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ABSTRACT. In this work, we prove that every closed, orientable 3-manifold M3
which is'a two-fold covering of S3 branched over a link, has type six. This implies that
M3 is the quotient of the universal pseudocomplex K (4,6) by the action of a finite
index subgroup of a fuchsian group with presentation.

S@,6)=<a,, a5, a;, a,/a’=a=a’=ai=a,aq,a;a,=1>

Moreover, the same result is proved to be true in case M> being an unbranched
covering of a two-fold branched covering of 3.

1. INTRODUCTION

To every closed, orientable, P. L. n-manifold M”, A. Costa associated an
even integer ¢ (M"), the so called «type» of M"; the importance of this new
invariant for manifolds lies in its relation with the existence of universal
pseudocomplexes (whose geometrical structure is described in [C]).

Proposition 1. [C]—Let M" be a closed, orientable n-manifold. If
1(M")=2h, M" is the quotient of the universal pseudocomplex K (n+1,2h),
by the action of a finite index subgroup of a fuchsian group with presentation
Snt+1,2h)=<ay, a;.....,a,41/af"=af=..=a, P =a1ay...a, 1 =1>.

Recently. A. Costa and L. Grasselli computed the type of every closed

orientable n-manifold, with n73, and obtained the following results about
the type of 3-manifolds.

(*) Work performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. (National
Research Council of Italy) and financially supported by M.U.R.S.T. of Italy (project
«Geometria Reale ¢ Complessan).
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Proposition 2. [CoG]—(a) Let M§ be the orientable surface of genus g.
Then,

2 i g=0
t(Mé): 6 iff g=1
8 otherwise

(b) Let M3 be an orientable 3-manifold. Then,

2 iff MP=g§3
t(M)={ 4 iff M?isalens space L(p,q)

6 or 8 otherwise
(¢) Let M" be an orientable n-manifold, with n=4. Then.

2 iff Mn=Sn
t(M")= i
4 otherwise

Thus, it is an open problem to find whether the type of a given 3-manifold
M3, different from S$? and L(p, q), is 6 or 8 (only 7(S'x52)=6 is directly
computed).

In this paper, we give a partial answer, by proving that, if M3 is a two-fold
covering of S3 branched over a link, or if M3 is an unbranched covering space
of a two-fold branched covering of S3, M3 # S3, M3 L(p, q), thent (M3)=6
(Propositions 6 and 8).

As a consequence, we obtain the possibility of «representing» every two-
fold branched covering of $* by means of a finite index subgroup of the
fuchsian group S4,6)=<ay,a),az,asf/a’=a’=a’=a’=a,a,a;a,=1>
(Coroliary 7).

Moreover, a well-known result originally proved by Viro ([ Vi], [BH], [T],
[CG,]) allows to assert, as a particular case of Corollary 7, that the group
S(4,6) is «universal» with respect to all closed, orientable 3-manifolds of
Heegaard genus two.

2. PRELIMINARIES AND NOTATIONS

This paper, like [C] and [CoG], that introduce and investigate the new
invariant «type» for P. L.-manifolds, bases itself on the possibility of
representing a large class of polyhedra, including P. L.-manifolds, by means
of edge-coloured graphs (see [BM], [FGG], [V] and their bibliography).



Two-Fold Branched Coverings of $3 Have Type Six 237

An (n+1)-coloured graph is a pair (I',y), '=(V (), E(I')) being a
multigraph (i. e. loops are forbidden, but multiple edges are allowed) regular
of degree n+1, and v: E(I)—A,={0,1,...,n} being a proper edge-colo-
ration of I" (i.e. -y (e) # v (f) for every pair e, f of adjacent edges). For sake of
conciseness, we shall often denote the (n+1)-coloured graph (T, ) simply by
the symbol I' of its underlying multigraph.

For each AC A, we set I'y =(V(I"), v~ (A)); each connected component
of T} is said to be a A-residue of I. Note that every {i, j}-residue of I (i, j€ A,)
is a cycle whose edges are alternatively coloured by i and j; the (even) number
of these edges is called the valence of the {i, j}-residue.

A 2-cell embedding [ W] f: |T'| — F of an (n+1)-coloured graph (T, y) into
a closed surface F, is said to be regular if there exists a cyclic permutation
e=(gy,...,&,) of A, such that each region of f(i.e. each connected component
of F—f(|T'|) is bounded by the image of an {g;, &;+}-residue of ['(i€ Z,;).

Actually, for every (n+1)-coloured graph (T, y) and for every pair (g, e~')
of cyclic permutations (¢~! being the inverse of €), there exists a unique
regular embedding of (I',y) into a closed surface F,; moreover, F, is
orientable iff I' is bipartite (see [G]).

Definition 1. The type 7.(I') of an (n+1)-coloured graph (T',\) with
respect to the cyclic permutation € of A, is the less common multiple of the
valences of all {&;, €;+,}-residues of (T',y), i€ Z,.

Definition 2. The type 7 (') of an (n+1)-coloured graph (T, y) is defined
by:

r(I)=min {r.(1)/e€X(A) },
3.(A,) being the set of all cyclic permutations of A,.

Every (n+1)-coloured graph (I',-y) provides precise instructions for
constructing an n-dimensional pseudocomplex [ HW] K(I'), which is said to
be represented by I': the n-simplexes of K (I') are in bijection with the vertices
of T', while the identifications betweenithe (n—1)-dimensional faces are
indicated by the coloured edges of I" (see [FGG] for the detailed construc-
tion). By abuse of language, we will often say that (T, y) represents | K(I")|
and every homeomorphic space, too.

, A crystallization of a closed n-manifold M is an (n+ 1)-coloured graph
(I, y) representing M” such that T%; is connected for each i€ A, (where
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i=A,—{i}). A theorem of [P] ensures the existence, for every closed n-
manifold M", of crystallizations of M” (and hence of (n+1)-coloured graphs
representing M™); moreover, if (I', y) represents M", then M" is orientable if
and only if " is bipartite.

Definition 3. The type t (M") of a closed n-manifold M" is defined by:

t(M")=min {7(I) / (T, ) represents M"}.

3. TWO-SYMMETRIC CRYSTALLIZATIONS

In [ F], Ferri describes an algorithm for constructing a crystallization F (L)
of the (closed, orientable) 3-manifold which is the (cyclic) two-fold covering
space of $3 branched over a link . starting from a given bridge-presentation
L of Z; the construction works as follows.

Let L=(B,..., B; by,..., b,) be the given g-bridge presentation of < B;
being the bridges and b; being the arcs (for basic knot theory, see, for
example, [BZ]). If 7 is the plane containing all arcs b;, denote by a; the
projection of B;on mw; P=(ay,...,dg; by ,..., b,) is said to be the planar projec-
tion of L. We can always assume that P is connected; otherwise, it can be
made to be connected by isotoping arcs of P to pass «in and out» under
bridges of different components. For every i€ N,={1,...,g}, draw an ellipse
E; on 7 having the bridge-projection g; as principal axis and intersecting the
arcs of P in exactly 2 (h;+1) points P! ,..., PX#*D, where h; is the number of
undercrossings of B;. Let V be the set of all the points P/, j=1,..,2(h+1),
i=1,...,g. The elements of V subdivide the arcs of P into edges; let C (resp.
D) be the set of these edges which are internal (resp. external) to the ellipses.
The elements of ¥ subdivide the ellipses into edges, too: let F be the set of
these edges. Colour the edges in D by 2 and colour the edges of the ellipse E,
alternatively by 0 and 1; then, complete the coloration on F by and 0 and 1
so that each region of the planar 2-cell embedding of FU D is bounded by
edges of only two colours. Let a be the involution on ¥ which exchanges the
end-points of the edges of C and fixes the end-points of the bridge-projections
of P; let 8 be the involution on ¥ which exchanges the end-points of the edges
of D. Draw a further set D’ of edges, each connecting a pair of elements of ¥
corresponding under the involution & d &, and finally colour all these edges
by 3.

If T is the graph which has V as vertex-set and DU D’U F as edge-set, and
if -y is the described edge-coloration on T', then (T, y) = F (L) is proved to be
a crystallization of the two-fold covering space of S* branched over the link
4, Note that the involution «, which may be thought of as an axial symmetry
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on the plane m, exchanges colour 0 (resp. 2) with colour 1 (resp. 3) in F(L);
for this reason, the crystallizations F (L) resulting from Ferri’s construction
are said to be 2-symmetric.

In [CG,] every closed orientable 3-manifold M3 of Heegaard genus two
is proved to admit a 2-symmetric crystallization; this leaded to an easy proof
of the following well-known result.

Proposition 3. [Vi] [BH] [T] [CGZ]-Every closed, orientable 3-mani-
fold M3 of Heegaard genus two is a two-fold covering space of S branched
over a link.

4. COMPUTING THE TYPE OF TWO-FOLD
BRANCHED COVERINGS OF §?

Let P=(ay,..., ag by ,..., by) be the planar projection of a g-bridge presen-
tation L of a link &, g, being the bridge-projections and b; being the arcs; let
 be the plane containing P. The connected components of 7-P are said to be
the regions of P, note that every region of P is alternatively bounded by pieces
of bridge-projections and pieces of arcs of L. We shall call edge to such pieces
of bridge-projections and arcs.

Definition 4. The valence of a region R of P is the (even) number of its
boundary-edges. :

Definition 5. The valence of the planar projection P is the less common
multiple of the valences of all regions of P.

Proposition 4.  Every link &£ admits a bridge-presentation L whose
planar projection P has valence six.

In order to prove Prop. 4, we need the following lemma.

Lemma 5. Let P be the planar projection of a bridge-presentation of a
link <. Let G (P) be the pseudograph which has a vertex vg for every region
R of P, and n=0 edges between v, and vy., if IR and IR’ contain n common
pieces of bridge-projections.

Then: a) G (P)is a multigraph (i.e. it contains no loop);
b) G (P)is connected.
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Proof.

a) Let us suppose G (P) to contain a loop based on the vertex vg. This
means that the region R of P contains a piece of bridge projection, & say,
twice in its boundary; thus, chosen an inner point A4, of &, it is possible to
draw in 7 a closed simple curve o (= S') whose points belong to RU{4,}. On
the other hand, the projection in P of the component of the link &
containing & is a closed curve 7 in m whose double points, if any, are also
double points of P. Then, o intersects 7 only in the regular point A4y, and this
is an absurd.

b) Let us suppose G(P) to be not connected. Let G’ be a connected
component of G(P) not containing the vertex vg, R being the unlimited
region of P;let vz be an arbitrary vertex of G'. If R ,..., R, are the regions of
Psuch that, fori€{1,...,1}, v, is adjacent to Vg, in G, attach each R;, one at
a time, to R;, by means of the common pieces of bridge-projections in their
boundaries; then, repeat the same process for every attached region, and so
on, until exhausting all regions R such that vg€ V(G’). Since every region is
a 2-ball and P is planar, at every stage a 2-ball (possibly with holes) is
obtained; let D? be the 2-ball (with holes) which results at the end of the
process. It is easy to check that dD? is the projection in P of a component of
the link .&, which contains no piece of bridge-projections; this contradicts the
hypothesis that " is bridge-presented, since every component of the link
must contain both bridges and arcs. |

Proof of Prop. 4.
The proof consists.in the following two steps.

Ist step: We will prove that & admits a bridge-presentation L* such that
the maximum among the valences of the regions of its planar projection P*
1Is<6;

2nd step: Starting from L*, we will produce the required bridge-
presentation L of ..

Ist step.

Let P be the (connected) planar projection of a given bridge-presentation
L of & suppose that the maximum among the valences of the regions of P
is m>6 (otherwise, start with the 2nd step). Let R be a region of P having
valence m, and let a;, B, ,..., &2, B2 be the sequence of its boundary-edges,
consistent with a fixed orientation of m, o; being pieces of bridge-projections
and B; being pieces of arcs of L. (Fig. 1) First of all, isotope 83 to pass «in and
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Fig. 1
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out» under a,, so that R gives rise to a region R’ of valence six (bounded by
oy, Bi, @z, By, a3, B3) and a region R” of valence m—4; note that the move adds
a new piece of arc S to the boundary dQ of the region Q(#R) of P containing
a; and a new piece of bridge-projection & to the boundary dZ of the region
Z (# R) of P containing 8,. Thus, at this stage, the regions Q and Z have their
valence increased. (Fig. 2) However, lemma 5 (b) ensures the existence of a
sequence Q;, O, ,..., Qy of regions of P, such that g/=Q, Q,=7Z, and dQ; and
dQ;+, contain the same piece of bridge-projection &;, for each ie{1,..., h—1);
moreover, it can be assumed that the valence v(Q;) of the region Q; is
different from two, for each i€{1,..., ~—1}, and, if v(Z)> 6, that the bridge-
projection &,_; was not adjacent in P to the piece of arc B;. Then, for each
ie{l,...,h—1}, isotope the piece of arc B; (with 8;= B) in d Q; to pass «in and
out» under the piece of bridge-projection @;, so that a new piece of arc Bisy is
added to dQ;+; and Q; gives rise to a «central» region Q; of valence four
(containing &; in its boundary) and two regions Q;, Q,” of valence not greater
than v(Q,). Finally, isotope the piece of arc B8, in dZ to pass «in and out»
under a. (Fig. 3) Note that the above sequence of moves, besides strictly
lowering the valence of R, has increased the valence of no region of P. Hence,
a (finite) iteration obviously leads to a planar projection P* of & such that
the maximum among the valences of its regions is <6.

2nd step.

Let L* be a bridge-presentation of ., such that the maximum among the
valences of the regions of its planar projection P* is=<6. In order to obtain
the required bridge-presentation L of &, it is necessary to «adjust» all regions
of P* having valence four, in order to generate regions of valence two or six
only.

First of all, note that two regions R, Q of P* having valence four may
obtain, together, valence six, if they are in one of the following situations:

a) dR and dQ contain the same piece of bridge-projection &;
b) 4R and dQ contain the same piece of arc f;

¢) dR and dQ contain the same vertex A (i.e. an edge B of JR and an edge
B” of dQ are pieces of the same arc of L*).

In fact: In case a), it is sufficient to introduce, within &, a new arc B
without overcrossings; in case b), it is sufficient to introduce, within 8, a new
arc a without undercrossings; in case c), if o’ is the piece of bridge-projection
adjacent in A4 to 8’ and belonging to dR, it is sufficient to isotope the piece of
arc B” to pass «in and out» under ¢«’. (Fig. 4 (a), (b), (c)).

On the other hand, note that a single region R of P* having valence four
may obtain valence six, if it is in the following situation:
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Fig. 2
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R a -+ | R ¢ a
b)
R1Q —> RlQ
<)
R R
— P
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d)

Fig. 4
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d) JR contains a vertex 4 which is an end-point of a bridge-projection
of L*.

In fact: if oy and B, are respectively the piece of bridge-projection and the
piece of arc adjacent in 4 and belonging to dR, it is sufficient to isotope B, to
pass under «, from the side opposite to R, before arriving in A. (Fig. 4 (d)).

It is easy to check that the moves suggested in cases a), b), ¢), d) do not
affect the valence of the other regions of P*, and merely introduce (in cases
¢) and d)) new regions of valence two. Thus, it is always possible to obtain
from P* a new planar projection P*’ of <, such that the maximum among
the valences of its regions is exactly six, and P*’ does not contain regions of
valence four belonging to the cases a), b), ¢) or d).

If the valence of P*’is six, the thesis is proved; otherwise, let R be a region
of P*" having valence four. As usual, denote by a,, 8, @, B, the sequence of
its boundary-edges, consistent with a fixed orientation of m, a;,a, being
pieces of bridge-projections, B, 8, being pieces of arcs of L*". The properties
of P*”ensure that at least one between the edges 8, and B,, B, say, is such that
the region Q(# R) of P*' containing it has valence six; then, isotope By to pass
«in and out» under &, & being the only piece of brldge projection in dQ not
adjacent to a; or a,. In this way, R obtains valence six — as requlred —, while
Q splits into two regions, Q’, Q” of valence four, and a new piece of arc B is
added to the boundary dS of the region S(# Q) of P*' containing &. (Fig. 5).

Note that Q" and d.§ contain two pieces (8’ and B”, respectively, say) of

the same arc b; (i€f{l,...,g}) of P*¥, which are both adjacent to &. Let

LB, Blf B{+',---,ﬁ,-7 be the sequence of the pieces of the arc b;

consistent with a suitable orientation of the component of % which contains
b;, so that B{EB' and B;,J-'*' =pB", with j€{l,...,m;}. Let S,,.5,,..., Sam; be the
sequence of the (not necessarily distinct) regions of P*’ such that: S,=3S,
Som =0, B,’ belongs both to dS;_; and to 35y, _; j+; (where the index i of S
is written mod. (2m;)), and, for each i€ {1, 2,...,2m;—1}, 3S; and 9S4,
contain the same piece of bridge-projection &;. Note that &, _;j and @&,,,,_; are

pieces of bridge-projections belonging to the same component of & than
b;. Then, for each i€ {1,2,...,2m;—1}, isotope the piece of arc §; with B, = )
in dS; to pass «in and out» under the piece of brldge-prOJectlon &;, so that a
new piece of arc f3;,, is added to dS;;, and a new pair of adjacent regions S/,
S;” having valence four is placed near S;, (Fig. 6) Note that, at the end of the
above sequence of moves, every region S; comes back to its original valence
v(Sy)in P¥, while the region Q’ obtains valence six. Let now a* be the bridge-
projection of P*' to which the adjacent pieces in dR and dQ (o, and o*,
respectively, say) belong, and let a*+ be the connected component of a* — oz*
not containing ay; further, let K be the (possibly void) subset of {1,2,...,
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2m;—1} such that, for every k € K, oy, belongs to a*+, and let & be the element
of K such that a; is the closest to o* among all o, k€ K. Then by applying
the move suggested in case a) to the pairs Sj;’, Si+,” and S;”, Si+{ , is any,
and the move suggested in case b) to the pair S/, S/, for each ie{1,2,...,
2m;—1}—{k}, the «adjustment» of the region R is obtained, with one only
new region Q" of valence four, However, it is easy to check that Q”, if not
belonging to the cases a), b), ¢) or d), is strictly closer to an end-point of the
bridge-projection a* (either the one belonging to a**, or the new one, internal
to af), than R was. Hence, the existence of a planar projection P of Z having
valence six, easily follows by (finite) iteration. |

Example: By applying the procedure of Prop. 4 to the Montesinos link
L= M(=2; (2,1, (2 D, (2,1), (2,1)) (see [BZ]) represented in Fig. 1, one
obtains the valence six planar projection of . represented in Fig. 7, passing
through the ones depicted in Fig. 2 and Fig. 3.

We are now able to prove the main result of the paper.

Proposition 6. Let M3 be a (closed, orientable) 3-manifold, which is a
two-fold covering space of S* branched over a link <. Then,

2 iff MP=8%
t(M3)=1{ 4 iff M?is alens space L(p,q);

6 otherwise.

Proof.

Prop. 4 ensures the existence of a br1dge presentation L of &, such that
the planar projection P of L has valence six. Let F(L) be the 2-symmetr1c
crystallization of M3, obtained from L by Ferri’s construction. It is easy to
check that F(L) contains {0,2}—, {I,2}—, {1,3}— and {0,3}— residues of
valence two or six, only; thus, if € is the cyclic permutation defined by
£=(0,2,1,3), 7. (F(L))==6. The result now easily follows from the characte-
rization of the 3-manifolds of type two and four (see [CoG]). |

Remark. If M? is a two-fold branched covering of S°, the type of M3 is
obtained by the type of a crystallization of M3. 1t might be interesting to
know whether this happens in the general case, or not.

The following result is a direct consequence of the above proposition and
of the existence of a pseudocomplex K (n-+1, 2h), which is «universal» with
respect to all closed orientable #-manifolds of type 24 (see [C]).
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Corollary 7. Let M3 be a two-fold branched covering space of S*. Then,
there exists a finite index subgroup N of a fuchsian group

S4,6)=<ay,a,a, a4/a,3=a23=a33=a43=a1a2a3a4=1>

such that
K(4,6)
N

M3=

Remark that prop. 3 ensures that the property stated in Corollary 7 holds
for every closed orientable 3-manifold of Heegaard genus two.

5. FURTHER TYPE-SIX 3-MANIFOLDS

The present last section is devoted to show that Prop. 6 actually implies
the existence of a very large class of type-six 3-manifolds, properly
comprehending two-fold branched coverings of S3.

For, the notion of m-covering — originally due to [ V] —is needed.

Definition 6. Let (T',v), (I, v’) be (n+1)-coloured graphs. A map
f:V ()= V(L) is said to be an m-covering, I=m=n, if f preserves c-
adjacency for all c€ A, and is bijective when restricted to. m-residues.

The branching (m+1)-residues are the (m-+1)-residues of (I, y) covered
by at least one (m +1)-residue of (I, y") on which f'is not injective.

The covering f naturally induces a topological map |f] : K(I")— K(I'). An
-n-covering induces an (unbranched) topological covering between the
underlying topological spaces, while a l-covering induces a topological
covering branched over the (n—2)-subcomplex of K (I') whose (n—2)—simplexes
are represented by the branching 2-residues of (T', y).

We want now to illustrate a standard method for constructing m-cove-
rings of graphs representing manifolds, which will be useful for our purposes.

Let (T, v) be an (n+1)-coloured graph representing a closed orientable n-
manifold K (I') = M". Suppose ['; connected, for some c€ A, and let L be the
(n—2)-subcomplex of K(I') represented by a (possibly void) given set
{C), C;.,..., C,} of 2-residues containing colour c.

If L=¢ (resp. L#¢), then a presentation < X: R> of II; (M") (resp.
11, (M"— L)), called c-edge presentation, can be obtained in the following way:
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*) the generators of X are the c-coloured edges, arbitrarily oriented;

**) the relators of R are obtained by walking along all the 2-residues of
I" containing colour ¢ (resp. all the 2-residues of " containing colour
¢, but G, G, ..., G), giving the exponent +1 or —1 to each generator
whether the orientation of the 2-residue is coherent or not with the
orientation of the generator.

Note that, if I'; is not connected, the c-edge presentation can be obtained
in a similar way: it is sufficient to complete the relators of R with a minimal
set of generators such that the corresponding c-coloured edges connect I'.
The existence of a one-to-one correspondence ® between transitive d-represen-
tations w of II; (M") (resp. II; (M"— L)) and d-fold unbranched covering spaces
of M" (resp. d-fold covering spaces of M" branched over L), is well-known
(see [F]). In [CG,], the following method is described for constructing an
(n+1)-coloured graph (I", %) such that K(I")= ® (w):

— set V(D)=V ()X Ny

— for each k€A, —{c} and i€ N, join (v, i) with (w, i) by a k-coloured
edge if v, w are k-adjacent in (T, v);

— join (v, i) with (w, j) by a c-coloured edge if in (I',y) there is an
oriented c-coloured edge x; from v to w and w (x;) (i) =.

It is easy to check that the projection map f: V(f‘)—» V(I') defined by
Sf((v,)))=v for every ve V(TI") and i€ N,, is a 2-covering (resp. a 1-covering
having C,, C;, ..., C, as branching 2-residues).

As an application of the previous construction and of the results of section
4, we have the following existence theorem for type-six 3-manifolds.

Proposition 8. If M? (M3 S?, L(p, q)) is an unbranched covering of a
two-fold branched covering of S3, then t (M?)=6.

Proof.

Let M3 be a two-fold branched covering of §3, and let w: I, (M3) — S, be
the monodromy associated to the unbranched d-fold covering space M3 of M3,

Prop. 6 ensures the existence of a crystallization (I", yv) of M3 such that,
fore=(0, 2, 1, 3), . (') =6. If c€ Az is an arbitrarily chosen colour of (I', )
and <X; R> is the c-edge presentation of I1,(M?3), then the construction
above described yields a 4-coloured graph (T', ¥) representing M3 = & (w) and
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such that 7,(I') =6 (because of the 2-covering f: ¥ (T")— V(I")). Hence, the
thesis follows. |

Actually, an even more general result holds.

Proposition 9. Let (T, vy) be a 4-coloured graph representing a 3-manifold
M3, such that ,(T') = 6 (¢ being a suitable cyclic permutation of A;); let L be
a subcomplex of K(T') represented by a (possibly void) given set of {€., €.+,}-
residues, for some c € As. Then, every covering of M?= K (I) branched over
L is represented by a 4-coloured graph (I, %), such that 7,(I')=6.

The proof is an obvious adaptation of the one of Prop. 8. |

Remark. The fact that 7°=S8!'xS'x S! is not a two-fold branched
covering of $? is well-known ([Fox]). Nevertheless, Prop. 8 ensures ¢ (73) =6.
In fact, 73 is the (unbranched) two-fold covering of the Selfert manifold
ST(Sx02»)=(000]/—-2;(2,1), (2,1), (2,1), (2,1)), which is the two-fold covering
space of S3 branched over the Montesinos link M (—2; (2,1), (2,1), (2,1), (2,1))
of Fig. 1 (compare [M]).

Since Propositions 8 and 9 yield a very large class of type six 3-manifolds,
the following two questions naturally arise:

— There exists a 3-manifold with type eight ?

— There exists a 3-manifold without any group action with type six ?
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