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Multiplicity of a Foliation on Projective
Spaces along an Integral Curve .

JuLio GARCcIA *

ABSTRACT. We compute the global multiplicity of a 1-dimensional foliation
along an integral curve in projective spaces. We give a bound in the way of Poin-
caré problem for complete intersection curves. In the projective plane, this bound
give us a bound of the degree of non irreductible integral curves in function of the
degree of the foliation.

0. INTRODUCTION

Let .% be a foliation by lines in the complex projective space P,. Let
us take homogeneous coordinates X, ..., X,. There exists an homogeneous
vector field

z 3
D=Y A X, ..., X,) —  des4)=d, gcdfA}=1

i=0 i
such that .% is given by any element of the set of vector fields

: 3
2 ={D+H.R.} where R=2X,.&— and H=H(X,, ..., X,) is an ho-
i=0 i

mogeneous polynomial with deg(H)=d—1, [1], [6]. This number d is said

A
to be the degree of F, deg(¥). The solutions of the equations 7°=

0

A, .
..=X— form the set of singularities of .# and we assume that this set

Sing(.# )CP, is finite.
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Let SCP, be a subvariety of P, and /CCI[X,, ..., X,] be the homo-
geneous ideal defining §. We say that S is a solution of # if D(I)CI.
In particular, S is an integral curve if dim(S)=1.

X X

Let x1=71, cees x,,=7" be a system of affine coordinates. The poly-
0 0

nomial vector field

E i[A(l x ) A (1, x x,)] i
= 1, s ey Xp) — X; y Xis eees Xp)l ——
“ i 1 0 1 a

t

represents the foliation % in the affine chart (X,#0), but it is indepen-
dent of H. Let p be the degree of the vector field E, i.e., the maximum of
the degrees of the coefficients. It is easy to see that p=d if the hyperplane
at infinity is a solution of % and p=d+1 in the other cases.

In [10], Poincaré study the problem of finding a bound of the degree
of an algebraic integral curve in function of the degree of the algebraic
differential equation. In general, this problem has no solution. For in-
stance, let us take the equation of degree 1 given by the vector field

ad ]
E=x §+my g and the integral curve y—x"=0.

The problem of Poincaré has been recently treated by D.Cerveau and
A.Lins [3]. They suggest to use the total multiplicity of a foliation .7
along a projective integral curve C, (see(1.1))

m.F, )=y m(F, C)

PEC

and they give some bounds with restrictive conditions on the curve. The
main tool used by them to globalize the local multiplicity is the following
formula

m(.7, C)=2 — 2g + m(d—1)

where m and g are the degree and the genus of the irreducible curve C.
This idea is the origin of these notes. In [4], we analyse some properties
of m(#, C). M.Carnicer [2] use this formula for proving that m<d+2
when the singularities of the foliation are non dicritical. Namely, let us

ad a
take a local representation E=aa—+bg of # at a singularity with
X
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multiplicity v=1. Let a,, b, be the components of degree v of a, b re-
spectively. The singularity is said to be non dicritical if xb,—ya,*0.
Equivalently, the exceptional divisor obtained after blowing-up the singu-
larity is a leaf of the strict transform foliation.

The purpose of this paper is to extend these ideas. In fact, we proof
that the above formula is true in the general case, i.e., for non irreducible
curves in P, (Theorem (1.3)). This allow us to give a result in the way of
the Poincaré problem when the curve C is a complete intersection of n—1
hypersurfaces (Theorem (1.6)). The second part is devoted to complete
some bounds in dimension two (Theorem (2.3) and Proposition (2.6)). In
the proofs, it is essential to use formulas to compute the arithmetic genus
of the non irreducible plane curves or curves in P,.

1.1. Let X be a n-dimensional complex manifold and . be an ana-
lytic foliation by lines on X. At every point PEX, the foliation is gen-
erated by a (germ of) vector field E€EDer(Oy ;). Let C be an analytic
branch at P which is integral curve of 7, i.e., if ICOy , is the ideal of
the branch then E(/)CI. Let O, , be the integral closure of the local ring
Oc, » of the branch C in its function field. Then, the derivation E defines a
derivation E of O ,. Let T be a generator of the O, p-module Der(O. ;).
Then E=f.T, with fe Oc. ». If we write v, for the valuation of the ring
Oc, p, we shall call m,(.#, C)=vp(f) the multiplicity of .# along C. It is
easy to see that mp(.# , C) does not depend of the choice of E and 7. Let
us observe that m, (¥, C)=0 iff # is regular at P. Indeed, let
Xy, ..., X, be a local system of coordinates at P and E=

2 )

Zai(x,, s xn)T. If ¢+ is a local parameter of C at P and x,=x,(?),
X,

i=1

{

i=1, ..., n are the parametric equations, then a;(x,(?), ..., x,(O)= f(¢) x!(¢)
x5, (0, ..., x, (¢ ) . .
and m,(F, C)=ord, (a,(xl() 0 %) ) Since .# is regular if some
X;
of the a,(x,, ..., x,) is an unit, then the observation is obvious.

1.2. Let X=P, and fix a foliation by lines .5 of degree d. Let C be
an irreducible integral curve of degree m and genus g, and 7:C—C be the
normalization of C. Since Sing(.# ) is a finite set, then m(7# , C)=
ng(? , C) is a well defined integer number, positive or null. We

gec
shall state the next theorem for curves C with several components.
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Let C,, i=1, ..., r be the irreducible components of C with degrees m,

and genus g; respectively. We shall write m=2m,- for the degree of the

i=1
r

curve C, 2—2g= z (2—2g) to define the genus g of C and

i=1

m(7, O=¥mF, C).

i=1

1.3. Theorem. Lef # be a foliation by lines of degree d on P, and
C be an (irreducible or not) integral curve of genus g and degree m. Then

m(F,C)=2 —2g + m(d — 1).

Proof. It is enough to suppose that C is irreducible because for sev-
eral irreducible components the equality is the sum of the respectives equal-
ities.

Let us fix the homogeneus coordinates X, ..., X, such that the hyper-
plane (X,=0) has no singular points of ¥ and the intersection with the
curve C consist of m different points. Let x,=X,/X,, i=1, ..., n be the af-
fine coordinates and let

& d
E=;a,‘a_x’ a.-EC[xl, ""'xn]’ gcd(ai)=1

be the expression of a generator of .# in the affine open (X,#0). To
compute the degree of E we need a lemma.

1.4. Lemma. Let p=2 be the degree of a polynomial vector field
2 a

E =2a,.a—. If the hyperplane at infinity (X,=0) is a solution of the fo-
X

i=1 i
liation then E has a pole of order p—2 at (X,=0). In the other cases, E
has a pole of order p—1.

Proof of the lemma. It is enough to compute the expression of E for
another affine chart, for instance (X,# 0).

1 X Xn—1
Let Yo=—"» )’1=x—, ey Yn1=

n n

be the system of affine coordi-

n

nates in this new chart. We have
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3
E=—yXa, — o on(a ya,.)ﬁ
! [ + Z(b b,,)
_ - — - Yy e
yg ' ayo i=1 ay
L1
where b=yta, (2, ., %=, L)
Yo Yo Yo

If (y,=0) is a solution, then y, is a factor of the coefficient of
0

and it can not be factor of the other coefficients. Hence E must have a
pole of order p— 1. Otherwise, y, is a factor of all the coefficients and the
order of the pole is p—2.

Now we proof the theorem. Let us recall that the degree of E is d
(resp. d+1) if the hyperplane at the infinite is (resp. is not) a solution of
# . From the lemma, it follows that every affine generator of . has a
pole or order d—1 at the infinite, independently of the system of coordi-
nates. The restriction of E to C give us a vector field E which is a deri-
vation of the function field K(C) of the curve. If T is a generator of the
K(C)-vectorial space of the derivations, one has E= =f.T with fEK(C). Let
us write v, for the valuation of K(C) at the point Q€EC. Then, the integer
eo(E)=vy(f) depends of E but not of f. By definition, this number co-
incides with m,(#, C) for Q€ (X,#0). Nevertheless, if QE€ECN(X,=0)
we have m,(F , C)=0 since Q is regular for .5, but e,(E)=—(d—1) by
the above discussion. This implies that

Y eoE)=m(F, C) — m(d—1).

gec

To finish the proof, it is enough to see that ZeQ(E)=2—2g. Let 6 be
gecC
the differential form of C dual of the derivation E. If ¢ is a local parameter

- - d 1
of C at Q€C and E=f—‘;, fEK(C), one has 0=7-dt. It follows that
the divisor div(6)= ZeQ(B)-Q such that e,(0)=v,(1/f) and the divisor

gec
div(E)= zeQ(E)-Q defined over C are opposite. But div(6) is a canonical
Qec
divisor and it is well known that the degree is 2g—2 ([7], ch4, (1.3.3)).
Q.E.D.
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1.5. Remark. The statement of the theorem (1.4) is of a global
character. In the proof there is an interesting local argument. Actually
we proof _a relation between (Weil) divisors of C. Let
M(ZF,C) =z my(F, C)-Q. Let us fix homogeneous coordinates

oec
Xy, ..., X, like in the proof and let H= z 1,(C, X,=0))-0, i.e., the
0EXy=0)
intersection of C and the hyperplane (X,=0). From the proof of the the-
orem it follows that

M(F, C)=div(E) + (d—-1)H.

We say that a curve is a nodal curve if its singularities are simple
nodes, i.e., they are of normal crossing type.

1.6. Theorem. Let ¥ be a foliation by lines in P, of degree d and
C be an irreducible curve complete intersection of n—1 hypersurfaces of
degrees a,, ..., a,_,. Let us suppose that C sastisfy one of the following
conditions:

a) C is a non singular curve.
b) C is a nodal curve.
Then, one has

n—=1

Easd+ n

i
i=1

Furthermore, in the case a) one has the equality iff ¥ has no singular-
ities over C.

Proof. The main tool for proving this theorem is the use of the fol-
lowing formula to compute the arithmetic genus #=H'(0.,C) of C ([11],
n.78)

1 n
a=—ma+ 1, a=—1-n+ a,
2 " ;

where m=a,-...-a,_, is the degree of C. It is well known that g=7—9
where
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=y Y )

PESing(C) Q=P

Q=P means that Q is an infinitely near point of P and e, is the multi-
plicity of the strict transform of C at Q. From (1.3) we have

m(%, C) — 20=m(d—1—a).

Now, let C be a non singular curve. This implies that 6 0. Since
m(% , C)=0, we must have d— 1-a>0 and it follows that Za <d+n.

i=1

In the case b), if C is a nodal curve, then 0 is the number of nodes of

C and ¥ has a singularity in every one because C is an integral curve.

For each branch QEC of the node one has my(F, C)>0. This im-

plies that the contribution of m(.%#, C) in every node is two at least. Then,
n—1

we have m(F, C)—20<0 and it follows that ¥ a,<d+n. QE.D.

i=1

2.1. Let us consider from now on, the case n=2. It is possible to
extend the theorem (1.5) to the non irreducible curves. The main argument
is to check that the genus formula

_ (m—1) (m—2)
- 2

- 20

is available in this case. Let C,, i=1, ..., r be the irreducible components
of C and m,, g;, ; be the respective multiplicities, genus and O-values.

Let us remark that J is not equal to 26,- in general. In fact, one has

i=1

2.2. Lemma. If C is a non irreducible plane curve then

2—2g=m(3—m) + 20.

Proof. Since C, is irreducible, the genus formula give us
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2—2g,=m(3—m) + 20,.

Since Y (2—2g)=2—2g by definition, it follows that

i=1
2—-2g=m(B3—m) + 22 (6,. + Zm,.mj).
i=1 i<j
Then, it is enough to see that

a=§(a,.+ Zm,.m,.).

i<j

For every point P € Sing(C) and Q=P, one has eQ=Z e,(C) and so
i=1

e,(C) (eQ(C)—1)=2 e, (C) (ep(C)—1) + 2 2’, (Z eQ(Ci)eQ(CJ'))'

i=1 Vi<j

Let I,(C;, C;) be the intersection multiplicity of C, and C; at P. The
Noether Formula says that

I,(C,, Cj)= 2 eQ(Ci)eQ(Cj)

o=P

and Bezout Theorem along C;NC; implies that

m;-m;= z zeQ(C,-)eQ(Cj).

Pec,nc; Q=P

To finish, let us sum all this products for j<i. Q.E.D.

2.3. Theorem. Let ¥ be a foliation by lines of degree d on P, and
C be a not irreducible integral curve of degree m. Let us suppose that C
satisfy one of the following conditions

a) C is a non singular curve.
b) C is a nodal curve.

Then m<d+2. Furthermore, in the case a) one has the equality iff
has no singularities over C.
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Proof. Since the genus formula is available in this hypothesis (Lem-
ma(2.2)), the proof is analogous to (1.5). Q.E.D.

ad a
2.4. Remark. Let E=a, —+a, —— be a local generator of ¥ .
ax, ox,

Recall that the Milnor number of .% at P is defined as

/"P(?) =dimc(0pz,,,/(a1 , @)

Let us assume that the integral curve C is regular at P and u,(# )=1.
This implies that a, and a, are regular and transversal. Since up(#) is a
local invariant, then we can take an analytic system of coordinates (x,, x,)
such that (x,=0) is a local equation of the curve C, a,=x, u, for an unit
u, and ord, (a,)=1. Hence, m,(F, C)=1.

Now, let C be a nodal curve like in b) of (2.3). If u,(F#)=1 for all
nodes of C then m=d+ 1 iff the singularities of .5 over C are exactly the
nodes of C.

2.5. If C is an irreducible non singular curve, the bound m<d+2 of
(2.3) (or(1.5)) can be improved by using the ‘‘AF+BG’’ Noether’s the-
orem. To proceed, we shall use the dual characterization of the foliation

3

# by the homogeneous differential 1-form Q=2 BdX; such that

i=1

2 d
deg(B)=d+1 and 0= D AR where R=§X,- X ([1] 4.2), [8] (.1)).

Let F(X,, X,, X,)=0 be the homogeneous equation of the curve C. Since
C is an integral curve of .% , we have Q AdF=0. A foliation such that its
solutions are the level curves of a rational function F/G™ with deg(G)=1
is an exact differential of C.

2.6. Proposition. Let C be a non singular integral curve of a fo-
liation .5 with deg(C)=m and deg(# )=d. Then m<d+1 and m=d+1
iff # is an exact differential of C.

Proof. Let F,=0F/dX,, i=1,2. Since C is an integral curve of .7 it
follows that B,F,—B,F, is in the ideal generated by F in every local ring
Oc » and v,(B,)=v,(F,). Then, Noether’s conditions are satisfied and this
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implies that there exists homogeneous polynomials L, M such that
B,=LF +MF, with deg(L)=d+1—m=0 and deg(M)=d+2—m. More-
over, if m=d+1 then M is a line and Q=MdF —mFdM, i.e., ¥ is an
exact differential of C. Q.E.D.

2.7. Corollary. Let C be an integral curve of % . Then C contains
at least one singularity of .% . ([9)).

Indeed, if P is a singular point of C, then it is singular for .# too. But if
C is not singular, from (2.3) and (2.6) it follows the corollary.

The results (2.3) and (2.6) were already proved in [3] by using differ-
ent arguments.

2.8. Remark. The formula (1.3) allow us to bound the number of
integral lines of a plane foliation in very general cases. By ([5], (2.6)), a
foliation with an infinity of integral lines is a radial foliation. Let us sup-
pose that .5 is a non radial foliation of degree d and let R,, ..., R, be the
integral lines of .5 with the condition that at least one of them, for in-
stance R,, intersects the other ones in a — 1 different points-this is the case
when R,, ..., R, are in general position. Let us take C =R, in the theorem
(1.3). Since g=0, m=1, then m(F#, R,)=d+1. But, for the points
PER NR;, i=2,...,a, one has m,(F,R,)=1 and, consequently
asd+2.

In the hypothesis of M.Carnicer[2], i.e., all the points of
Sing()NC are non dicritical singularities of .%, then the number a of
integral lines is bounded by d+2 too. To see this it suffices to take C
equal to the product of the a integral lines.
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