
that for any fixed 6>0

U(r;N)/ he(r)— 1, 30
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U,(r;N)/ hi(r)—1 uniformly in any set [§, + o) as A — 0.
The estimates of U(r,\). The first estimate holds for arbitrary 8> 1. By

using monotonicity of the function U(r;A) for r>0 we obtain the following
inequality

PN (N=1(UetY),),=— UP=— A8 for r>0.
Integrating twice this inequality yields the lower estimate
U(r, N = U_(r =N —r2rd)l T for r>0, (32)
where ry=ry(A)=(2N)' 2-A-B=(e+D] 2,

By integrating equation (17) and by using the monotonicity of the
function U(r;\) for r>0 we get the following inequality:

(Uet),+ UB,}T'; <0 for r>0. (33)

The second estimate for € (o+ 1, + o0) we shall derive by integrating (33).
Then we have for r >0

9

r’[B—(ot+1 —1L[B=(o+ D]
U, A= [)\—[B—(o+l>l+ 2[€V(i+ l))] ]
and hence
U(r; )< h(r),r>0, for any fixed A>0, (34)
where A (r) is given in (7).
The tangent curve. Upper estimate (34) implies that for any 8> o+ | there

exists the tangent curve L= L (r) of the set {U(r; )} and the following upper
estimate »

L(r)Efg;O) U(r,N)=<h(r)forr>0 35)

holds. Moreover, from (32) for 8> o+ | we obtain the lower estimaté of L(r):

L(r)= L_(r)zili% U_(r;\)=c¢3r=2 [B=o+D] for r >0, (36)

where

Cy= [ﬂgjﬂ]l @+ [2_/\_/—(;5&]1 Fg_(aﬂn
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For 8=, the tangent curve can be calculated explicitly:
L(r)=h*(r) for r>0,

where the function A*(r) is determined by (7).

3. INTERSECTION COMPARISON

1. Let w(A)=[0,/(A)) be the domain of positivity of the function U(r; A)
for fixed A >0 (w(AN)=[0,+o0) for B=B.). Let N(z; ) for fixed t€[0, T) be
the number of intersections of the functions u(r, r) and U(r;\) in w(X) (see
e.g. [6]—[8], [15]) or, which is the same, the number of sign changes of the
difference u(r,t)— U(r; N\) [1], [14], [16]. This implies that the functions
u(r,t)and U(r; ) are positive in a small neighbourhood of any intersection.
Since the solutions u(r, t) and U(r; A) are classical there, each intersection is
an isolated point for any fixed ¢+ >0 [1], [13], [16]. Without loss of generality
we shall assume that for =0 and for all A>0 there exist only points of
intersection, and N(0;A) <<+ oo,

- The following Lemma 1 is well-known for classical solutions, see [1], [6],
[7], [13]-[16]; for weak solutions of degenerate equations see results in [8],

[15].
Lemma 1. Fix arbitrary N\>0. Let (3) holds and N (0;\)<oo. Then
NGN)SEN@ON)+ 1. If N@O; N)<1 for some fixed \ >u,(0), then
Nt N)=1 forany te(0, T). (37)
Proof. Below we use the standard technique of construction of the weak
solution of the Cauchy problem (1), (2) [11]. Fix an arbitrary small € >0 and

denote ‘

Uy, (x)=max {uy(r), €} >0 for r=0. (38)

Clearly, uy, (x) — uy(r) as € — 0 uniformly in RY. The Cauchy problem for (1)
with initial function (38) has the unique classical strictly positive solution
u.(r,t)=¢ in RVx(0, T) [3]. Moreover (see [11] and references therein)

u (r,t)~u(r,t) ase—0 (39)

uniformly in any compact set from RVx(0, 7).
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Let N, (7;\) for fixed t€[0, T) be the number of the points of intersection
of the solutions u,(r, ) and U(r;\) in w(A\). One can see that N, O N =
N (0;\)+ 1 (one additional point of intersection «given» in the right-hand
side of the last inequality can arise on the boundary r=1/(\) of w(A)).
Consider for arbitrary fixed 7€ (0, 7) the domain Q(¢) = w(A)x(0, 1. Itis
well-know that N, (z; \) is not greater than the number of the sign changes of
the difference w, (1, 1; \) = u, (r, t)— U(r; ) on the parabolic boundary of (1)
[1], [13]. [14], [16]. Since u(/(N),)>0 for all 1&(0, T) we get the inequality

N AN SN (0;N) for t€(0, 7).
From (39) by using the continuity of u(r, /) we can conclude that
Nt \)=< N, (t; \) for any small >0,

and hence N(t; \Y< N(O; )+ 1.

If A>u,(0) and N (0; A)=0 or 1, then it is easily seen that N,(0;A\) <1 for
any small e>>0. Then in both cases we have N (#; M <1 for all 1€ (0, T), which
completes the proof. ’

2. Comparison with the set of the stationary solutions. The following
two Lemmas 2, 3 are based on the analysis of the number of intersection of
the initial function u,(r) with the set {U(r;A)} of the stationary solutions.
These Lemmas vyield the sufficient conditions for the properties (ML) and
(M).

Lemma 2 (property (ML))). Let (3) holds and there exists A > M| such
that

N(0; \)=<1 for all N> As. (40)

Then (ML) holds with M = A«.

Lemma 3 (property (M)). Let (3) holds and
N (0; N)=1 for all N\>Ny=uy(0),
41
uy(r)= U(r; Ay) in Ri

Then (M) holds.
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Proof of Lemma 2. Let uy¢ {U(r;\)} and (40) is valid for some A.. Fix
arbitrary A > A«. Let u (0, 7,) = A for some 7, € (0, T) such that u (0, 1) <<\ for
all 1€ (0,1,). We shall show that (see also [4], [15, Chapter 1V])

u(r,t,)=U(r; AN) for all r=0. (42)

Suppose (42) is not valid. Then from (40) and Lemma 1 it follows that
NG N=1.

Consider the first case when N (z,; A) =0. Then u(r, 1,) < U(r; \) in w (M).
Hence, without loss of generality we may assume supp u(r, 1,) Cw (). Since
by well-known properties of the interface [11] supp u,C supp u(r, 1)) and
hence by Lemma 1 we have N(0;A)=0. Therefore, u,(r)< U(r;\) in w(A)
and u(/(N), t)=0 for t<[0,¢,]. Then by the strong maximum principle [3,
Chapter 11], applied for u(r, ¢) in the domain of positivity near the origin, we
get u(0,1,)<<U(0; N), whence the contradiction.

Consider the second case when N(z,; A)=1, i.e. there exists one sign
change of the difference w (r, t,; \)=u(r, 1,) — U(r; \) in w (A). Then by using
the continuity of U(r;A) with respect to A we get that there exists some
sufficiently small |e| >0, A + &> A+, such that the difference w (r, 1,; A) has at
least two sign changes in w(A+¢€) and N(¢,; A+¢&)=2. See the similar
analysis in [6-8], [15, p. 384]. This contradicts (37) and (40).

Thus, (42) is valid. Then by the comparison theorem wu (r, 1)= U(r; N\) in
w (M) for all re(¢,, T). Since u(0,7,)=A=U(0;\)>0 and u(0,7)= A for any
t€(ty, T) we obtain the inequality #,(0,7,)=0 and hence (ML) is valid
because A > A is arbitrary.

Proof of Lemma 3. Since u,(r)= U(r;Ay) In R'+ by the comparison
theorem wu(r, )= U(r;\y) in R'+ x(0, 7). This implies that wu(r, 1) doesn’t
decrease with time for # =0 at any point r = r«, where u, (r+) = U(r+; Ay) >0, in
particular, at the point r =0. The end of the proof is quite similar to the proof
of Lemma 2 with A=A,

4. PROOFS OF THEOREMS 1-5

Proofs of Theorems [-5 are based on the properties of the set of the
stationary solution and on Lemmas 2 and 3.

Proof of Theorem 1. (i) From (20) —(22) and (8) it follows that there
exists some sufficiently large A«=A+(R)>0 such that N(O;\)<1 for all
A>A\.. Then by Lemma 2 (i) holds.
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Notice that, roughly speaking, for B€ (1,0 + 1) the property (ML) doesn’t
depend on the behaviour of the initial function uy(r) in a neighbourhood of
origin. :

(i1) Estimates (22°) with M = M, (see (3)) and the condition (9) imply that
for any sufficiently large A >0 the inequality N (0; A)=1 holds. Hence by
Lemma 2 (ii) is valid.

(iii) From estimate (33) and condition (10) we get the ordinary differential
inequality of the first order for the difference z(r)=uy(r)— U(r; ),
)\() = uo (0) > 0:

(a(nz),+br)z>0 ir; o(N)N{uy>03, z(0)=0,

where a(r) and b (r) are some smooth nonnegative functions. Then by the
comparison theorem z=0 in w(A)MN{uy,>0} and hence w,(r)= U(r; ) in
R.. Moreover, if for A> X, there exists some point of intersection r =r. of the
functions 1, (r) and U(r;A) in w(X), then (), (r+)> U, (rs; X). This implies
that u, (r)= U(r; M) for all r>r. and hence N(0; A) < 1. Then by Lemma 3 (ii1)
is valid.

From (i) we have

Corollary 1. Let Be(l,0+1), (3) holds and let u,(r) be a compactly
supported function. Then (ML) holds.

Proof of Theorem 2. (i) This is similar to the proof of (i) of Theorem 1.
Explicit solution (23) and properties given in (24), (25) are used.

Note that for =0 +1 the property (ML) at the origin depends on the
behaviour of u, in a small left neighbourhood of the point r= zy.

(ii) See the proof of (iii) of Theorem 1.

(lll) Denote )\(): Uy (0) Then U (r)> U(r, )\())E Us(r, )\()) for all "E(O, ZN)
since u, (r) is nondecreasing function in (0, zy). Since U, (r; A\)<0, r&(0, zy),
for any A > Ay and U(r;\)=0 for r=zy, we get N(0O;\)=1 and Lemma 3 can

be used.

The assertion (i) yields

Corollary 2. Let B=o+ 1, (3) holds and let u,(r) be a compactly
suppoted function such that sup {r>01u,(r)>0}<zy. Then (ML) is valid.
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Proof of Theorem 3. (i) Properties (21), (22), (26) and the condition (13)
guarantee the inequality N(0;A)<1 for all sufficiently large A >0. Hence
Lemma 2 can be applied. Therefore, the property (ML) depends on the
behaviour of the initial function near r=0.

(i) See the proof of (iii) of Theorem 1.

(ii)) Since U, (r; A)<0 in w(X), which is the domain of positivity of the
function U(r;A), from (15), (18), (19) we get that uy(0)= U(0; 4, (0)) and
Uy (r)> U(r; uy (0)) for re (0, ly). From (26) we obtain the inequality N(0; \) =1
for all A>u,(0). Now one can use Lemma 3.

(iv) Since h (r)=sup U(r; M) (see (35)) and u, (r) is nondecreasing function
A>0

in {r>0]uy(r)<h(r)} we get that wy(r)=U(r;uy(0)) for all r>0 and
N(0;A)=1 for all A>uy(0). Then by Lemma 3 (iv) holds.

(v) See (19), (26) and the proof of (iii) of this Theorem.

Proof of Theorem 4. (i) Choose 6 =¢ (see (13)). Then from (13) and (29)
for all sufficiently large A >0 there exists unique intersection of the functions
uy(r) and U(r; \) in (0, 6). By using (16), (16”), (28), (29) we get that there are
]{)oints of intersection in [8,0), i.e. N(;A)=1 for large A>0. Hence,

no
(ML) holds.

(ii) See the proof of assertion (iii) of Theorem 1. Notice that for =8,
under hypothesis (14) the initial function should be strictly positive.

(ii1) See the proof of (iv) of Theorem 3.

Proof of Theorem 5. (i) Fix small >0 such that 4..(6) >2M,. By using
(31) for any large A >0 we can choose sufficiently small £ >0 such that

U N ha(r) = 1 <&, U, (M) he(r)— 1] <e (43)

in [, ). Since uy€ C' in the neighbourhood of unique point r=r., where
ty (r+) = hoo (r+) and ug (r«) > hi (r), from (43) for small £ >0 and for all large
A>0 it follows that there exists a unique intersection of the functions u, (1)
and U(r; ) in the connected interval {r>0] |uy(r)/h=(r)— 1 <e}. Then by
Lemma 2 (ML) is valid.

(i1) See the proof of (iii) of Theorem 1.
(iii) See the proof of (iv) of Theorem 3.
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