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ABSTRACT. Let LY be an Orlicz space defined by an arbitrary Orlicz
function ¢ over a positive measure space (2,X,u) and provided with its
usual F-norm || - ||,. In L¥ a natural convergence can be defined as follows:
a sequence () in L¥ is said to be 7y, -convergent to £ € L¥ whenever
z, — z (p — Q) and sup||z,|l, < 00. In this paper we examine some
kind of generalized inductive-limit topology (in the sense of Turpin) J f in
L¥ that generates our y,-convergence in L¥. The main aim of the paper is to
obtain a description of the topology .J. }p in terms of some family of F-norms
defined by other Orlicz functions. As an application we obtain a topological
characterization of the y,, -convergence in L¥.

1. INTRODUCTION AND PRELIMINARIES

Every Orlicz space L¥ defined by an Orlicz function ¢ (not necess-
arily convex) over a measure space (2,2, ) can be equipped with two
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F-norms: ||-||,- the usual F-norm on L¥ and ||-||,- the F-norm of con-
vergence in measure ( on {2 ) restricted to L¥. Thus a natural sequential
convergence in L¥ can be defined as follows: a sequence (z,) in L¥ is

said to be vy,-convergent to z € L¥, in symbols z,, 4 z, whenever

zp = z(p—Q) (ie., ||zn —2z||, > 0) and sup||z,||, < oco.
n

When we replace in the above definition the condition: sup ||z,||, <
oo with the boundedness of the set {z, : n > 0} for the topology
Jil,» then this new convergence comes under the definition of the so-
called two-norm convergence or y-convergence in the sense of Alexiewicz
([1,1954]). The general theory of two-norm convergence has been exten-
sively developed by A.Alexiewicz [1], W. Orlicz [19], A. Alexiewicz and
Z. Semadeni [2], A. Wiweger [23], [24], [25].

It is well known that the theory of two-norm convergence is closely
related to the Wiweger’s theory of mixed topologies [23], [24]. Indeed,
in case when || - || is a homogenuous norm and || - ||* is an F-norm on a
linear space X and ||z, — z||* — 0 implies lim inf ||z,|| > [|z]||, then
the sequential y-convergence in X is generated by the so-called mixed
topology Y[Jjj.1> Jjj-1=]-

The notion of the mixed topology was a starting point for the theory
of generalized inductive-limit topologies. There are many kinds of such
topologies introduced for different reasons by A. Persson [21], D.J.H.
Garling 7], J.B. Cooper [3], P. Turpin [22] and others.

The question arises whether our 7,,-convergence in L¥ is topologized
by some linear topology. It turns out that there is a positive answer
to this question when we take into account an appropriate generalized
inductive-limit topology in the sense of Turpin. This topology will be
called here a generalized mixed topology and denoted by J;. This term
is justified by the fact that 7;” coincides with the usual mixed topology
YTl » Tulze] (in the sense of Wiweger) when the space (L% T, ) is
locally bounded.

In this paper we investigate the generalized mixed topology .J. f.
Our main aim is to obtain a description of 7} in terms of some family
of F-norms defined by other Orlicz functions. As application we obtain
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a topological characterization of our y,-convergence in LY. Moreover,
for ¢ being a convex Orlicz function we establish the general form of
J{ -continuous linear functionals on L¥.

In some special cases the topology Jf was examined by P. Turpin
[22] and the author [14], [15], [16].

Given a linear topological space (X, &) by Bd(X,£) we will denote
the collection of all £-bounded subsets of X. As usual A stands for the
set of all natural numbers. We assume that 0 - oo = 0.

Now we recall some notation ‘and terminology concerning Orlicz
spaces (see [9], [11], [12], [22] for more details).

By an Orlicz function we mean a function ¢ : [0,00) — [0, 00]
which is non-decreasing, left continuous, continuous at 0 with ¢(0) = 0,
and not identically equal to 0.

An Orlicz function ¢ is called convex whenever p(au + fv) <
ap(u) + Be(v) for o, 20, a+ B =1 and u,v > 0. A convex Or-
licz function is usually called a Young function.

For a Young function ¢ we denote by ¢* the function complement-
ary to ¢ in the sense of Young, i.e.,

¢*(v) = sup{uv — p(u) : u > 0} for v > 0.

For a set ¥ of Young functions we will write: ¥* = {¢p*: ¢ € ¥V}

Let ¢ and % be a pair of Orlicz functions vanishing only at zero
(resp. taking only finite values). We say that ¢ increases essentially

more rapidly than v for small u (resp. for large u) in symbols 3 « ®
]
(resp. ¥ <« ¢) whenever for any ¢ > 0, ¥(cu)/p(u) — 0 as w — 0 (resp.

u — 00).

!
We will write v < @ when 9 <« ¢ and ¥ « ¢ hold.
For ¢ and 9 being Young functions the condition X ¢ (resp.
1 !
1P <« ) implies ¢* X P (resp. ¢* <« 9*) (see [9, Lemma 13.1]).

Let (2,%,u) be a positive measure space, and let L° denote the
set of equivalence classes of all real valued measurable functions defined
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and finite a.e. on . For a subset A of Q and z € L® we will write
TA =T XA, Where x4 stands for the characteristic function of A.

An Orlicz function ¢ determines a functional m,, : 'L — [0, 00] by
mol(@) = [ ella(t))d

The Orlicz space generated by ¢ is the ideal of L° defined by
LY = {z € L®: my,()\z) < oo for some A > 0}.
The functional m,, restricted to L¥ is an orthogonally additive semi-

modular.

L? can be equipped with the complete metrizable topology J,, of
the F-norm
Hzlle = tnf{A > 0: my(z/A) < A}

Moreover, if ¢ is a Young function, then the topology J, can be
generated by the Luxemburg norm

llellly = inf{A>0: my(e/A) <1}

For r > 0 let
By(r)={z € L*: |lz|l, <r}
and let
By)(r) ={z € L*: |llz|ll, < 7}
whenever ¢ is a Young function.
We shall need the following lemma.
Lemma 1.1. Let ¢1,p; be Orlicz functions, and let p(u) = ¢1(u)V

pa(u) for u > 0. Then ¢ is an Orlicz function and the following state-
ments hold:
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(i) LY = L¥* N L¥2.
(i) lollon V llallys < lizlly < llellp, +llelly, for = € L*.
(15) To = Torlre ¥ Teale

and Bd(L¥,J,) = Bd(L?, Ty, ) N BA(L?, T o)1 )-

Proof. (i) See [8, Theorem 1].
(ii) It follows from the definition of || - ||,.
(iii) It follows from (ii).

Let
E¥ ={z € L : m,(A\z) < oo for all A > 0}.

It is known that LY = E¥ whenever ¢ satisfies the A,- condition, i.e.,
lim sup ¢(2u)/¢(u) < 0o as u — 0 and u — oo.

Let
0 for 0<u<l,

Po(u) = { 1 for > 1.

It is known that L¥o is the largest Orlicz space and consists of all those
x € L° that are bounded outside of some set of finite measure, and

llz|lp, = inf{A >0: p({t € Q: |z(t) > A}) < A}
It is seen that ||z, — z||,, — 0 in L¥o iff 2, — z in measure on Q (in

symbols z, — = (u—Q)). Therefore we will write ||-||,, instead of ||-||,, ,
and by J, we will denote the topology of the F-norm || - ||y, -

Fore > 0 let

Bu(e) ={z € L* : ||z[|. <€}

We shall need the following lemma.

Lemma 1.2. Let ¢ be an Orlicz function such that o(u) — oo as
u — oo. Then for r >0, B,(r) € Bd(L¥,J,),, )-
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Proof. Let z,, € B,(r) (n = 1,2,...) and let A, —» 0. For e > 0
let 2,(e) = {t € Q: |Auzn(t)] > €}. Then

uaneNe( 7)< [ n(e)“’(w) du
mw(zT") <r.

Since p(u) — oo as u — oo we get u(y,(€)) — 0, and this means that
[IAnzn|ly — 0.

IA

2. A GENERALIZED MIXED TOPOLOGY ON L¥ -
GENERAL PROPERTIES

In this section we consider some kind of generalized inductive limit
topology on L¥.

Let ¢ be an arbitrary Orlicz function, and let
Fo = By(2") and Jn = Jy|p, forn > 0.
Then the family B, = {F, : n > 0} forms a base of metric bounded

sets in (L%, || - l,).

Moreover, the sequence (F,,J,) (n > 0) of balanced topological
spaces satisfies the following conditions:

(i) L* = | F,.
n20

(ii) Fn + Fn C Fn41, and the function
Fn X Fn 9(27,:(/)—‘)23‘*‘3/6 Fn-l-l

is continuous.
(iii) The function [-1,1] X F, 3 (A,z) — A -z € Fy is continuous.
(iv) Tnt1)p, = Jn for n 2 0.
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Thus the space L¥ with the system {(F,,,J,) : n > o} comes under
the conditions of the strict inductive limit of balanced topological spaces
in the sense of P. Turpin [22, Ch. I].

Definition 2.1. The family of all sets of the form

00 N
U 3 (B,(2™) n Bu(en))) (2.1)

N=0 n=0

where (e, : n > 0) is a sequence of positive numbers, forms a base
of neighbourhoods of zero for a linear topology on L¥ (in the sense of
Turpin) which will be denoted by Jy.

According to [22, Theorem 1.1.6] J; in the finest of all linear topolo-

gies £ on L¥ which satisfy the conditions:

élF, C Juls, for n > 0. (2.2)

Moreover, in view of [22, Theorem 1.1.8] we have
Iite. = Tulr, forn 0. (2.3)

Since Jy|,, C J, we have J C J,; hence J,,),, C JIf C T,
Henceforth in this section we assume that ¢(u) — 0o as u — oo.
The basic properties of the topology J; are included in the follow-

ing theorems.

Theorem 2.1. The space (L¥,J[) is complete.

Proof. It is known that the balls B,(2") are closed subsets of
(L#0,J,) (see [22, 0.3.6]), so the spaces (By(2"),Jujp, zn,) (7 > 0)
are complete. Hence, by [22, Theorem 1.1.10] the space (L¥,J/) is
complete.

Theorem 2.2. For a subset Z C L¥ the following statements are
equivalent:
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(i) sup{||z|l, : = € Z} < oo.

(i) Z is bounded for T .

Proof. By Lemma 1.2 the balls B,(2") are bounded subsets of
(L¥,J4),. ) Moreover, the balls B,(2") are also closed in (L%, J,,, )
(see [22, 0.3.6]). In view of (2.2) and (2.3) J is the finest of all linear

topologies £ on L¥ such that {|r, = J,|, - Hence by [22, Corollary
1.1.12] the equivalence (%) < (4¢) holds.

Theorem 2.3. For a subset Z C L¥ the following statements are
equivalent: '

(i) Z is relatively compact for Jf .
(i) Z is relatively compact for J,,, and

sup {||z|lo: € Z} < oo .

Proof. It follows from Theorem 2.2 and (2.3).

Let us recall that a sequence (z,) in L¥ is said to be 7,-convergent

. v
to z € L®, in symbols z,, = z, whenever

z, -z (p—-Q) and sup ||za]lp < 0.
n

Theorem 2.4. For a sequence (z,) in LY the following statements
are equivalent:

(i) Tn = 0 for JY.
(ii) zn 35 0.
Moreover, Jf is the finest of all linear topologies § on L? which

satisfy the condition:

zn 20 implies z, =0 for &. (+)



A Generalized Mixed Topology on Orlicz Spaces 35

Proof. The equivalence (i) ¢ (i) follows from Theorem 2.2 and
(2.3).

Now let £ be a linear topology on L¥ for which the condition (+)
holds. Then £|Bw("') - j#la,(r) for 7 > 0, because J, is a metrizable

linear topology. Hence by (2.2) we get that é C J[.

Definition 2.2. Let (X,n) be a linear topological space. A linear
mapping A: L¥ — X is said to be y,-linear, if

T, %0 implies A(zy) — 0 for 1.

The next theorem gives a characterization of y,-linear functionals
on L¥.

Theorem 2.5. For a linear topological space (X,n) and a linear
mapping A: L¥ — X the following statements are equivalent:

(i) A is (Tf,n)-continuous.

(i1) A is y,-linear.

(iii) For every r > 0, the restriction A\, (r) is
(JuiB,(r)» M)-continuous.

Proof. (i) = (i%) It follows from Theorem 2.4.

(%) = (447) it is obvious.

(#13) = (¢) Let W be a neighbourhood of zero in X for 7. Then
there exists a sequence (W, : n > 0) of neighbourhoods of zero for

N
n such that Y W, C W for every N > 0. Thus by our assumption
n=0
there exists a sequence (¢, : m > 0) of positive numbers such that
A(B4(2")N Bu(en)) C Wy,. Thus for N > 0

N N
A( Z(B,,(T‘) n Bu(sn))) Cc z W, CW,
n=0 n=0
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SO o N
(U (D@a@nsue) c
N=0 =n=0

c O 4(

N=0 n=

N
(By(2) N Bu(en))) cw.
0

This means that 4 is (J,7)-continuous.

Now we are going to compare the topology J; with the mixed topol-
ogy V[T, JujLe] in the sense of Wiweger (see [24]). For this purpose we
. shall need the following

Theorem 2.6. Assume that (2, %, ) is an atomless measure space
or that u is the counting measure on N'. If (L¥,J,) is a locally bounded
space then for a subset Z of LY the following statements are equivalent:

(i) Z is bounded for J7.
(ii) sup {llzlly : @ € Z} < o,
(iii) Z is bounded for J,.

Proof. (i) & (i¢) See Theorem 2.2.

(#1) = (144) In view of [22, 0.3.10.2] sup{||z||, : = € Z} < oo if and
only if Z is additively bounded (see [22, 0.3.10.1]), so arguing as in the
proof of {15, Lemma 2.5] we obtain that Z is bounded for 7,,.

(#12) = (¢) Obvious.
Theorem 2.7. Assume that (2, %, 1) is an atomless measure space

or that u is the counting measure on N. If (L¥,J,) is a locally bounded
space, then the generalized mized topology JY coincides with the mized

topology [T, quL“’]'

Proof. In view of Theorem 2.6 it follows from [24, 2.2.1 and 2.2.2].
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3. SOME PROJECTIVE TOPOLOGY ON ORLICZ SPACES
In [5], [6] H.W. Davis, F.J.Muray and J. Weber studied the spaces

LP($)= () L (S c [1,00))
p€ES

endowed with the appropriate projective topology.

There are some results concerning a representation of an Orlicz
space L¥ as the intersection of some family of other Orlicz spaces (see
[10], [17], [18]). In this section we examine the appropriate projective
topology on L¥. In section 4 we shall show that this projective topology
coincides with the.generalized mixed topology J; .

We start with some equalities among Orlicz spaces, proved in [17]
and [18], which are of key importance in this section. At the very be-
ginning we distinguish some classes of Orlicz functions.

An Orlicz function ¢ continuous for all v > 0, taking only finite
values, vanishing only at zero, and not bounded is usually called a «-
function. By ® we will denote the collection of all ¢-functions.

A Young function ¢ vanishing only at zero and taking only finite
values is called an N-function whenever ¢(u)/u — 0 as v — 0 and
@(u)/u — 00 as u — o0o. By &y we will denote the collection of all
N-functions.

Let ®, be the set of all Orlicz functions ¢ vanishing only at zero
and such that ¢(u) — oo as u — oo. Denote by

11 = {p € &1 : p(u) < oo for u > 0},

®12 = {p € 1 : ¢ jumps to co}.

Then ®; = ®11 U ®12. In view of [17, Theorem 3.1, 3.2, 3.7 and 3.8] we
get

Theorem 3.1. Let ¢ € ®1; (i = 1,2). Then the following equalities

hold:
L*=[|LY: pe¥f}= (MEY: v eV,
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where

v={yed: 1/’«‘P}, U, ={yee: ¥ K ).
Moreover, if p is an atomless measure or the counting measure on N,
then the strict inclusion LG EY holds for each ¢ € ¥¥,.

Next let ®§ be the set of all Young functions ¢ vanishing only at
zero and such that ¢(u)/u — 0o as u — oo.

Denote by

&5, = {p € ¥§: p(u) < oo for u > 0 and p(u)/u — 0 as u — 0},

¢, = {p € ®$: ¢ jumps to co and p(u)/u — 0 as u — 0},
S, = {p € ®¢: p(u) < oo for u > 0and p(u)/u — aasu — 0, a > 0},
®$, = {¢ € ¥ : ¢ jumps to co and p(u)/u — a as u — 0, a > 0}.

Then ®f = U ®$,, where the sets ®f; are pairwise disjoint. It is
seen that ®f, = Ly N- According to [18, Theorems 2.1-2.4] we get

Theorem 3.2. Let ¢ € ®; (i = 1,2,3,4). Then the following
equalities hold:

L? =L : e ¥5(N)} = {EY: ¥ € ¥,(N)}
where

VO(N)={pedn: ¢ o}, ¥H(N)={pedn: ¥ <o},

!
YHR(N)={vedn: ¥ Ko}, Vj(N) =2y
Next, let ®§ be the set of all Young functions ¢ taking only finite values
and such that p(u)/u — 0 as v — 0.

Denote by

$:={p € ®5: ¢(u) >0 for u>0and p(u)/u — oo asu — oo} ,
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@5, = {p € ®5: p(u) > 0foru > 0and p(u)/u — aasu — oo, a > 0},
®5;, = {p € &5 : ¢(u) = 0 near zero and ¢(u)/u — 00 as u — oo},

o5, = {p € &5 : <p(u) = 0 near zero and ¢(u)/u — aasu — 00, a > 0}.

Then ®§ = <I> , Wwhere the sets ®5; are pairwise disjoint. It is
2%

seen that ®5, = <I>N According to [18, Theorems 1.1-1.4] we have

Theorem 3.3. Let ¢ € ®5; (i = 1,2,3,4). Then the following
equalities hold

EY = HEY: e ¥(N)} =LY : ¥ e ¥ (V)
where

wz’l(zv) {bedn: ¢ K9}, UH(N) = {¢€‘1'~= ¢ &V},
VH(N) = {p € ®n: o K P}, UG (N) =
At last, in view of [18, Lemma 3.1 and Theorem 3.3] we get
Theorem 3.4 Let ¢; and ¢; be a pair of complementary Young
functions. Then ¢ € ®§; if and only if ¢, € ®5; (i = 1,2,3,4), and

moreover, the sets \Il;p,(N ) and ¥3.(N) are mutually related in such a
way that

(Uf1 (V)" = ¥FH(N) and (¥57(N))" = ¥} (N).

We shall need the following

Corollary 3.5. Let ¢ € ®f; (i = 1,2,3,4). Then

E¥ = (LY : v e ¥H(N)).
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Proof. Since ¢ € ®; and (‘Il {(N))* = ¥¥; (N) (see Theorem 3.4)
by Theorem 3.3 we get

LY b e i ()} = (LY : ¢ e (¥H(N)*}
=|JL¥: pe ¥ (N)} = E.

We are now ready to define. our projective topology on L¥.

Definition 3.1. Let ¢ € ®1; (i = 1,2). By J¥ we will denote the
projective topology on L¥ with respect to the family {(E¥, Ty pe): ¢ €
Y}, ie, TP is defined to be the coarsest of all linear topologies & on
L? for whzch JyiLe C & holds for every ¢ € ¥{,. Thus

Jp = sup {TyjLe : ¥ € ¥}

For ¢ being a ¢-function the topology JF has been examined in
(14], [15]), [16]. It is easy to verify that all properties of J£ which are
obtained in [14], [15], [16] for ¢ being a ¢-function remain valid for
@ € ®11. In this section we extend results from [14], [15], [16] to the
case of ¢ belonging to ;.

From the definition of 7 we have
Theorem 3.6. Let ¢ € ®;. Then Jy 1o C JE C T

Theorem 3.7. Let ¢ € &1 and let p be an infinite atomless
measure. Then there erists a sequence (z,) in L¥ such that z, — 0 for
Jg and my(zn) = 1 for n € N. Hence the strict inclusion Ipg Ty
holds.

Proof. For ¢ € @y, this fact is proved in [13, Theorem 2.5]. Now
let ¢ € @13, i.e., p(u) < oo for u < @ and p(u) = oo for u > a. Let (u,)
be a sequence of positive numbers such that u,, | 0 and vy < a. Let (2,,)
be a sequence of measurable subsets of  such that p(Q,) = 1/¢(uy).
Define
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_ Jun for teQ,,
Za(t) = {0 for t¢Q,.

We shall show that z,, — 0 for 77 , i.e., ||zn||y — 0 for each 9 €

¥{,. Indeed, let v <« @ and let ¢ > 0 be given. Then there exists ug > 0
such that ¥(u/e) < ep(u) for u < ug. Let ng € N be such that u, < ug
for n > ng. Then for n > ng we have my(z,/c) = P(un/e)/p(u,) < €
i.e., ||zn]ly < €. On the other hand, my,(z,) = @(uy)/p(uy) = 1.

Arguing as in the proof of 13, Theorem 1.2] we get

Theorem 3.8. Let ¢ € ®; (i = 1,2). Then the topology J¥ has a
base of neighbourhoods of zero consisting of all sets of the form:

Bw(?‘) n ch

where ) € ¥, and r > 0.

Repeating the arguments of the proof of [13, Theorem 5.1] and using
the equalities from Theorem 3.1 we get

Theorem 3.9. Let ¢ € ®,. Then the space (L¥,Tp) is complete.

Since the space (L%, J,) is complete, from Theorems 3.6 and 3.7,
in view of the Open Mapping Theorem it follows

Theorem 3.10. Let ¢ € ®, and let u be an infinite atomless
measure. Then te space (L¥,Jg) is not metrizable.

To the end of this section we will assume that ¢ € ®§. We start
with the following lemma.

Lemma 3.11. Let p € ®f, (¢ = 1,2,3,4) and let ¢ be a ¢-function
suchthatd)-:ﬂaifi:l (resp. @bi<<pifi=2, ¢-:<<pifi=3,1[)-2¥<p
if i = 4). Then there exists an N-function 9o such that y(u) < o(2u)

!
foruZOarzdz/)o%goifi: 1 (resp. -<s<<pifi=2, Yo K @ if
i=3).
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Proof. Let 1; be an arbitrary N-function such that ¥ <« p if
i1 (resp. ¥ < @ifi=2 P «@ifi=3, ¥ « @ifi=4). Let
¥y = 1 V 1y, Next, let us put p(0) = 0 and p(s) = sup (¥2(t)/t) for

0<t<s

s> 0. Let N
Po(u) = / p(s) ds for u > 0.
- 0

It is seen that 1 is an N-function. Arguing as in he proof of [13, Lemma
1.4] we can verify that g satisfies the desired properties.

Theorem 3.12. Let ¢ € ®$; (i = 1,2,3,4). Then the topology Jg
is generated by the family of B-norms {||| - |[|y|Le : ¥ € ¥;(N)}.

Proof. For example, let ¢ € ®§;. Then ¢ € ®;7. Given ¢ € ¥§
and 7 > 0, in view of Lemma 3.11 there exists 9 € ¥{3(N) and such
that ¥(u) < vo(2u) for u > 0. Hence

llzlly < 1221y, for all = € L¥°. (1)

On the other hand, since the F-norms || - ||y, and ||| |||y, are equivalent
on LYo, there exists r; > 0 such that

B(ye) (1) C By,(7). (2)

We shall show that B(y,)(r1/2) N LY C By(r). Indeed, let
T € B(y,)(r1/2) N L¥. Then ||[22|||y, < 71, hence by (2) we get
l12z||yo < r and next, by (1) we see that ||z||y, < 7.

For i=1,2,4 the proof is similar.

Now we are ready to establish the general form of J£-continuous
linear functionals on L¥.

Theorem 3.13. Let ¢ € ®5 and let p be a o-finite measure. Then
for a linear functional f on L¥ the following statements are equivalent:

(i) f is continuous for Jg¥.
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(ii) There ezists a unique y € E¥" such that

fa) = (o) = [ alt(t) du  for e L.

Proof. (i) = (i1). Let ¢ € ®§; (¢ = 1,2,3,4). In view of Theorem
3.12 there exist ¥ € ¥{,(N) and r > 0 such that f is bounded on
B(y)(r) N L®. This means that f is continuous on the linear subspace
(L¥,JyjLe) of the normed space (E¥,Jygv). Hence, by the Hahn-
Banach theorem there exists a Jy gv-continuous linear functional f on
EY such that f(z) = f(z) for z € L¥. According to [11, p. 56] there
exists y € LY" C E¥" such that

f(z) = /Qx(t)y(t) du for z € EY.

Hence

f@) = £(e) = [ sl du  forz e L. (1)

Now assume that there exists another y' € E¥” such that
f(@) = fy(@) = [ o' (®) dufor = € 1° (2)
Q

Then, for example, there exists a measurable set A C {t € Q: y'(t) >
y(t)} such that 0 < pu(A) < co. Hence by (1) and (2) we get

Jxa® @® - vt du= [ )= () de =0.
Q A

This contradiction establishes that there exists a unique y € E¥" such
that (1) holds.

(%) = (¢) Let ¢ € ®§; (¢ = 1,2,3,4). According to Corollary 3.5
there exists ¥ € WY;(N) such that y € LY. Then L¥ C E¥ C L¥
and using the Holder’s inequality we get that |f,(z)| < ||y]|%.|||z|l}, for
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z € L¥ (here || -||% denotes the Orlicz norm on L¥"). This means that
fy is Jy|Le-continuous, so f, is JF-continuous, because Jy L C Jp-

4. THE IDENTITY OF THE TOPOLOGIES Jf AND J§¢ ON
L¢

In this section we shall prove that the topologies Jf and Jg co-
incide on L¥. We start with the following lemma.

Lemma 4.1. Let p € &1, and 9 be a p-function. Then the follow-
ing statements hold:

(i) For every r > 0 and € > 0 there ezists 6 > 0 such that

sup {||zally: € By(r)}<e for A€ X, pu(4)< 4.

(i) If ¢ X @, then for everyr > 0

TulBo(r) = Jy|B,(r)-

Proof. (i) Assume that ¢(u) < oo for 0 < u < a and ¢(u) = oo for
u > a, where @ > 0. Given z € B,(r) we have [, ¢(|z(t)|/r) du < 7, so
|z(t)]/r < a a.e. on Q. Given € > 0let § = ¢/9(ar/e). Then for A€ X
with p(A) < é

/n Wz a(t)l/e) du < Blar/e)u(A) < ¢

ie, |lzally <e.

(ii) Since the inclusion J, ¢ C Jy|re holds it is enough to show
that JyiB,(r) C JuB,(r) holds for every r > 0. To this end we shall
show that for any z € B,(r) and £ > 0 there exists 7p > 0 such that

Byu(z,m0) N By(r) C By(z,§)
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where for n > 0

Bu(z,m) = {y € L% : |ly— ol <)
={ye L% : p({teQ: ly(t) - 2(t)] >n}) <7}

and
By(z,n)={y € LY: lly — 2 < 0}

Indeed, let z € B,(r) and £ > 0 be given. For > 0 and y € By(r)
let put

E(n,y) = {t € Q: |y(t) —z(t)] > 0}, G(n,y) = 2\ E(n,9).

It is seen that
m((y — 2)/2r) < 2r. (1)

Since 9 X @, there exists ug > 0 such that

2
,/,(?") < f_r(P(;_r) for 0 < u < uy. (2)

Moreover, in view of (i) there exists § > 0 such that

Iy = 2)ally < -;-5 for A € 5 with u(A) < . (3)

Now let 19 = min(ug,8) and let y € By(z,m0) N By, (7).
Then w(E(m0,y)) < 1m0 < 6, and hence from (3) we get

Ity = e mlle < € @

On the other hand, since 79 < up, from (2) and (1) we get
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m,,,(%(y ~ Z)G(no)) = -/C’$;no v) 1l)(2—|y££)_—§:m) i
<£ ’w(M) dp = £

~ 4r Jq 2r

N

Hence ¢
Iy = 2)(monlle < 5- (5)
Thus from (1), (4) and (5) we get

Ny — zlly < WY = 2)Emo,wllw + (¥ = Z)amonlw £ €

and this means that y € By(z,§).

As an application of Lemma 4.1 we get

Corollary 4.2. Let ¢ € ;. Then for everyr > 0

TRB,(r) = JulBy(r)-

Proof. This equality is proved in [14, Theorem 1.4] for ¢ being a
p-function, but the proof can be applied for ¢ € ®;;. For ¢ € &1, our
equality follows Lemma 4.1, because

T8, = SUP{TyB,(r) * ¥ € Y13} = TuiB,(r)-

In view of Corollary 4.2 and (2.2) we have: Jg C J[. Repeating
the arguments of the proof of [14, Theorem 2.2] we get

Theorem 4.3. Let ¢ € ®1. If a sequence (z,) in LY is modular
convergent to x € LY (i.e., my(A(zn — z)) — 0 for some A > 0) then
z, — 0 for Jf
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It is well known that the set of all simple integrable functions S is
dense in L¥ in the sense of modular convergene. Therefore, in view of
the previous theorem and the inclusion J5 C Jwe get:

Theorem 4.4. Let ¢ € ®,. The set of all simple integrable func-
tions S is dense in L¥ with respect to J¥ and JY .

Now we are in position to prove our main theorem.

Theorem 4.5. Let ¢ € ®;. Then the equality
T = T8

holds, i.e., for ¢ € ®1; (i = 1,2) the generalized mized topology J
generated by the family {|| - ||yiLe : ¥ € ¥}

Proof. For ¢ € ®;; this equality is proved in [14, Theorem 2.4].

Next let ¢ € ®15. It is enough to show that the inclusion J;
Jg holds. Since the spaces (L¥,Jg5) and (L¥,J[’) are complete (see
Theorems 2.1 and 3.9), in view of Theorem 4.4 and [4, C orollary of
Lemma 4, p. 34] if suffices to show that .

T C Tp|s-

To his end, in view of Definition 2.1, given a sequence of positive

numbers (¢, : n > 0) we shall find ¢ € ¥7, (i.e., o < @) and 79 > 0
such that

By(r)nsc | (Z(B (@)n B, (en))) 1)

N=0 *n=0

Without loss of generality we can assume that ¢, | 0, o < 1 and
cop(1l) < 1. Moreover, for the reasons of convenience we can assume
that ¢(u) < oo for u < 1 and ¢(u) = oo for u > 1.

Let us choose subsequence (¢, ) of (¢,,) in such a way that:
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(a) ko =0.
(b) k; is the smallest natural number such that

1
SO(Ekl) < -
Ek

1
(c) Given k,, (n > 1) we take k,4q1 > ky such that

o(ex, )2 > Pern,,) and  €x, < Eng1/2.
Let
N(t) =sup{n € N': g, >t} fort € .

We shall now define a ¢-function g such that X ¢ and

Po(u) > ) for 0 <u < ¢k, , (2)

N()(?)

Po(n) > 1 forn>1. : (3)
En+1

Let us denote by:

A:l={t>01 Ek,,+1<t55k..}, n=12,...,
A={t>0: ¢, <t< 1},

Al ={t>0: n<t<n+1}, n=12,.

and

={s>0: (k1) <5< pler,)}, n=12,...,

B={s>0: p(er,) <s<p(1)/2},
B!'={s>0: (1) n/2<s<p(l)(n+1)/2}, n=1,2,.
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Let us put
(0 for
ni] for
p(t) =
2 for
\ for
and
(0 for
% for
q(s) = |
1 for
2
U @(1)ent1 for

Next, define for u > 0 and v > 0

&(u) = /oup(t) dt and

Let us put

oo(u) = {ggg';;u

At last let

t=0,
te AL , n>2,
te AJjUAUAY,

teAll ,n>2,

s=0,
S€EB, ,n>3
s€ BjUB{UB,

SEB”

n

n>1.

w0 = [ "g(s) ds.

for u<1
for u>1

@0 (€(u))
wolw) = nea(€w) = [ a(s)ds foru0.

Similarly as in the proof of [14, Theorem 2.4] we can show that 1 X ®

and that the conditions (2) and (3) h
Now let us put

old.
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To = min(%,do €0 (,0(80)) (4)
Where
1 _ e(u) | }
& sup{——%(u) ek, <u<llos.

We shall now show that the inclusion (1) holds.
Indeed, let

z =Y AixH, € By,(ro)
i€l
where I is a finite subset of A/, and p(H;) < co. Denote by
K={iel: ek, < [N €1},

L={iel: |N|<er}, J={iel: |A]>1}

T1= 3 AXH > %2 = ) AiXH, ,‘ T3 =Y NixH; -

€K 1€L i€J

Let

Since z € By,y(ro) and 79 < 1 we have

myo() = Y Yo(|A)u(H:) = ¢ < ro.

i€l

Write
¢i = Yo(|Al)pu(H) -

Arguing as in the proof of [14, Theorem 2.4] we get
z1 € By(1) N By(eo) (5)

and moreover, using (2) we can find N; € NV such that

nel (Bw(% 2) 0 B,( en)). (6)
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Now we shall find N, € ANV such that

N2
T3 € Z (B<p(% 2") N Bu(% sn)>. (7

Let
ni=sup{n € N : n < |\]|} forie J.

Then n; > 1 and n; < |Ai| < n; + 1. Let jy,...,Jn, be the different
numbers in the set {n; : i € J} and let us assume that j; < ... < jp,-
Write

Ji={ieJ: ni=75} for1<Il<myg.

Then mo
T3 =) Aixm = > hixn,)-
i€J I=1 €J;
and let

Y= E Aixm, for 1 <1 < my.
te€Ji

Then ji < |Xi| < ji+ 1 for i € J; and using (4) we get

me(yi/ G+ 1) = Y e(IXl/G + 1)) p(H))

t€J;

<dgt Y o (IXil/Gr)) (H:) < dytro < G + 1.

1€J;
Thus
v € Bylii +1) C By(3 2%1). (8)
Let
Ey(e)={teQ: |u(t)] > e} for any € > 0.
Then

1
Ey (5 e541) = U H.
€Sy
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Hence, using (3) we get

BBy (5 €a) € 30 m(H) < 3 esfalIA)

1€ i€y

<Y ei/oli) < (Y e /(i) < t Eqi+1

1€J; 1€J;
and this means that )
v € Bﬁ(g Eji+1)- (9)
Thus from (8) and (9) we have

Y€ B (2 23'+1) NnB (5 EJ,+1)

Hence for N3 = j;m, + 1 we obtain

At last, using (5), (6) and (7), for No = maz(N1, N;) we get

No
z = 21+ 22 + 23 € By(1) N Bu(eo) + _ (By(2") N Bu(en))

n=1

c U (Z (Bo2") N Bu(en))-

n=0

Thus the proof is completed.
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5. A TOPOLOGICAL CHARACTERIZATION OF THE -~,-
CONVERGENCE IN L*

In this section by applying of Theorem 4.5 we obtain a topological
characterization of the 7,-convergence in L¥.

Theorem 5.1. Let ¢ € ®,; (i = 1,2). Then for a sequence (z,) in
L¥ and z € L¥ the following statements are equivalent:

(i) T, — x for JY.

(ii) ||zn — ||y — O for every ¥ € ¥Y¥,.

(iii) x,, — = (p — Q) and sup ||z,||, < 0o .

n

Moreover, for ¢ € ®5; (i = 1,2,3,4) the above statements are equiv-
alent to

(i) |||zn — z|||y — O for every ¢ € S, (N).

Proof. (i) & (it) & (i¢). It follows from Theorem 2.4. and

Theorem 4.5.
(%) & (iv). It follows from Theorem 4.5 and Theorem 3.12.

Now we apply the above theorem to some classes of Orlicz spaces.
Let

0 for 0<u<l,

Xp(u) = uP for u > 0 and xoo(u) = { o for u>1

Let || - ||, and || - [|o denote the usual norms in L? (p > 1) and L™
respectively.

Examples
A.Forp>1let

(u)z{uf’j for 0<u<l,
L4 oo for u>1.
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Hence p(u) = xp(u)V Xoo(u) for u > 0,s0 L¥ = LPN L by Lemma 1.1.
We see that ¢ € &, for p = 1 and ¢ € ®5, for p > 1. Hence by applying
of Theorem 5.1 and Lemma 1.1 we get the following two theorems:

Theorem 5.2. For a sequence (z,) in L' N L*® and z € L' N L™
the following statements are equivalent:

(i) ¢, = & (. — Q) and sup||z,||; < 00, sup||zp||e < 00.
n n
(i) |||zn — |||y — O for every N — function 4.

Theorem 5.3. Let p > 1. Fora sequerice (zn) in LP N L™ and
z € LP N L™ the following statements are equivalent:

(i) T — = (u — Q) and sup ||zx]]p < 00, sup||zn||o < o0.
n n

(i) |||zn — z||ly — O for every N-function v such that p(u)/u? — 0
asu — 0.

B. For p > 1 let

_fu for 0<u<l,
(p(u)‘{u” for u>1.

Then ¢(u) = x1(u) V xp(u) for w > 0, s0 LY = L1 N LP. Then ¢ € ®5,
and using Theorem 5.1 and Lemma 1.1 we get:

Theorem 5.4. Let p > 1. For a sequence (z,) in L' N L? and
x € L1 N LP the following statements are equivalent:
(i) zp — « (u— Q) and sup ||z,]}1 < 00, sup||z,|], < 0.
n n

(i) |||zn — ||| — O for every N -function v such that ¥(u)/uP — 0
as u — 00,
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