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Existence and Nonexistence of Nontrivial
Solutions for Some Nonlinear
Elliptic Systems

JEAN VELIN AND FRANCOIS DE THELIN

ABSTRACT. In this paper we give some existence and nonexistence results of non trivial
solutions of nonlinear elliptic systems involving the p-Laplacian.

0. INTRODUCTION
In this paper, we give some existence and nonexistence results
concerning nonlinear elliptic systems. The case of one equation has been

studied by many authors.

Let Q be a bounded regular open set in R” and consider the problem
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Find u € CXQ) N CYQ) such that
Py -Au = M(u) in Q
u=0 on 9Q

where flu) € C**(R), 0 < a < 1, is such that: f0) =0 and |flw)| <A +
Blu|™

Any solution u* of (P,) satisfies the PohoZaev’s identity [21]:
n—2 * *y u' =_1 *
nLJ{Wu "fu™) _L f(s)ds}dx _Z_LJV”
whence u* = 0 if Q is starshaped and
n-2 u’
—uflu*)- s)ds | >0.
A{ Zuhu)- [ o) ]

On the other hand, if

Y(xv)do,

2n
O<m+l<——
n-2

PohoZaev [21] has shown that (P,) admits an eigenfunction u*#0
corresponding to A.

Always in the scalar case, Otani [19], [20] and de Thélin [25]
generalize these results for the p-Laplacian Au = div(| Vu|”*Vu).

For example, they give the following results concerning the equation
(E) Au=Alu|™u

- If Q is a strictly starshaped open set and (m+1)(n-p) = np the only
solution u* € W;P(Q) of (E,) is u* = 0.

- If (m+1)(n-p) < np and m+1 # p, then for any A > 0, (E,) admits a
positive solution u* € W3*(Q).
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- If m+1 = p, we have an eigenvalue problem [3].

More recently, in [32], we have given some results concerning the
existence and nonexistence of a nontrivial solution (u*,v*) € W3*(Q) x
W5%(Q2) of the following system

{-A,,u=u|u|""‘|v|‘M inQ

Ay = |ul v |v|P
We prove

1) nonexistence results when

P

ln*
+
(@ )np

n-
+(B+1)_n?21

when Q is a strictly starshaped open set;

2) existence results when

n-p n-q
(B D= <1

(a+1)

and when

a+l B+1
+
p q

#1.

Now, in this paper, we extend the study of existence and
nonexistence of positive solutions of the nonlinear elliptic problem

-Aju = flx;u,v) in Q

P) -Ay = g(x;u,) in Q
u=0,v=0 on dQ.
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We say that (P) is a potential system if there is a C' function H such
that

__OH N
f(x,s,t)—-a—s(x,s,t), g(x,s,t)—w(x,s,t).

In a first part, following Egnell [10] and Pucci-Serrin [22], we obtain
a PohoZaev type identity for potential systems. In the case when Q is a
starshaped bounded open set, this identity gives nonexistence results.

In a second part, we give some existence results for non potential
systems. Following Deuel and Hess [7], we construct appropriate sub-
supersolutions for (P) and use a suitable comparison principle.

In a third part, we give some existence results for potential systems.
Following Nirenberg [18], we apply Mountain-Pass Lemma to find a
nontrivial solution; after that, we extend an iterative method previously
used by Otani [20] for the equation (E,) to prove that the solution is
bounded.

Concerning the systems, we can notice the existence results obtained
in [4], [6], [11], [12], [28]. Independently, [13], [22] give nonexistence
results.

1. NONEXISTENCE RESULT

In this first section, we propose to extend the non-existence study,
made by de Thélin [26] and Egnell [10] in the scalar case, to the
following problem (P)

( Find (u,v) ea })I( N [L=()]? such that
(D -Aju=— (xu,v) in Q
ou

P) ‘ oH
2) -Ay= a— (xxu,y) in Q
v
u>0 in Q
{ v>0 in Q
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Hereafter, X denotes the space W;?(Q2) x W(Q).
1.1. Properties and Results.

Theorem 1.1. Assume the following hypotheses

i) H(x;0,0) = 0 and .a_H(x;0,0)=a_H(x;0,O)=0
ds ot

ii) a_H(x;s,t), .aﬁ(x;s,t) are in' C(QxRxR) and _ag(x;s,t)ZO
os ot ds

.%Iti(x;s,t)zo for any 5,220 and xeQ

iii) V(st) e K
- H -q| oH
H(x;s,0)< " p{( ?)s (x;s,t)}+ n q{' 5 (x;s,t)}—% 'V H(x;s,0)

np nq

iv) Q is a bounded strictly starshaped domain in R" containing 0.
Then, (u*,v*) = 0 is the only solution of (P) in X N [L™(Q)F.

Corollary 1.1. Let Q be a bounded strictly starshaped domain in R"
and H(x;s,t) = | s|®"|¢] P+,

If

n-p

(a+1) =

(B,
(P) has only the trivial solution (0,0) in X N [L~(Q)]*

Proof of the Corollary 1.1. Since

n-p n

(@) B2,

we have
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H(x;s,t)s[(wl) "n;f’ «(B+1) nn;q]H(x;s,t)

(1.1)

np oH | n-q)oH
<~ as.\x,s,t) ¢ P 3 3 (x;5,0)

and all the hypotheses of Theorem 1.1 are satisfied.

The proof of Theorem 1.1 needs the following lemma which extends
Egnell’s one [10].

Lemma 1.1.1. Let (u*,v*) be a solution of the problem (P); then for
all x on the boundary of Q, we have: | Vu*(x)| # 0 and | Vv¥(x)| #0.

Proof. Let x, € 0Q; there is a ball B, < Q.

By translation we assume that B, = {x € £, |x| < r,} and,
proceeding as in [10}, we introduce the function

(%) =k(e " —¢ %),

For p > 1, a suitable choose of o gives g, such that
N m- m-1 .
(1.2) ~div(|Vg,|"?Vg )<ag,” in BB,
Multiplying (1) and (1.2), [resp. (2) and (1.2) ] by the test function

9, = (g, - u*), [resp @, = (g, - v¥),] and integrating on the set B, = {x €

Bro\Br s @ > 0} [resp. B;] where u* and v* are regular, we obtain

oH
OSL;( Vg, 172V, ~|Vu | Vu *)'V(dexS‘Lfa_u(x;u v )@ dx

whence, g, < u* in B \B, 2
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By construction g,(x,) = u*(x,) = 0, therefore

(1.3) | Vi *(x,) |>2k o1 e >0

Proof of Theorem 1.1. Let (u*, v¥) be a nontrivial solution of (P).
Fori=1,.nl=1,.,nlet
au * 8u L0V ov*
—E IV a and Q Z IV ox ,.x’a_x,

LetK,={xe Q |Vu*(®)| =0}, K,={xe Q |Vv*x)| =0}.

Lemma 1.1. allows us to consider as in [10], the sets £, and &, such
that K, c Q, cc Q, K, ¢ Q, cc Q, with dist(K ,;08,) — 0, dist(K,;082,)
—> 0, as k —> +oo and we define Q, = O\NQ,.Q, = O\Q,.

ELa—xdx E_sz, [ |P_2%]ﬂ+Lk|Vu‘|pﬂ

* =1
0 | dux
_2___—
X x,| Vux|? ai[aledx

(1.4) L,E ,..___(x,u* y*)dx+ L |V Pdx

TIEE

LE = (x—IVu*I"] ——L |Vuux [P

k=1
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Vu* do not vanish in Q, and therefore u* is of class C? in Q,, so we
can use the Gauss’s formula to obtain

(1.5) LZ dx J; EPvdc L)qu*I" 2(x-Vu*)(v-Vux)do

k=] H-

and

(1.6) L Zn: a%(x,% | Vix |")=LQ -1-17— |Vux|P(x-v)do
] '3

=1

Whence, by (1.4), (1.5) and (1.6)

1
L, [Vu|P2(x - Vux)(v-Vux)do ~7)-£n |Vux*|P(x-v)do

1.7

-n

oH
.L”zl: 1a a (X,u*,v*)dx+ 7 Lu*x(x;u*,v*)dx

In the same way, an analogous relation is also obtained relatively to
v*. Summing up these relations, we have

L} |Vux |P2(x-Vux)(v-Vux)do +.£n’ [Vv*|72(x-Vy*)(v-Vv*)do

1 1
_— Py — Ay <
pLQ‘IVu*I (xv)do 7 ’ ;le*l (xv)do
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(1.8)

pnr oH X qg-n oH )
= —(xu* dx+ K
> Qku 3 (c;u*,v*) 7 Lkv 3 ——(u*,v*)dx

fz __.(x,u* v*) (dx fz 1__v_(xu*v*)

*ll

Passing to the limit on & in this equality, as u* and v* = 0 on 9 and
using the results of Egnell (2.1 [10, p. 64]).

p_l Py q_l 9y~
> L}IVu*| (xv)do+ 7 [Vvx|9(xv)do

n-q oH 4
K X 1Y * *
7 Lv 3 (o u*,v*)dx

- H
=- npp Lu *g—u(x;u * v )dx -
(1.9)

oux* aH ovx oH

fZ S i vy

We have the following relation

n

Yy _aa_{x,H (o5, =nH(x;5,0) +xV_H(x;5,2)

=1 xl
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(1.10)

Z ds oH ot oH
+lz=1: 'xl a—xl-'x(x;s,t)-ks-;l..w(x;s,t) i

_Moreover, since the application x — H(x;u*(x),v*(x)) is of class
C'(Q), using again the Gauss’s formula then we have from hypothesis i)
J3oH(@,u*(x),v*(x)) (x'vdo) = 0. Hence, we obtain
(1.11)

—(p—:- LJVu* P(cv)do + ";1 Lﬂ Vs |"(x-v)do'J

B n-p| OH
= —x-VXH(x;u*,v*)—nH(x;u*,v*)+ o u*-é—’;-(x;u*,v*)

n-q| oH "
+ 7 v*—av—(x,u*,v*)

According to the hypothesis iii) the integral on Q is nonnegative,
whence a contradiction.

2. EXISTENCE RESULTS VIA COMPARISON ARGUMENTS
Q denotes a bounded regular open set in R" and X = Wy?(Q)xWy%(Q).

" Throughout this second section, we shall prove some existence results
for the following problem.
Find (u,v) € X) such that
P) -Au = fixu,v) on Q
-Ay = g(xu,y) on 2.
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We make the following assumptions

(HI)

(H2)

(H2),:

(H2),:

fand g belong to C(2 x R x R)
moreover, for any s20. £20; fix;s,/)20 and g(x;s,/)=0

There are nonnegative constants:

a;, b; (1 = 1,.. ,6) where a, >O a;>0, b,>0, b,>0 satisfying
(H2), and (H2),:

o+ P+l
— +—<1
p p

11<p <p; 0<q1-1<5k

0<p2-1<£; 1<g,<q
{ q*
(as|s|®|t]|Pa,| s | '<Sxsp<ass|s| ' | t] Plaa, | 5] P

+as | t| " +ag
b,|s|*%t|t|Plb, | t| *'<g(x;5,0<bys® 't | | Fl4b, | 5| P!

qr- 1
+b,

+bs |t

We have the following existence theorem:

Theorem 2.1. Under hypotheses (H1) and (H2), (P) has a nontrivial
solution (u*v*) in X N [L™(Q)).

Example: existence result for f{x;s,f) = a(x)s | s | *' | 1| ! and g(x;5,2)
=b(x)|s| || P

Corollary 2.1. Let f and g be as above where a and b are
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nonnegative continuous functions and assume that o. > 0 and B > 0 are
such that
n- n- o+l P+l
2 @o1yite; 2P
np nq 4 q

(ou+1)
Then, the corresponding problem (P) has a nontrivial solution in X
N [L=(Q)F.
The proof of Theorem 2.1 is in three steps.
1* step: Construction of sub-supersolutions of (P).
Definition 2.1. A pair [(uyv,),(u’V°)] is said a weak sub-super
solution for the Dirichlet problem (P) if the following conditions are

satisfied:

b { (gve) € WH(Q) x W4(Q)) N [L(Q)F
D L wan e @ x wa@) n @

( -Augf x50, V)SOS-A 1 -f (% v) inQ Wve [v,]
@D -A Ve 8(xuv)<0S-A-g(u’)  inQ Vue [uu]
' Uy < in Q
() 0 .
VoSV in Q
U, <0< u° on dQ2
L1, <0 <Y on 9Q

Similar definitions can be found in Diaz-Herndndez [8], Diaz-Herrero
[9], Hernandez [16].

Proposition 2.1. Assume (H2) and
o+l B+1
+

<1;
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then, for any M > 0, the problem (P) admits a pair [(u,,v,),(u’,V°)] of sub-
super solution satisfying uy(x) < M < 1(x), vy(x) £ M <V°(x) in Q.

Proof. a) Construction of (u°°)

Consider R > 0 such that Q — B(0O;R). We seek for ¥°1° in the
following forms:

W) =" =ar" +b
2.2)
V@O =y =c” +d

a<Q0andc<0
with: b>0andd>0
x|l = r.

We fix a real M > 0 and choose

b-M da-M
R and c=- R

(2.3) a=-

we have, for b and d greater than M

(2.4) M<u%%x); M<v°(x) VxeQ.

and for each point x in £, we have:

(2.5)

Au’)=p-1l/(r Yo" () +n_;'1'|‘91 ¥ ¢/ (r)=-np*|alP=np *(b - T—l)

R?*

For u <u’ v <+’ and a < 0; ¢ < 0 we have
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(2.6)
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!

r

_ @D
A u+fixu’ v)<-np *(I; il +abdP!

+a4b p- +a5d 4,-1 va, , VVOSVSV 0
- q-1)
A A% 0+g(x;u,v O)S“nq *(d MJ +b3b a+1dB
q Rv

*b b b d b, Vu<usu®.

Let £ > 0, b = k'” and d = k". Comparing, the growth of the
different terms in (2.6) for large &, we obtain

2.7

{ A + f’v) <0 WP <y

AV + geup’) <0 Vu, < u<il

b) Construction of (u,,v,). Consider x, € Q, and R > 0 such that
B(xy;R) < Q; we can assume 0 € Q.

As in [11], [26], we seek (u,,V,) in the following form

(2.8)

(2.9)

AresB for 0<r< R
n+l
u)=0r)= | CR-ry*  for ”Rl <r<R,
n+
0 for R<r,
AresB - for 0<r< R ,
n+l
= " nR
Vo(X)=Yo(r)= CR-r) for ISI’SR,
n+

0 for R<r
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Take

n+ly*1 1 i=-B n+l Y\l 1
A=-B n E;:, —_B( n ] Rq*

2.10) CoAnr, Co—Aine

B>0, B>0.

By (2.10) u, and v, are in C‘(ﬁ) and moreover they vanish on 9Q.
First consider x such that

nR
—<r=[x|<R;
n+1

we have
OSuO(x)SC(R —_’ﬂj
n+l
2.11)
OSvo(x)SC'(R —ﬂj
n+l
Consequently
i R-
Aux)=p+'C? '{1 ~(n-1 )—r-f}
(2.12)
p-lp-1
P
n

Whence for any (u,v) € [ug,u"] X [v,,°] and for sufficiently small R:
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-1
A ugHf(x,ug,v)2CP! {.Ii_-az( R I }20

n n+l
(2.13)
- -1
A yi+g(xu,vg)2C?! {ﬂj_—bz[ R I }_>_O
n n+1
Now consider x € Q such that:
nR
0<|x ||S—n+—1
We have in this case
(2.14) 0<u,(x)<B and OSvo(x)SB.
Moreover
' n+l )
(2.15) Au(x)=-B ¢V 7 p oD

Using the hypothesis (H2), for any (u,v) € [1,v,] X [v,,V°], we obtain

n+1 _ 1

_Rpi__ -1 B+1____ 4 )
(2.16) Br R @Y +aB°B (1> a,BP <A u,+f(x;uy,v)
~ _1n+1

B gy eb BB

1 5 -1
e P "SAy, g leuyy)

Hence the conclusion follows for B = D", B = DY, D > 0
sufficiently small.

2" Step: The troncated problem (P) associed to (P).

Following [7], we define a troncated problem (P), associated to P).
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Find (1,v) € X such that
P 6)) -Au =](x;u,v)—'yl(x,u) in Q
¥)) -Ay = gouv)-Y,(x,v)  in Q

Where
V() = (e(x) - uEE + (w(x) - w2
BEVX)) = -(Vox) - v + (W(x) - V)

2.17) ]
fxux),v(x)) = Ux),V(x))
g(oux),v(x) = gxUx),V(x))

With
U®x) = u(x) + (ue(x) - u(x)), - @) - u’(x)),
(2.18) '

V() = v(x) + ((x) - v(@)), - () - V'),

For any (u,v) € X, (4,V) € X, we define:

Au,y) 8 0| ¥, 06) fOosu,v)
w,y)=- N
0 A“ v Y,(5v) -g(x;u,v)
"y ( 5
2| Vu|p2 22 )
(2.19) N Zl: ox, ox, VG Feuy)
~ 0 3 )| BG»-guy)
Vvl
El ox, Vvl .

i
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al(uy):(i,9))= LA(u,v) Wax

7i
with W = [A]
v

We have
al(u,v);(d,9)] = fQ |Vu|P2VuVidx+ Lle|"‘2VvV\?dx

(2.20) - Lf(x;u,v)ﬁdx~ Lg(x;u,v)ﬁdx

. Lyl (x,u)idx+ L’Yz(x,v)ﬁdx.

Lemma 2.1. A is a bounded operator from X to X*.
Proof [31].

Definition 2.2 (C.f [17]). An operator A : X — X* is called a
calculus of variations operator, if it is bounded and if it can be
represented in the form

ey Au,v) = A[(u,v);(u,)]

where ((u,v),(4,9)) = A[(u,v);(4,9)] is an operator X x X —> X* which
satisfies
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V(u,v)eX; (2,9)—>A[(u,v);(i,9)] is a hemicontinuous bounded
operator X — X* and )
<Al (u,v); (- Al (u,v);(6,9)],(u,v)-(@,9)>20; V(u,),@,9eX

For any (4,9) € X, (u,v) = Al(u,v);(i,9)]
is a bounded hemicontinuous operator X — X*. 3)

If (w,v,) = (u,v) weakly in X

and

if <Al(w,v)(w,v,)] - AV ) (uv)l(uuy,v)>—>0 (@)
then, for any (4,9) in X

the sequence Al(u,v,),(4,9)] converges weakly to A[(u,v),(4,9)]

in X*.

If (w,v,) = (uy)in X
and if Al(u,,v,),(4,9)] —> (0,¥) weakly in X*
&)
then
<ﬂ[(uyyv,4)y(ﬁ:‘7)];(u,pvy)>x*,x - <(¢’\|I)’(u:v)>x*.X'

In our problem, we define 4 by the following relation; for any (u,,v,),
(u2,v2),(_ﬁ’ﬁ):

<A [ ) ()@ 0)>= [ | Vit P2V Vil [ 19, +2vv,vsax
(2.21) —Lf(x;ul,vl)ﬁdx—Lg’(x;ul,vl)ﬁdx

[+ [y, ev o

Lemma 2.2. 4 is a calculus of variations operator.
Proof. (c.f [31])

Lemma 2.3. Let V be a Banach space and let A be a coercive
calculus of variations operator.
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Then, for any f in V*, the equation A(u) = f has a solution u in V.

Proof (c.f [17], proposition 2.6, theorem 2.7, p. 180-181).

Lemma 2.4, If the application f. & 7, and v, are defined as above,
then the problem (P) has a solution (ii,v) in X.

3* Step: Existence of a noﬁ-trivial solution for (P).

Now, we prove that u, < & < u® v, <7<V in Q.

W show for example i < u°.

Consider 4 = (#-u°), and ¥ = (v - V°),.

Multiplying (1) by # and (Z) by ¥, we have
@22 [ |Vilr*ViVid- [[Fesied adxiE-u®) 1 q=0

but, according to the definition of ¥°, Vv € [v,,/°], we have

(2.23) L IVu|P2Vu "Vidx- | fix,u®,v)idx>0

Thus, combining (2.22) and (2.23), we obtain
0> L{ |ViZ|?2Vie- | Vu® |2V OV (i -u O)dx

(2.24)
+L{ﬂx;u O9v) _f(x”;9;)}(l‘7_u 0)*dX+ "(E—u 0)+ "IL,F(Q)

Take v = 17where v is associated to v as in (2.18). On the set {xe Q;
i(x)-u’(x)>0}, we have U(x) = 1°(x),
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2.27)
L{f(x;u V) ~fOou N u-u °)jx)dx=LV(x;u °V) —f(x; U V) i-u %) (x)dx=0

By monotonicity of -A,, we get that 0 2 [I(i#-1°), g, 2 0.

Thus i < «° on Q and similarly v <° on Q.

3. EXISTENCE RESULTS VIA VARIATIONAL METHODS

3.0. Introduction. We present in this final section an existence result
for the following problem (P)

Find (#,v) € X such that
1% Au=ixuy)  inQ
P Qu

(2%) —Aqv=a_H(x;u,v) in Q
v

This result extends to a potential system those obtained by L.
Nirenberg [18] and F. de Thélin [26], in the scalar case. Our existence
result follows from an appropriate adaptation of the variational method
given by Ambrosetti-Rabinowitz [2].

Recal that X = Wp?(Q) x Wy¥().

In the next section, we shall prove that in fact (u,v) € X N [L*(Q)]*.
We make the following assumptions

(H1) He C'QxRxR)

(H2) There exist two positive real numbers §, A, with 8 < A
such that, for a partition of R? in D,, D,, D, respectively defined by
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D ={)e R |s| 2A or |t] 2A}
D,={(s,;) € R°\D,; |s| >8 and |t| > )
D,=R*\ (D, U D,
We have:

(H2), there exists a nonnegative constant C and

n
p’e]p,ﬂ[, q’e:'q,Aq[,
n-p h-q

such that 0 < H(x;s,) < C(| s|? + | ¢]¥), for any x € Q and for any pair
(s.) € D,

(H2), There exists a positive function a € L™(Q) such that H(x;s,t)
=a(x)|s|*"|¢|™ for any x € Q and (s,) € D,.

Remark. We are interested by the nonnegative solutions for the
problem (P), so we can add the following hypothesis

(H3) Forany x € Q,s<0ort<0;

oH s 1=0 and oH 5. 1)=0
ﬁg(x,s,t)— an w(x,s,t)— .

For any (u,v) in X, we define:

(3.0) J(u,v) =—;—L |Vu |”dx+;}L |Vv|edx —LH(x;u,v)dx

We shall use the Mountain-Pass Lemma to obtain an existence
theorem for (P). The nontrivial solution is obtained as a critical point of
J.
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Theorem 3.1. We suppose that the hypotheses (H1) and (H2) are
satisfied and that the real numbers o. and B in (H2), are such that

) (@D P+l
np nq

o+l B+l

P q

then, the problem (P) possesses -a nontrivial solution (u*v*) in X N
[L=(Q)7.

2) >1,

Corollary 3.1. All the hypotheses of Theorem 3.1. are satisfied for
H(x;s,t) = a(x)| s|*' | | P,

If

n-p n-q a+l P+l
o+1) +B+1) 1, + >
( np B+ nq » q

1

then, the corresponding problem possesses a nontrivial solution («*,v*) in
X N L~

Proof of Corollary 3.1. Consider a truncature H of the application
H

0 if s<0 or <0
H(x;s,t) otherwise

H(x;s,0) ={

H satisfies the hypotheses (H1), (H2). For proving (H2),, we write
for any real s and ¢

(0 |s|*H|ePI<C(|s o+ |2

a+l|t

Where A and p are such that



176 Jean Vélin and Frangois de Thélin .

a+l B+1

+

1, 1<A< " nd 1<u< 1
= 5 —a [r———
A g n-p A

n—q'

3.1. Existence of a solution in X.

Lemma 3.1.1. If

n

(@) 2B,

there exist 'y, and Y, such that

a+l B+l
+ =
T M

np nq [
Y.€l1, ,yel:l,
‘ [ npl” | "n-ql

1

Moreover, if (u,,v,) is bounded in X, the applications

X, (0) |, )| v, ) B! and x—v,(6) v, () [P |, () |

are bounded in L™(Q) and L* respectively.

Lemma 3.1.2. If
o+l . B+1

b

J satisfies the Palais-Smale (P.S) condition.

Proof. Let {(x,,v,); k € A} be a sequence in X such that

there exist M > 0, |J(u,,v)| <M (P.S),
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J’(u,v,) = 0 strongly in X* as k goes to +co (P.S),.
We claim that this sequence is bounded in X.

By contradiction, suppose that we can extract from (,.v,) a
subsequence denoted again by (u,,v,) such that {|(x,v)ly —> +eo.

Hereafter, we set

1 1
e LqukI*”dx*r; [1vv,leas.

The (P.S), condition implies that

M1 M
G.L1) ~—<t-— [ Hosuv)dxs—
€& & €

Let Q;, = {x € Q: (u(x),v(x)) € D;}, for i = 1,2,3; we obtain

M 1 . @ M
(3.1.2) —731——6—{ L a(u"vE Vdx+ L\OMH(x;uk,vk)dx}S

k k 1k ek

On the other hand, by (PS), we have:

/ U Vi
€ "(uk9vk)"x <J (uky k) ;97 e"(uk,vk)"x-

That means

1 oH 1 oH
—el](uk,vk)lleek—;L ukw(x;uk,vk)dx—; L Vigy Bpvdx



178 Jean Vélin and Frangois de Thélin

1
(3.1.3) - Lﬂ ng H v dx- Im v LLTR——_

<e|l(u, vl

Then, taking the limit with respect to & in the inequalities (3.1.2) and
(3.1.3), we obtain respectively

hm—L a(u v dx=1

ks+o0 € k

(3.1.4)

hm——L a(x)ua ! B 1 —r——B—r
—)+°e k
p q

But, this contradicts the hypothesis

o+l +1
+I3 >1.

Thus, there exist positive contants C, et C, such that: |ul,, < C,
and v, < C,.

Denoting again by {u; k € A} and {v; k € A} the extracted
subsequences, they converge strongly in the spaces L"(Q) and L™(Q)
respectively; we claim that the subsequence {(u,,v,); k 2 0} converges
strongly in X.

In fact, for any integer pair (m,/)

(3.1.5) J‘;{FP(Vum) F (Vu)\V(u,-u)dx=A,,

where
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A, =S, v,) =T, (v )i, 1,00, o,
oH oH
+L W(x;um,vm) - W(x;u,,v,) u, ~u)dx

and

(3.1.6) L{Fq(va) “F (Vw)V(v,-v)dx=B,,

where
B, =7 (u,,v )T (u,v);0v,-v)), X

oH oH
+L W(x;u,,,,vm)- W(x;u,,V,) (v,—v)dx

By (P.S), it is easy to remark that </, (i,,.V,)~J,, (Vs (Uy-14,0)>x e
converges to 0 as m and [ tend to +oo.

From the hypotheses (H1) and (H2), there exist two constants A, and
A, such that for any (s,f) in R? and x in Q

(.1.7) | "%lsi(x;s,t)

<A +A,|s|¢]t]P.

By use of Lemma 3.1.,
oH oH
L W(x;“m"’m) -m—(x;u,,v,) (v,,~v)dx

converges to 0 and therefore A,,; converges to 0.
We have the following algebraic relation [24]:

|Vu_-Vu : |P<CI{[F p(Vum) —Fp(Vul)](Vm _Vul)}slz( A% u, |P+|V u, |pya-s
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p for 1<p<2

(3.1.8) with s = ‘{
2 for 2<p

Integrating (3.1.8) on Q and using Hoélder’s inequality in the right
hand side, we obtain

(3.1.9 Nt -, ||'1’,,SC | A, [ u, ll'fp + u["l;p}(l -5/2)
and
(3.1.10) I, _v1||¢11 <C /| B, |2 HV,,,H;',,*‘ llv,lltfﬂ}“ -12)

From the convergence results related above, these inequalities give
strong convergence of {(u,,v); k € Aj}.

Lemma 3.1.3. Under the hypotheses of Theorem 3.1.

1) There exist two positive real numbers p, v, and a neighborhood
V, of the origin of X such that for any element (u,v) on the boundary of

Vo J(uy) 2v, > 0.

2) There exist (¢,y) in X such that J(,y) < 0.

Proof. 1) By (H1) and (H2)
LH(x;u,v)deCL(lu|"'+|v|"'dx+Lde+La(x)|u|““|v|ﬂ*‘dx

(3.1.11)
SC(H"HI;;:‘”"V“?,;)*%_L’MI“" |v|ﬁ"ﬂ+La(x)iulu*‘ IVIﬁ”dx

By lemma 3.1.1., we obtain
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G112 [Juo v |l g MUl R

Therefore, we get

(3.1.13) LH(X;M,V)deC(IIulIﬁﬁIIle +(by+lal ){Iu"r((hl) v "n(ﬁu)}

where by is a positive constant B = b;8****2, § fixed,

+1 a+l
r=l+§-B and rx —l+£

o+l p B+l

Denoting by 0 and m respectively |ul, p and |v|, ,, we therefore
obtain the following minoration of J for any («,v) € X,

(3.1.14)
J@w)201-CO (b +lal 8" sn{ 1-Cn 7' o~(b,+hal 00+

Whence,
(3.1.15) J(u,v)2v >0

2) Let ¢ € WyP(Q2) and y € W3(Q2) be positive in Q, for any 6 > 0,
we have

1 1 1 1

J(ePd:07y)=c oI}, +olwl, - LH(x;o%,c?w)dx

(3.1.16)
1 a+l B+t

-G10k,olyl,~ [ Hes SPocyi-c 7 ¥ [ (ol !yl

Taking o sufficiently large to have | Q,| > 0, we obtain
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. R o+l B+1
lim J(67¢;09§)=—o0, since +

G oo

>1.

By the continuity for J(.,.) on X, we find a pair (¢,y) in X\B,(0) such
that J(¢,y) < 0.

Proof of the theorem 3.1. (1* part). By Mountain-Pass Lemma [2],
there exist a pair (#*,v*) in X which is a critical point of J. This means
that for any (w,,w,) € X, J'(u*v*) - (w,,w,) =0, i.e

oH .
~A ux=__(x;u*,v* in Q
U * = ( )
-A v*=a_H(x;u * V%) in Q.
T v
So, we have proved that (P) posseses a nontrivial solution in X. The
second part is devoted to prove that the solutions are bounded in Q.
Moreover, [26] (c.f the definition for H) ensure u* > 0 and v* > 0 in
Q.

3.2. L"-Estimate of the solution

3.2.0. Introduction. In this part, we use an iterative method to
estimate the solution (u*,v*) obtained in section 3.1. We prove here that
in fact (u*,v*) e [L™(Q)]>.

In this matter, the crucial point is the construction of two strictly
increasing unbounded sequences {A,; k > 0} and {p,; K > 0} such that u*
and v* verify:
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{ u*e IMQ) { ure LM(Q)
f then
vke LMQ) Ve L*(Q)

We shall present some properties deriving to the fact that u* and v*
belong to LMQ) and L*(Q) respectively. In a second step, we shall
proceed to the appropriate construction for these sequences.

It is very important to note that this iterative schema use some
regularity properties of u* and v*, for example (u*,v*) belong to [C*()
N C'(Q)]>. The study of regularized equations (cf. [20], [26]) allows us
to suppose u* and v* smooth throughout all this part. Though we do not
make extensive development about our iterative method, more detailed
proofs are given in [31].

Proposition 3.2. Suppose that all the hypotheses of Theorem 3.1. are
satisfied. Then, there exist sequences {A,; k > 0} and {u,; k > 0} such that

1) For each k, u* and v* belong respectively to L*(Q) and [*(Q).
2) There exist two real constants A, and A, be such that

e+l <Tim- foerh n <A

k—>+oo

v+ <Tim’ fv+l,

i Q
k—>+oo L )

Lemma 3.2.1. Let =, (resp. &,) be such that

np nq
1<1tp<n—_p (resp. 1<1tq<n—_q),

and for any k =2 0
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o B1|
S I sl REION

o+l B
b=nl1- L
k l'lk 1 l‘, pk 1 (2)k

Then there are some constants c and ¢’ such that for any u* € L*(Q)
and v* € [*(Q) we have

l+fi x, a ’ +2" v .
Llu*l( p) dxsc[1+_p_"]ein/p}, le*l(l q)'dﬁcl(l+ﬁ ¢Zt'/p)
q

where 6, and @, are defined as

9,{=L—?§(x;u *, Vx| ux|“dx, <Dk=L%g(x;u*,v x)v*|v*|dx.,

Proof of the Lemma 3.2.1. Multiplying (1*) by w*|u*|* and
integrating on €2, we obtain

oH
(3.2.1) L|Vu* [P2VuxVu*|ux|“ =L—a—u-(x;u *, V) x || “dx

On the other hand, we have,
(3.2.2) A
ﬂV{u*}l ”’: 1+ %% ~LIu*|"‘|Vu*I”dx
p

Since, u* is in CY(Q), so is {u*}"*" and consequently {u*}'**¥
belongs to W,?(Q). The continuous imbedding Wi*(Q) — L™(Q) implies
the existence of a constant ¢ > 0 such that
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m

P
k

Ip
S WEN

Since g, is nonnegative, (3.2.1), (3.2.2), (3.2.3) give,

14
k

+i a b
L!u*l(‘ e, 1+ [qu*mu*rw} ’
14

(3.2.4)

n /p
S 1 +-—k ek"

Lemma 3.2.2. Assume that

b
kkﬂsh?" T, (3), uk,131+7" T, @),

Then, If u* € LMQ) and v¥ € [*(Q), we have

k+1

A
Ilu * "L Akd(Q)

(3.2.5)

A,

3

a+a,+1

1 B+1 1 1+_%
)"m kA ak A By B A, = P p
SKP c ’ 1+—[—)—- {4|Ilu*"le(n)+A2 “u*“Ll"(Q) * “v*"LN(Q) ' +143

where A(i=1,2,3) are positive constants.
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Proof. We first call (c.f (3.1.7)) that the hypotheses on H imply the

existence of positive constants A, (i=1;2) such that for any real numbers
s and ¢,

oH alaiBe
x(x;s,t)SAl +A,|s|*|e[P!

Thus, by Holder’s inequality.we obtain

_L_(x,u * VR YUk |k I“‘deAlLlu* |""’dx+A2-L|u* [ % y* |Br1dy

(3.2.6) <A, L|u*|kkdx+A2 Llu*,l“"‘**' x|V A,

o+a,+1 B+1)

<A Llu*l 'dx+Az(L|u*| *dx) (le*l"*dx)T+A3

That implies with (3.2.4),

(3.2.7)

L'“*' (h—][j;lvu*r’lu*l“'dx}

n/p
4 a+a.rl B+1)
<df 1ok [ |u*|‘dx+A( Iu*l*dx) " ( |v*|"‘dx) z +AJ
12 et feaf

Now, by (3,), L™**"™(Q) is continuously imbedded into L*'(Q), so
there exists a constant K, such that
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l/(l +ﬁ)n

1A, 12 VAS
(Llu*lhqu) SKleu*l( P) dx

Combined with (3.2.7), we have

(3.2.8)

Llu*lkmdx

N —]- a a+ak+1 (ﬂ+]) : ]1_&
ng,.. T 1+_k AlLlu*lx‘dx"Az(LW*lkkdx) %, (le*lpkdx) P +A3 P-
4

An analogous result is obtained for v*.

3.2.1. Definition and construction of sequences {A,; k € A} and

{; k € AJ. Here, we construct the sequences {A,; ke N} and {p,; ke N}.

This construction requires similar tools as in [20], [26] or [27] use for the

study of first eigenvalue, but here the problem is different from [27],
because o and B do not verify

a+l PB+1

+

p q

=1.

Here, the first terms of each sequence cannot be determined directly
by using the Rellich-Kondrachov’s continuous imbedding result. So, we
first construct Lebesgue spaces of exponents A, and fi, containing
respectively u* and v*. By an appropriate choice for k, € A; 4, and fi,,
give the respective first terms of {A; k > 0} and {p,; k = 0}. After that,
we shall show that u* and v* are estimated independently to k by a same
constant in every L*(Q) and L*(Q) spaces respectively. This is not always
the case when we are limiting us only to L;‘k(Q) and L™(Q2) spaces.
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a) Construction of {Xk; k > 0} and {fi,; £ > 0}. We consider here o
and P satisfying the relations
n

o+l{n-p
p n

%1y B 1ys1
p q

1
q

(3.2.9)

So, we can find € > 1 and (A,p) such that

1<

(n-p)C

n
(n-¢)C
o+l B+,
(. N g

Now, we take A, = ApC*, fi, = pgC*.

(3.2.10) ] I<p<

From (1), and (2),, we get
a,=A,-Ap

(3.2.11) o
bk=}lk_}1q

Lemma 3.2.3. For each k € N, u* and v* belong respectively to
LMQ) and LQ). .

Proof. We give a proof by induction.
By Sobolev 1mbedd1ng Theorem, we have u* € L¥(Q); v e LK),
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Then the Lemma is proved for k = 0. Suppose that it is true for all integer
k’suchthat 0 <k’ <ke A[

Take &, = ApC and T, = ngC, and u* € L*(Q). The relation:

a, A k+
1+— |7 =A2pC " ApC-NpCarpC ' =A,
p

k+1°

and Lemma 3.2.1. give u* € L*(Q) and v* € L*(Q).

b) Construction of sequences {A,; k € N} and {p,; k € N}. Let

non o+l PB+1
C =min| —,—— —, d=lM-(y-DiC
mln( r—_ q] = > ng (y-D

with M > y-1; we define the sequences {A,; k € A} and {p,; k € A by
M=phe w=df,

where f, denotes the sequence
c ]
(3.2.12) f’fﬁ[sck +(y-1].

Remark the sequences {A,; k € A} and {p,; k € A} are strictly
increasing and tend to +co, futhermore, we have the iterative relation

e =Clh-(r-DI ),

Proof of Proposition 3.2. We proceed again by induction.

First, we use the fact that the sequences A, and fi, are strictly
increasing to establish the existence of an integer k, such that A,>A, and
B>fi,; we obtain from Lemma 3.2.3. that u* € LM(Q) and v* € L™(Q).
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Suppose that the proposition is true for 0 < k&’ < k. Let , = Cp and
n, = Cq, (1), and (2), give: a, = p(f,-Y) and b, = q(f,-Y).

So,

a, C|d
t—=] +f ~Y<—| — - C*k.
1 » lfk ’Y<C_1l:C+('y 1):]

Moreover by (5), we obtain

a
;\'kﬂ: 1+_k n,
p

and similarily
b

e | +7k TCq.

Then, we conclude with Lemma 3.2.2. that u* € L*(Q), according
to (3.1.6) and taking

A= €13 1
e Tty

a+a 1

a » B+1 C
A, " A, A, I e n -
el S 1 % | el A flest g (el

(3.2.13)

C
A,
<ACC "C”max(l;llu*ll v+ ) :

* .
L M-(Q)’ L uk(Q)

Considering the equality
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., oH
—Aqv =W(x;u *,V *),

we obtain an analogous inequality

n )C (3.2.14)

Py
vl g A °C "C"maX(l 1] V¥ )

Q)

As in [20], [26], [27], we obtaih the iterative relation E,,, <r, + CE,,
where

E.=In maX(Ilu IILW,IIV HL..«»)
(3.2.15)

re=ak+b a=In C™9, b=In(A)°

So, we get the iterative relation E, < dC*', where d denotes a positive

constant.’
PRI~ xp[ }e p(d(c 1)

d(C -1)
"V Il w:(Q)— q C8

then, u* and v* are bounded in L*(Q) and L*(Q2) independently of k € A

Thus,

(3.2.16)
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