REVISTA MATÉMATICA de la Universidad Complutense de Madrid Volumen 7, número 1: 1994

A Generalized Mixed Topology on Orlicz Spaces

MARIAN NOWAK

ABSTRACT. Let L^{φ} be an Orlicz space defined by an arbitrary Orlicz function φ over a positive measure space (Ω, Σ, μ) and provided with its usual F-norm $||\cdot||_{\varphi}$. In L^{φ} a natural convergence can be defined as follows: a sequence (x_n) in L^{φ} is said to be γ_{φ} -convergent to $x \in L^{\varphi}$ whenever $x_n \to x \ (\mu - \Omega)$ and $\sup ||x_n||_{\varphi} < \infty$. In this paper we examine some kind of generalized inductive-limit topology (in the sense of Turpin) \mathcal{J}_I^{φ} in L^{φ} that generates our γ_{φ} -convergence in L^{φ} . The main aim of the paper is to obtain a description of the topology \mathcal{J}_I^{φ} in terms of some family of F-norms defined by other Orlicz functions. As an application we obtain a topological characterization of the γ_{φ} -convergence in L^{φ} .

1. INTRODUCTION AND PRELIMINARIES

Every Orlicz space L^{φ} defined by an Orlicz function φ (not necessarily convex) over a measure space (Ω, Σ, μ) can be equipped with two

1991 Mathematics Subject Classification: 46E30

Editorial Complutense. Madrid, 1994.

F-norms: $||\cdot||_{\varphi}$ - the usual F-norm on L^{φ} and $||\cdot||_{\mu}$ - the F-norm of convergence in measure (on Ω) restricted to L^{φ} . Thus a natural sequential convergence in L^{φ} can be defined as follows: a sequence (x_n) in L^{φ} is said to be γ_{φ} -convergent to $x \in L^{\varphi}$, in symbols $x_n \xrightarrow{\gamma_{\varphi}} x$, whenever

$$x_n \to x(\mu - \Omega)$$
 (i.e., $||x_n - x||_{\mu} \to 0$) and $\sup_n ||x_n||_{\varphi} < \infty$.

When we replace in the above definition the condition: $\sup ||x_n||_{\varphi} < \infty$ with the boundedness of the set $\{x_n : n \geq 0\}$ for the topology $\mathcal{I}_{||\cdot||_{\varphi}}$, then this new convergence comes under the definition of the so-called two-norm convergence or γ -convergence in the sense of Alexiewicz ([1,1954]). The general theory of two-norm convergence has been extensively developed by A.Alexiewicz [1], W. Orlicz [19], A. Alexiewicz and Z. Semadeni [2], A. Wiweger [23], [24], [25].

It is well known that the theory of two-norm convergence is closely related to the Wiweger's theory of mixed topologies [23], [24]. Indeed, in case when $||\cdot||$ is a homogenuous norm and $||\cdot||^*$ is an F-norm on a linear space X and $||x_n - x||^* \to 0$ implies $\lim \inf ||x_n|| \ge ||x||$, then the sequential γ -convergence in X is generated by the so-called mixed topology $\gamma[\mathcal{J}_{||\cdot||}, \mathcal{J}_{||\cdot||^*}]$.

The notion of the mixed topology was a starting point for the theory of generalized inductive-limit topologies. There are many kinds of such topologies introduced for different reasons by A. Persson [21], D.J.H. Garling [7], J.B. Cooper [3], P. Turpin [22] and others.

The question arises whether our γ_{φ} -convergence in L^{φ} is topologized by some linear topology. It turns out that there is a positive answer to this question when we take into account an appropriate generalized inductive-limit topology in the sense of Turpin. This topology will be called here a generalized mixed topology and denoted by \mathcal{J}_I^{φ} . This term is justified by the fact that \mathcal{J}_I^{φ} coincides with the usual mixed topology $\gamma[\mathcal{J}_{||\cdot||_{\varphi}},\mathcal{J}_{\mu|_{L^{\varphi}}}]$ (in the sense of Wiweger) when the space $(L^{\varphi},\mathcal{J}_{||\cdot||_{\varphi}})$ is locally bounded.

In this paper we investigate the generalized mixed topology \mathcal{J}_I^{φ} . Our main aim is to obtain a description of \mathcal{J}_I^{φ} in terms of some family of F-norms defined by other Orlicz functions. As application we obtain

a topological characterization of our γ_{φ} -convergence in L^{φ} . Moreover, for φ being a convex Orlicz function we establish the general form of $\mathcal{J}_{I}^{\varphi}$ -continuous linear functionals on L^{φ} .

In some special cases the topology \mathcal{J}_I^{φ} was examined by P. Turpin [22] and the author [14], [15], [16].

Given a linear topological space (X,ξ) by $Bd(X,\xi)$ we will denote the collection of all ξ -bounded subsets of X. As usual $\mathcal N$ stands for the set of all natural numbers. We assume that $0 \cdot \infty = 0$.

Now we recall some notation and terminology concerning Orlicz spaces (see [9], [11], [12], [22] for more details).

By an Orlicz function we mean a function $\varphi:[0,\infty)\to[0,\infty]$ which is non-decreasing, left continuous, continuous at 0 with $\varphi(0)=0$, and not identically equal to 0.

An Orlicz function φ is called convex whenever $\varphi(\alpha u + \beta v) \leq \alpha \varphi(u) + \beta \varphi(v)$ for $\alpha, \beta \geq 0$, $\alpha + \beta = 1$ and $u, v \geq 0$. A convex Orlicz function is usually called a Young function.

For a Young function φ we denote by φ^* the function complementary to φ in the sense of Young, i.e.,

$$\varphi^*(v) = \sup\{uv - \varphi(u): u \ge 0\} \text{ for } v \ge 0.$$

For a set Ψ of Young functions we will write: $\Psi^* = \{\psi^*: \psi \in \Psi\}$.

Let φ and ψ be a pair of Orlicz functions vanishing only at zero (resp. taking only finite values). We say that φ increases essentially more rapidly than ψ for small u (resp. for large u) in symbols $\psi \stackrel{s}{\prec} \varphi$ (resp. $\psi \stackrel{l}{\prec} \varphi$) whenever for any c > 0, $\psi(cu)/\varphi(u) \to 0$ as $u \to 0$ (resp. $u \to \infty$).

We will write $\psi \stackrel{a}{\prec} \varphi$ when $\psi \stackrel{s}{\prec} \varphi$ and $\psi \stackrel{l}{\prec} \varphi$ hold.

For φ and ψ being Young functions the condition $\psi \stackrel{s}{\prec} \varphi$ (resp. $\psi \stackrel{l}{\prec} \varphi$) implies $\varphi^* \stackrel{s}{\prec} \psi^*$ (resp. $\varphi^* \stackrel{l}{\prec} \psi^*$) (see [9, Lemma 13.1]).

Let (Ω, Σ, μ) be a positive measure space, and let L^0 denote the set of equivalence classes of all real valued measurable functions defined

and finite a.e. on Ω . For a subset A of Ω and $x \in L^0$ we will write $x_A = x \cdot \chi_A$, where χ_A stands for the characteristic function of A.

An Orlicz function φ determines a functional $m_{\varphi}: L^0 \to [0, \infty]$ by

$$m_{arphi}(x) = \int_{\Omega} arphi(|x(t)|) d\mu.$$

The Orlicz space generated by φ is the ideal of L^0 defined by

$$L^{\varphi} = \{x \in L^0 : m_{\varphi}(\lambda x) < \infty \text{ for some } \lambda > 0\}.$$

The functional m_{φ} restricted to L^{φ} is an orthogonally additive semi-modular.

 L^{arphi} can be equipped with the complete metrizable topology \mathcal{J}_{arphi} of the F-norm

$$||x||_{\varphi} = \inf\{\lambda > 0: m_{\varphi}(x/\lambda) \le \lambda\}.$$

Moreover, if φ is a Young function, then the topology \mathcal{J}_{φ} can be generated by the Luxemburg norm

$$|||x|||_{\varphi}=\ \inf\{\lambda>0:\ m_{\varphi}(x/\lambda)\leq 1\}.$$

For r > 0 let

$$B_{\varphi}(r) = \{x \in L^{\varphi}: \ ||x||_{\varphi} \le r\}$$

and let

$$B_{(\varphi)}(r) = \{x \in L^{\varphi}: \ |||x|||_{\varphi} \le r\}$$

whenever φ is a Young function.

We shall need the following lemma.

Lemma 1.1. Let φ_1, φ_2 be Orlicz functions, and let $\varphi(u) = \varphi_1(u) \vee \varphi_2(u)$ for $u \geq 0$. Then φ is an Orlicz function and the following statements hold:

(i)
$$L^{\varphi} = L^{\varphi_1} \cap L^{\varphi_2}$$
.

(ii)
$$||x||_{\varphi_1} \vee ||x||_{\varphi_2} \leq ||x||_{\varphi} \leq ||x||_{\varphi_1} + ||x||_{\varphi_2}$$
 for $x \in L^{\varphi}$.

(iii)
$$\mathcal{J}_{\varphi} = \mathcal{J}_{\varphi_1|_{L^{\varphi}}} \vee \mathcal{J}_{\varphi_2|_{L^{\varphi}}}$$

and
$$Bd(L^{\varphi}, \mathcal{J}_{\varphi}) = Bd(L^{\varphi}, \mathcal{J}_{\varphi_1|_{L^{\varphi}}}) \cap Bd(L^{\varphi}, \mathcal{J}_{\varphi_2|_{L^{\varphi}}}).$$

Proof. (i) See [8, Theorem 1].

- (ii) It follows from the definition of $||\cdot||_{\varphi}$.
- (iii) It follows from (ii).

Let

$$E^{\varphi} = \{x \in L^0 : m_{\varphi}(\lambda x) < \infty \text{ for all } \lambda > 0\}.$$

It is known that $L^{\varphi} = E^{\varphi}$ whenever φ satisfies the Δ_2 - condition, i.e., $\limsup \varphi(2u)/\varphi(u) < \infty$ as $u \to 0$ and $u \to \infty$.

Let

$$\varphi_{\scriptscriptstyle 0}(u) = \left\{ \begin{matrix} 0 & \text{for} & \quad 0 \leq u \leq 1, \\ 1 & \text{for} & \quad u > 1. \end{matrix} \right.$$

It is known that L^{φ_0} is the largest Orlicz space and consists of all those $x \in L^0$ that are bounded outside of some set of finite measure, and

$$||x||_{\varphi_{\alpha}}=\inf\{\lambda>0:\;\mu(\{t\in\Omega:\;|x(t)|>\lambda\})\leq\lambda\}.$$

It is seen that $||x_n-x||_{\varphi_0}\to 0$ in L^{φ_0} iff $x_n\to x$ in measure on Ω (in symbols $x_n\to x$ $(\mu-\Omega)$). Therefore we will write $||\cdot||_{\mu}$ instead of $||\cdot||_{\varphi_0}$, and by \mathcal{J}_{μ} we will denote the topology of the F-norm $||\cdot||_{\varphi_0}$.

For $\varepsilon > 0$ let

$$B_{\mu}(\varepsilon) = \{x \in L^{\varphi_0} : ||x||_{\mu} \le \varepsilon\}.$$

We shall need the following lemma.

Lemma 1.2. Let φ be an Orlicz function such that $\varphi(u) \to \infty$ as $u \to \infty$. Then for r > 0, $B_{\varphi}(r) \in Bd(L^{\varphi}, \mathcal{J}_{\mu|_{L^{\varphi}}})$.

Proof. Let $x_n \in B_{\varphi}(r)$ (n = 1, 2, ...) and let $\lambda_n \to 0$. For $\varepsilon > 0$ let $\Omega_n(\varepsilon) = \{t \in \Omega : |\lambda_n x_n(t)| > \epsilon\}$. Then

$$\mu(\Omega_n(\varepsilon))\varphi\left(\frac{\varepsilon}{r|\lambda_n|}\right) \leq \int_{\Omega_n(\varepsilon)} \varphi\left(\frac{|x_n(t)|}{r}\right) d\mu$$
$$\leq m_{\varphi}\left(\frac{x_n}{r}\right) \leq r.$$

Since $\varphi(u) \to \infty$ as $u \to \infty$ we get $\mu(\Omega_n(\varepsilon)) \to 0$, and this means that $||\lambda_n x_n||_{\mu} \to 0$.

2. A GENERALIZED MIXED TOPOLOGY ON L^{φ} -GENERAL PROPERTIES

In this section we consider some kind of generalized inductive limit topology on L^{φ} .

Let φ be an arbitrary Orlicz function, and let

$$F_n = B_{\varphi}(2^n)$$
 and $\mathcal{J}_n = \mathcal{J}_{\mu|_{F_n}}$ for $n \geq 0$.

Then the family $\mathcal{B}_{\varphi} = \{F_n : n \geq 0\}$ forms a base of metric bounded sets in $(L^{\varphi}, ||\cdot||_{\varphi})$.

Moreover, the sequence (F_n, \mathcal{J}_n) $(n \geq 0)$ of balanced topological spaces satisfies the following conditions:

(i)
$$L^{\varphi} = \bigcup_{n>0} F_n$$
.

(ii) $F_n + F_n \subset F_{n+1}$, and the function

$$F_n \times F_n \ni (x,y) \to x + y \in F_{n+1}$$

is continuous.

(iii) The function $[-1,1] \times F_n \ni (\lambda,x) \mapsto \lambda \cdot x \in F_n$ is continuous.

(iv)
$$\mathcal{J}_{n+1|_{F_n}} = \mathcal{J}_n$$
 for $n \geq 0$.

Thus the space L^{φ} with the system $\{(F_n, \mathcal{J}_n): n \geq o\}$ comes under the conditions of the strict inductive limit of balanced topological spaces in the sense of P. Turpin [22, Ch. I].

Definition 2.1. The family of all sets of the form

$$\bigcup_{N=0}^{\infty} \left(\sum_{n=0}^{N} \left(B_{\varphi}(2^{n}) \cap B_{\mu}(\varepsilon_{n}) \right) \right) \tag{2.1}$$

where $(\varepsilon_n : n \geq 0)$ is a sequence of positive numbers, forms a base of neighbourhoods of zero for a linear topology on L^{φ} (in the sense of Turpin) which will be denoted by \mathcal{J}_I^{φ} .

According to [22, Theorem 1.1.6] \mathcal{J}_I^{φ} in the finest of all linear topologies ξ on L^{φ} which satisfy the conditions:

$$\xi|_{F_n} \subset \mathcal{J}_{\mu|_{F_n}} \text{ for } n \ge 0.$$
 (2.2)

Moreover, in view of [22, Theorem 1.1.8] we have

$$\mathcal{J}_{I|_{F_n}}^{\varphi} = \mathcal{J}_{\mu|_{F_n}} \text{ for } n \ge 0.$$
 (2.3)

Since $\mathcal{J}_{\mu|_{L^{\varphi}}} \subset \mathcal{J}_{\varphi}$ we have $\mathcal{J}_{I}^{\varphi} \subset \mathcal{J}_{\varphi}$; hence $\mathcal{J}_{\mu|_{L^{\varphi}}} \subset \mathcal{J}_{I}^{\varphi} \subset \mathcal{J}_{\varphi}$.

Henceforth in this section we assume that $\varphi(u) \to \infty$ as $u \to \infty$.

The basic properties of the topology $\mathcal{J}^{\varphi}_{I}$ are included in the following theorems.

Theorem 2.1. The space $(L^{\varphi}, \mathcal{J}_{I}^{\varphi})$ is complete.

Proof. It is known that the balls $B_{\varphi}(2^n)$ are closed subsets of $(L^{\varphi_0}, \mathcal{J}_{\mu})$ (see [22, 0.3.6]), so the spaces $(B_{\varphi}(2^n), \mathcal{J}_{\mu|_{B_{\varphi}(2^n)}})$ $(n \geq 0)$ are complete. Hence, by [22, Theorem 1.1.10] the space $(L^{\varphi}, \mathcal{J}_I^{\varphi})$ is complete.

Theorem 2.2. For a subset $Z \subset L^{\varphi}$ the following statements are equivalent:

- (i) $\sup\{||x||_{\varphi}: x \in Z\} < \infty$.
- (ii) Z is bounded for \mathcal{J}_I^{φ} .

Proof. By Lemma 1.2 the balls $B_{\varphi}(2^n)$ are bounded subsets of $(L^{\varphi}, \mathcal{J}_{\mu|_{L^{\varphi}}})$. Moreover, the balls $B_{\varphi}(2^n)$ are also closed in $(L^{\varphi}, \mathcal{J}_{\mu|_{L^{\varphi}}})$ (see [22, 0.3.6]). In view of (2.2) and (2.3) \mathcal{J}_I^{φ} is the finest of all linear topologies ξ on L^{φ} such that $\xi|_{F_n} = \mathcal{J}_{\mu|_{F_n}}$. Hence by [22, Corollary 1.1.12] the equivalence $(i) \Leftrightarrow (ii)$ holds.

Theorem 2.3. For a subset $Z \subset L^{\varphi}$ the following statements are equivalent:

- (i) Z is relatively compact for \mathcal{J}_I^{φ} .
- (ii) Z is relatively compact for $\mathcal{J}_{\mu|_{L^{\varphi}}}$ and

$$\sup \{||x||_{\omega}: x \in Z\} < \infty.$$

Proof. It follows from Theorem 2.2 and (2.3).

Let us recall that a sequence (x_n) in L^{φ} is said to be γ_{φ} -convergent to $x \in L^{\varphi}$, in symbols $x_n \xrightarrow{\gamma_{\varphi}} x$, whenever

$$x_n \to x \ (\mu - \Omega)$$
 and $\sup_n \ ||x_n||_{\varphi} < \infty$.

Theorem 2.4. For a sequence (x_n) in L^{φ} the following statements are equivalent:

(i)
$$x_n \to 0$$
 for \mathcal{J}_I^{φ} .

(ii)
$$x_n \stackrel{\gamma_{\varphi}}{\to} 0$$
.

Moreover, \mathcal{J}_I^{φ} is the finest of all linear topologies ξ on L^{φ} which satisfy the condition:

$$x_n \stackrel{\gamma_{\varphi}}{\to} 0 \quad implies \quad x_n \to 0 \text{ for } \xi.$$
 (+)

Proof. The equivalence $(i) \Leftrightarrow (ii)$ follows from Theorem 2.2 and (2.3).

Now let ξ be a linear topology on L^{φ} for which the condition (+) holds. Then $\xi|_{B_{\varphi}(r)} \subset \mathcal{J}_{\mu|_{B_{\varphi}(r)}}$ for r > 0, because \mathcal{J}_{μ} is a metrizable linear topology. Hence by (2.2) we get that $\xi \subset \mathcal{J}_{I}^{\varphi}$.

Definition 2.2. Let (X, η) be a linear topological space. A linear mapping $A: L^{\varphi} \to X$ is said to be γ_{φ} -linear, if

$$x_n \stackrel{\gamma_{\varphi}}{\to} 0$$
 implies $A(x_n) \to 0$ for η .

The next theorem gives a characterization of γ_{φ} -linear functionals on L^{φ} .

Theorem 2.5. For a linear topological space (X, η) and a linear mapping $A: L^{\varphi} \to X$ the following statements are equivalent:

- (i) A is $(\mathcal{J}_I^{\varphi}, \eta)$ -continuous.
- (ii) A is γ_{φ} -linear.
- (iii) For every r > 0, the restriction $A_{|B_{\varphi}(r)}$ is $(\mathcal{J}_{\mu|B_{\varphi}(r)}, \eta)$ -continuous.

Proof. $(i) \Rightarrow (ii)$ It follows from Theorem 2.4.

- $(ii) \Rightarrow (iii)$ it is obvious.
- $(iii)\Rightarrow (i)$ Let W be a neighbourhood of zero in X for η . Then there exists a sequence $(W_n:n\geq 0)$ of neighbourhoods of zero for η such that $\sum\limits_{n=0}^{N}W_n\subset W$ for every $N\geq 0$. Thus by our assumption there exists a sequence $(\varepsilon_n:n\geq 0)$ of positive numbers such that $A(B_{\varphi}(2^n)\cap B_{\mu}(\varepsilon_n))\subset W_n$. Thus for $N\geq 0$

$$A\bigg(\sum_{n=0}^N (B_{\varphi}(2^n)\cap B_{\mu}(\varepsilon_n))\bigg)\subset \sum_{n=0}^N W_n\subset W,$$

so

$$A\bigg(\bigcup_{N=0}^{\infty} \big(\sum_{n=0}^{N} (B_{\varphi}(2^{n}) \cap B_{\mu}(\varepsilon_{n}))\big)\bigg) \subset$$

$$\subset \bigcup_{N=0}^{\infty} A\bigg(\sum_{n=0}^{N} (B_{\varphi}(2^{n}) \cap B_{\mu}(\varepsilon_{n}))\bigg) \subset W.$$

This means that A is $(\mathcal{J}_I^{\varphi}, \eta)$ -continuous.

Now we are going to compare the topology \mathcal{J}_I^{φ} with the mixed topology $\gamma[\mathcal{J}_{\varphi},\mathcal{J}_{\mu|L^{\varphi}}]$ in the sense of Wiweger (see [24]). For this purpose we shall need the following

Theorem 2.6. Assume that (Ω, Σ, μ) is an atomless measure space or that μ is the counting measure on \mathcal{N} . If $(L^{\varphi}, \mathcal{J}_{\varphi})$ is a locally bounded space then for a subset Z of L^{φ} the following statements are equivalent:

- (i) Z is bounded for \mathcal{J}_I^{φ} .
- (ii) sup $\{||x||_{\varphi}: x \in Z\} < \infty$.
- (iii) Z is bounded for \mathcal{J}_{φ} .

Proof. $(i) \Leftrightarrow (ii)$ See Theorem 2.2.

 $(ii) \Rightarrow (iii)$ In view of [22, 0.3.10.2] $\sup\{||x||_{\varphi}: x \in Z\} < \infty$ if and only if Z is additively bounded (see [22, 0.3.10.1]), so arguing as in the proof of [15, Lemma 2.5] we obtain that Z is bounded for \mathcal{J}_{φ} .

$$(iii) \Rightarrow (i)$$
 Obvious.

Theorem 2.7. Assume that (Ω, Σ, μ) is an atomless measure space or that μ is the counting measure on \mathcal{N} . If $(L^{\varphi}, \mathcal{J}_{\varphi})$ is a locally bounded space, then the generalized mixed topology $\mathcal{J}_{I}^{\varphi}$ coincides with the mixed topology $\gamma[\mathcal{J}_{\varphi}, \mathcal{J}_{\mu|L^{\varphi}}]$.

Proof. In view of Theorem 2.6 it follows from [24, 2.2.1 and 2.2.2].

3. SOME PROJECTIVE TOPOLOGY ON ORLICZ SPACES

In [5], [6] H.W. Davis, F.J.Muray and J. Weber studied the spaces

$$L^{P}(S) = \bigcap_{p \in S} L^{p} (S \subset [1, \infty))$$

endowed with the appropriate projective topology.

There are some results concerning a representation of an Orlicz space L^{φ} as the intersection of some family of other Orlicz spaces (see [10], [17], [18]). In this section we examine the appropriate projective topology on L^{φ} . In section 4 we shall show that this projective topology coincides with the generalized mixed topology $\mathcal{J}_{I}^{\varphi}$.

We start with some equalities among Orlicz spaces, proved in [17] and [18], which are of key importance in this section. At the very beginning we distinguish some classes of Orlicz functions.

An Orlicz function φ continuous for all $u \geq 0$, taking only finite values, vanishing only at zero, and not bounded is usually called a φ -function. By Φ we will denote the collection of all φ -functions.

A Young function φ vanishing only at zero and taking only finite values is called an N-function whenever $\varphi(u)/u \to 0$ as $u \to 0$ and $\varphi(u)/u \to \infty$ as $u \to \infty$. By Φ_N we will denote the collection of all N-functions.

Let Φ_1 be the set of all Orlicz functions φ vanishing only at zero and such that $\varphi(u) \to \infty$ as $u \to \infty$. Denote by

$$\Phi_{11} = \{ \varphi \in \Phi_1 : \ \varphi(u) < \infty \text{ for } u > 0 \},$$

$$\Phi_{12}=\{\varphi\in\Phi_1:\ \varphi\ \text{jumps to}\ \infty\}.$$

Then $\Phi_1 = \Phi_{11} \cup \Phi_{12}$. In view of [17, Theorem 3.1, 3.2, 3.7 and 3.8] we get

Theorem 3.1. Let $\varphi \in \Phi_{1i}$ (i = 1, 2). Then the following equalities hold:

$$L^{\varphi} = \bigcap \{L^{\psi}: \ \psi \in \Psi_{1i}^{\varphi}\} = \bigcap \{E^{\psi}: \ \psi \in \Psi_{1i}^{\varphi}\}$$

where

$$\Psi_{11}^{\varphi} = \{ \psi \in \Phi : \ \psi \stackrel{a}{\prec} \varphi \}, \ \Psi_{12}^{\varphi} = \{ \psi \in \Phi : \ \psi \stackrel{s}{\prec} \varphi \}.$$

Moreover, if μ is an atomless measure or the counting measure on \mathcal{N} , then the strict inclusion $L^{\varphi} \subsetneq E^{\psi}$ holds for each $\psi \in \Psi_{1i}^{\varphi}$.

Next let Φ_1^c be the set of all Young functions φ vanishing only at zero and such that $\varphi(u)/u \to \infty$ as $u \to \infty$.

Denote by

$$\Phi_{11}^c = \{ \varphi \in \Phi_1^c : \ \varphi(u) < \infty \text{ for } u > 0 \text{ and } \varphi(u)/u \to 0 \text{ as } u \to 0 \},$$

$$\Phi_{12}^c = \{ \varphi \in \Phi_1^c : \varphi \text{ jumps to } \infty \text{ and } \varphi(u)/u \to 0 \text{ as } u \to 0 \},$$

$$\Phi_{13}^c = \{ \varphi \in \Phi_1^c : \varphi(u) < \infty \text{ for } u > 0 \text{ and } \varphi(u)/u \to a \text{ as } u \to 0, \ a > 0 \},$$

$$\Phi_{14}^c = \{ \varphi \in \Phi_1^c : \varphi \text{ jumps to } \infty \text{ and } \varphi(u)/u \to a \text{ as } u \to 0, \ a > 0 \}.$$

Then $\Phi_1^c = \bigcup_{i=1}^4 \Phi_{1i}^c$, where the sets Φ_{1i}^c are pairwise disjoint. It is seen that $\Phi_{11}^c = \Phi_N$. According to [18, Theorems 2.1-2.4] we get

Theorem 3.2. Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4). Then the following equalities hold:

$$L^{\varphi} = \bigcap \{L^{\psi}: \ \psi \in \Psi_{1i}^{\varphi}(N)\} = \bigcap \{E^{\psi}: \ \psi \in \Psi_{1i}^{\varphi}(N)\}$$

where

$$\Psi_{11}^{\varphi}(N) = \{ \psi \in \Phi_N : \ \psi \stackrel{a}{\prec} \varphi \}, \ \Psi_{12}^{\varphi}(N) = \{ \psi \in \Phi_N : \ \psi \stackrel{s}{\prec} \varphi \},$$

$$\Psi_{13}^{\varphi}(N) = \{ \psi \in \Phi_N : \ \psi \stackrel{l}{\prec\!\!\!\prec} \varphi \}, \ \Psi_{14}^{\varphi}(N) = \Phi_N.$$

Next, let Φ_2^c be the set of all Young functions φ taking only finite values and such that $\varphi(u)/u \to 0$ as $u \to 0$.

Denote by

$$\Phi_{21}^c = \{ \varphi \in \Phi_2^c : \ \varphi(u) > 0 \text{ for } u > 0 \text{ and } \varphi(u)/u \to \infty \text{ as } u \to \infty \}$$

$$\Phi^c_{22} = \left\{\varphi \in \Phi^c_2: \ \varphi(u) > 0 \text{ for } u > 0 \text{ and } \varphi(u)/u \to a \text{ as } u \to \infty, \ a > 0\right\},$$

$$\Phi_{23}^c = \{ arphi \in \Phi_2^c : \ arphi(u) = 0 \ ext{near zero and} \ arphi(u)/u o \infty \ ext{as} \ u o \infty \} \ ,$$

$$\Phi^c_{24} = \{\varphi \in \Phi^c_2: \ \varphi(u) = 0 \ \text{near zero and} \ \varphi(u)/u \to a \ \text{as} \ u \to \infty, \ a > 0\}.$$

Then $\Phi_2^c = \bigcup_{i=1}^4 \Phi_{2i}^c$, where the sets Φ_{2i}^c are pairwise disjoint. It is seen that $\Phi_{21}^c = \Phi_N$. According to [18, Theorems 1.1-1.4] we have

Theorem 3.3. Let $\varphi \in \Phi^c_{2i}$ (i = 1, 2, 3, 4). Then the following equalities hold

$$E^{\varphi} = \bigcup\{E^{\psi}: \ \psi \in \Psi^{\varphi}_{2i}(N)\} = \bigcup\{L^{\psi}: \ \psi \in \Psi^{\varphi}_{2i}(N)\}$$

where

$$\begin{split} &\Psi^{\varphi}_{21}(N) = \{ \psi \in \Phi_N: \ \varphi \overset{a}{\prec} \psi \} \ , \ \Psi^{\varphi}_{22}(N) = \{ \psi \in \Psi_N: \ \varphi \overset{s}{\prec} \psi \} \ , \\ &\Psi^{\varphi}_{23}(N) = \{ \psi \in \Phi_N: \ \varphi \overset{\iota}{\prec} \psi \} \ , \ \Psi^{\varphi}_{24}(N) = \Phi_N. \end{split}$$

At last, in view of [18, Lemma 3.1 and Theorem 3.3] we get

Theorem 3.4 Let φ_1 and φ_2 be a pair of complementary Young functions. Then $\varphi_1 \in \Phi_{1i}^c$ if and only if $\varphi_2 \in \Phi_{2i}^c$ (i = 1, 2, 3, 4), and moreover, the sets $\Psi_{1i}^{\varphi}(N)$ and $\Psi_{2i}^{\varphi}(N)$ are mutually related in such a way that

$$(\Psi_{1i}^{\varphi_1}(N))^* = \Psi_{2i}^{\varphi_2}(N)$$
 and $(\Psi_{2i}^{\varphi_2}(N))^* = \Psi_{1i}^{\varphi_1}(N)$.

We shall need the following

Corollary 3.5. Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4). Then

$$E^{\varphi^*} = \bigcup \{L^{\psi^*}: \ \psi \in \Psi_{1i}^{\varphi}(N)\}.$$

Proof. Since $\varphi \in \Phi_{2i}^c$ and $(\Psi_{1i}^{\varphi}(N))^* = \Psi_{2i}^{\varphi^*}(N)$ (see Theorem 3.4) by Theorem 3.3 we get

$$\begin{split} \bigcup \{L^{\psi^*}: \ \psi \in \Psi_{1i}^{\varphi}(N)\} &= \bigcup \{L^{\psi}: \ \psi \in (\Psi_{1i}^{\varphi}(N))^*\} \\ &= \bigcup \{L^{\psi}: \ \psi \in \Psi_{2i}^{\varphi^*}(N)\} = E^{\varphi^*}. \end{split}$$

We are now ready to define our projective topology on L^{φ} .

Definition 3.1. Let $\varphi \in \Phi_{1i}$ (i = 1, 2). By \mathcal{J}_P^{φ} we will denote the projective topology on L^{φ} with respect to the family $\{(E^{\psi}, \mathcal{J}_{\psi|E^{\psi}}): \psi \in \Psi_{1i}^{\varphi}\}$, i.e., \mathcal{J}_P^{φ} is defined to be the coarsest of all linear topologies ξ on L^{φ} for which $\mathcal{J}_{\psi|L^{\varphi}} \subset \xi$ holds for every $\psi \in \Psi_{1i}^{\varphi}$. Thus

$$\mathcal{J}_P^\varphi = \sup \{\mathcal{J}_{\psi|L^\varphi}: \ \psi \in \Psi_{1i}^\varphi\}.$$

For φ being a φ -function the topology \mathcal{J}_P^{φ} has been examined in [14], [15], [16]. It is easy to verify that all properties of \mathcal{J}_P^{φ} which are obtained in [14], [15], [16] for φ being a φ -function remain valid for $\varphi \in \Phi_{11}$. In this section we extend results from [14], [15], [16] to the case of φ belonging to Φ_1 .

From the definition of $\mathcal{J}_{P}^{\varphi}$ we have

Theorem 3.6. Let $\varphi \in \Phi_1$. Then $\mathcal{J}_{\mu|L^{\varphi}} \subset \mathcal{J}_{P}^{\varphi} \subset \mathcal{J}_{\varphi}$.

Theorem 3.7. Let $\varphi \in \Phi_1$ and let μ be an infinite atomless measure. Then there exists a sequence (x_n) in L^{φ} such that $x_n \to 0$ for \mathcal{J}_P^{φ} and $m_{\varphi}(x_n) = 1$ for $n \in \mathcal{N}$. Hence the strict inclusion $\mathcal{J}_P \subsetneq \mathcal{J}_{\varphi}$ holds.

Proof. For $\varphi \in \Phi_{11}$ this fact is proved in [13, Theorem 2.5]. Now let $\varphi \in \Phi_{12}$, i.e., $\varphi(u) < \infty$ for $u \le a$ and $\varphi(u) = \infty$ for u > a. Let (u_n) be a sequence of positive numbers such that $u_n \downarrow 0$ and $u_1 < a$. Let (Ω_n) be a sequence of measurable subsets of Ω such that $\mu(\Omega_n) = 1/\varphi(u_n)$. Define

$$x_n(t) = \begin{cases} u_n & \text{for } t \in \Omega_n \\ 0 & \text{for } t \notin \Omega_n \end{cases}$$

We shall show that $x_n \to 0$ for \mathcal{J}_P^{φ} , i.e., $||x_n||_{\psi} \to 0$ for each $\psi \in \Psi_{12}^{\varphi}$. Indeed, let $\psi \overset{s}{\prec} \varphi$ and let $\varepsilon > 0$ be given. Then there exists $u_0 > 0$ such that $\psi(u/\varepsilon) \leq \varepsilon \varphi(u)$ for $u \leq u_0$. Let $n_0 \in \mathcal{N}$ be such that $u_n \leq u_0$ for $n \geq n_0$. Then for $n \geq n_0$ we have $m_{\psi}(x_n/\varepsilon) = \psi(u_n/\varepsilon)/\varphi(u_n) \leq \varepsilon$ i.e., $||x_n||_{\psi} \leq \varepsilon$. On the other hand, $m_{\varphi}(x_n) = \varphi(u_n)/\varphi(u_n) = 1$.

Arguing as in the proof of [13, Theorem 1.2] we get

Theorem 3.8. Let $\varphi \in \Phi_{1i}$ (i = 1, 2). Then the topology \mathcal{J}_P^{φ} has a base of neighbourhoods of zero consisting of all sets of the form:

$$B_{\psi}(r) \cap L^{\varphi}$$

where $\psi \in \Psi_{1i}^{\varphi}$ and r > 0.

Repeating the arguments of the proof of [13, Theorem 5.1] and using the equalities from Theorem 3.1 we get

Theorem 3.9. Let $\phi \in \Phi_1$. Then the space $(L^{\varphi}, \mathcal{J}_P^{\varphi})$ is complete.

Since the space $(L^{\varphi}, \mathcal{J}_{\varphi})$ is complete, from Theorems 3.6 and 3.7, in view of the Open Mapping Theorem it follows

Theorem 3.10. Let $\varphi \in \Phi_1$ and let μ be an infinite atomless measure. Then te space $(L^{\varphi}, \mathcal{J}_P^{\varphi})$ is not metrizable.

To the end of this section we will assume that $\varphi \in \Phi_1^c$. We start with the following lemma.

Lemma 3.11. Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4) and let ψ be a φ -function such that $\psi \overset{a}{\prec} \varphi$ if i = 1 (resp. $\psi \overset{s}{\prec} \varphi$ if i = 2, $\psi \overset{a}{\prec} \varphi$ if i = 3, $\psi \overset{s}{\prec} \varphi$ if i = 4). Then there exists an N-function ψ_0 such that $\psi(u) \leq \psi_0(2u)$ for $u \geq 0$ and $\psi_0 \overset{a}{\prec} \varphi$ if i = 1 (resp. $\psi_0 \overset{s}{\prec} \varphi$ if i = 2, $\psi_0 \overset{l}{\prec} \varphi$ if i = 3).

Proof. Let ψ_1 be an arbitrary N-function such that $\psi_1 \stackrel{a}{\prec} \varphi$ if i=1 (resp. $\psi_1 \stackrel{s}{\prec} \varphi$ if i=2, $\psi_1 \stackrel{l}{\prec} \varphi$ if i=3, $\psi_1 \stackrel{s}{\prec} \varphi$ if i=4). Let $\psi_2 = \psi \vee \psi_1$. Next, let us put p(0) = 0 and $p(s) = \sup_{0 < t \le s} (\psi_2(t)/t)$ for s>0. Let

$$\psi_0(u) = \int_0^u p(s) \ ds \text{ for } u \ge 0.$$

It is seen that ψ_0 is an N-function. Arguing as in he proof of [13, Lemma 1.4] we can verify that ψ_0 satisfies the desired properties.

Theorem 3.12. Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4). Then the topology \mathcal{J}_P^{φ} is generated by the family of B-norms $\{|||\cdot|||_{\psi|L^{\varphi}}: \psi \in \Psi_{1i}^{\varphi}(N)\}$.

Proof. For example, let $\varphi \in \Phi_{13}^c$. Then $\varphi \in \Phi_{11}$. Given $\psi \in \Psi_{11}^{\varphi}$ and r > 0, in view of Lemma 3.11 there exists $\psi_0 \in \Psi_{13}^{\varphi}(N)$ and such that $\psi(u) \leq \psi_0(2u)$ for $u \geq 0$. Hence

$$||x||_{\psi} \le ||2x||_{\psi_0} \text{ for all } x \in L^{\psi_0}.$$
 (1)

On the other hand, since the F-norms $||\cdot||_{\psi_0}$ and $|||\cdot|||_{\psi_0}$ are equivalent on L^{ψ_0} , there exists $r_1 > 0$ such that

$$B_{(\psi_0)}(r_1) \subset B_{\psi_0}(r). \tag{2}$$

We shall show that $B_{(\psi_0)}(r_1/2) \cap L^{\varphi} \subset B_{\psi}(r)$. Indeed, let $x \in B_{(\psi_0)}(r_1/2) \cap L^{\varphi}$. Then $|||2x|||_{\psi_0} \leq r_1$, hence by (2) we get $||2x||_{\psi_0} \leq r$ and next, by (1) we see that $||x||_{\psi} \leq r$.

For i=1,2,4 the proof is similar.

Now we are ready to establish the general form of \mathcal{J}_P^{φ} -continuous linear functionals on L^{φ} .

Theorem 3.13. Let $\varphi \in \Phi_1^c$ and let μ be a σ -finite measure. Then for a linear functional f on L^{φ} the following statements are equivalent:

(i) f is continuous for $\mathcal{J}_{P}^{\varphi}$.

(ii) There exists a unique $y \in E^{\varphi^*}$ such that

$$f(x) = f_y(x) = \int_{\Omega} x(t)y(t) d\mu$$
 for $x \in L^{\varphi}$.

Proof. $(i)\Rightarrow (ii)$. Let $\varphi\in\Phi^c_{1i}$ (i=1,2,3,4). In view of Theorem 3.12 there exist $\psi\in\Psi^\varphi_{1i}(N)$ and r>0 such that f is bounded on $B_{(\psi)}(r)\cap L^\varphi$. This means that f is continuous on the linear subspace $(L^\varphi,\mathcal{J}_{\psi|L^\varphi})$ of the normed space $(E^\psi,\mathcal{J}_{\psi|E^\psi})$. Hence, by the Hahn-Banach theorem there exists a $\mathcal{J}_{\psi|E^\psi}$ -continuous linear functional \bar{f} on E^ψ such that $\bar{f}(x)=f(x)$ for $x\in L^\varphi$. According to [11, p. 56] there exists $y\in L^{\psi^*}\subset E^{\varphi^*}$ such that

$$\bar{f}(x) = \int_{\Omega} x(t)y(t) d\mu$$
 for $x \in E^{\psi}$.

Hence

$$f(x) = f_y(x) = \int_{\Omega} x(t)y(t) d\mu$$
 for $x \in L^{\varphi}$. (1)

Now assume that there exists another $y' \in E^{\varphi^*}$ such that

$$f(x) = f_{y'}(x) = \int_{\Omega} x(t)y'(t) \ d\mu \text{ for } x \in L^{\varphi}.$$
 (2)

Then, for example, there exists a measurable set $A \subset \{t \in \Omega : y'(t) > y(t)\}$ such that $0 < \mu(A) < \infty$. Hence by (1) and (2) we get

$$\int_{\Omega} \chi_A(t) (y'(t) - y(t)) d\mu = \int_{A} (y'(t) - y(t)) d\mu = 0.$$

This contradiction establishes that there exists a unique $y \in E^{\varphi^*}$ such that (1) holds.

 $(ii) \Rightarrow (i)$ Let $\varphi \in \Phi^c_{1i}$ (i=1,2,3,4). According to Corollary 3.5 there exists $\psi \in \Psi^{\varphi}_{1i}(N)$ such that $y \in L^{\psi^*}$. Then $L^{\varphi} \subset E^{\psi} \subset L^{\psi}$ and using the Holder's inequality we get that $|f_y(x)| \leq ||y||^0_{u^*}||x||_{\psi}$ for

 $x \in L^{\varphi}$ (here $||\cdot||_{\psi^*}^0$ denotes the Orlicz norm on L^{ψ^*}). This means that f_y is $\mathcal{J}_{\psi|L^{\varphi}}$ -continuous, so f_y is \mathcal{J}_P^{φ} -continuous, because $\mathcal{J}_{\psi|L^{\varphi}} \subset \mathcal{J}_P^{\varphi}$.

4. THE IDENTITY OF THE TOPOLOGIES \mathcal{J}_I^{φ} AND \mathcal{J}_P^{φ} ON L^{φ}

In this section we shall prove that the topologies \mathcal{J}_I^{φ} and \mathcal{J}_P^{φ} coincide on L^{φ} . We start with the following lemma.

Lemma 4.1. Let $\varphi \in \Phi_{12}$ and ψ be a φ -function. Then the following statements hold:

(i) For every r > 0 and $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\sup \{||x_A||_{\psi}: x \in B_{\varphi}(r)\} < \varepsilon \quad \text{for } A \in \Sigma, \ \mu(A) < \delta.$$

(ii) If $\psi \stackrel{s}{\prec} \varphi$, then for every r > 0

$$\mathcal{J}_{\mu|B_{\omega}(r)} = \mathcal{J}_{\psi|B_{\omega}(r)}.$$

Proof. (i) Assume that $\varphi(u) < \infty$ for $0 \le u \le a$ and $\varphi(u) = \infty$ for u > a, where a > 0. Given $x \in B_{\varphi}(r)$ we have $\int_{\Omega} \varphi(|x(t)|/r) \ d\mu \le r$, so $|x(t)|/r \le a$ a.e. on Ω . Given $\varepsilon > 0$ let $\delta = \varepsilon/\psi(ar/\varepsilon)$. Then for $A \in \Sigma$ with $\mu(A) < \delta$

$$\int_{\Omega} \psi(|x_A(t)|/\varepsilon) \ d\mu \le \psi(ar/\varepsilon)\mu(A) \le \varepsilon$$

i.e., $||x_A||_{\psi} \leq \varepsilon$.

(ii) Since the inclusion $\mathcal{J}_{\mu|L^{\varphi}} \subset \mathcal{J}_{\psi|L^{\varphi}}$ holds it is enough to show that $\mathcal{J}_{\psi|B_{\varphi}(r)} \subset \mathcal{J}_{\mu|B_{\varphi}(r)}$ holds for every r > 0. To this end we shall show that for any $x \in B_{\varphi}(r)$ and $\xi > 0$ there exists $\eta_0 > 0$ such that

$$B_{\mu}(x,\eta_0)\cap B_{arphi}(r)\subset B_{\psi}(x,\xi)$$

where for $\eta > 0$

$$B_{\mu}(x,\eta) = \{ y \in L^{\varphi_0} : ||y - x||_{\mu} \le \eta \}$$

= $\{ y \in L^{\varphi_0} : \mu(\{t \in \Omega : |y(t) - x(t)| > \eta \}) \le \eta \}$

and

$$B_{\psi}(x,\eta) = \{y \in L^{\psi}: \ ||y - x|_{::\psi} \leq \eta\}.$$

Indeed, let $x \in B_{\varphi}(r)$ and $\xi > 0$ be given. For $\eta > 0$ and $y \in B_{\varphi}(r)$ let put

$$E(\eta, y) = \{t \in \Omega : |y(t) - x(t)| > \eta\}, G(\eta, y) = \Omega \setminus E(\eta, y).$$

It is seen that

$$m_{\varphi}((y-x)/2r) \le 2r. \tag{1}$$

Since $\psi \stackrel{s}{\prec} \varphi$, there exists $u_0 > 0$ such that

$$\psi(\frac{2u}{\xi}) \le \frac{\xi}{4r}\varphi(\frac{u}{2r}) \quad \text{for } 0 \le u \le u_0.$$
 (2)

Moreover, in view of (i) there exists $\delta > 0$ such that

$$||(y-x)_A||_{\psi} \le \frac{1}{2}\xi$$
 for $A \in \Sigma$ with $\mu(A) < \delta$. (3)

Now let $\eta_0 = min(u_0, \delta)$ and let $y \in B_{\mu}(x, \eta_0) \cap B_{\varphi}(r)$. Then $\mu(E(\eta_0, y)) \leq \eta_0 \leq \delta$, and hence from (3) we get

$$||(y-x)_{E(\eta_0,y)}||_{\psi} \le \frac{1}{2}\xi.$$
 (4)

On the other hand, since $\eta_0 \leq u_0$, from (2) and (1) we get

$$\begin{split} m_{\psi} \left(\frac{2}{\xi} (y-x)_{G(\eta_0,y)} \right) &= \int_{G(\eta_0,y)} \psi \bigg(\frac{2|y(t)-x(t)|}{\xi} \bigg) \ d\mu \\ &\leq \frac{\xi}{4r} \int_{\Omega} \varphi \bigg(\frac{|y(t)-x(t)|}{2r} \bigg) \ d\mu = \frac{\xi}{2}. \end{split}$$

Hence

$$||(y-x)_{G(\eta_0,y)}||_{\psi} \leq \frac{\xi}{2}.$$
 (5)

Thus from (1), (4) and (5) we get

$$||y-x||_{\psi} \le ||(y-x)_{E(\eta_0,y)}||_{\psi} + ||(y-x)_{G(\eta_0,y)}||_{\psi} \le \xi$$

and this means that $y \in B_{\psi}(x,\xi)$.

As an application of Lemma 4.1 we get

Corollary 4.2. Let $\varphi \in \Phi_1$. Then for every r > 0

$$\mathcal{J}_{P|B_{\omega}(r)}^{\varphi} = \mathcal{J}_{\mu|B_{\varphi}(r)}.$$

Proof. This equality is proved in [14, Theorem 1.4] for φ being a φ -function, but the proof can be applied for $\varphi \in \Phi_{11}$. For $\varphi \in \Phi_{12}$ our equality follows Lemma 4.1, because

$$\mathcal{J}_{P|B_{\varphi}(r)}^{\varphi} = \sup\{\mathcal{J}_{\psi|B_{\varphi}(r)}: \ \psi \in \Psi_{12}^{\varphi}\} = \mathcal{J}_{\mu|B_{\varphi}(r)}.$$

In view of Corollary 4.2 and (2.2) we have: $\mathcal{J}_P^{\varphi} \subset \mathcal{J}_I^{\varphi}$. Repeating the arguments of the proof of [14, Theorem 2.2] we get

Theorem 4.3. Let $\varphi \in \Phi_1$. If a sequence (x_n) in L^{φ} is modular convergent to $x \in L^{\varphi}$ (i.e., $m_{\varphi}(\lambda(x_n - x)) \to 0$ for some $\lambda > 0$) then $x_n \to 0$ for $\mathcal{J}_{\varphi}^{\varphi}$

It is well known that the set of all simple integrable functions \Im is dense in L^{φ} in the sense of modular convergene. Therefore, in view of the previous theorem and the inclusion $\mathcal{J}_{P}^{\varphi} \subset \mathcal{J}_{I}^{\varphi}$ we get:

Theorem 4.4. Let $\varphi \in \Phi_1$. The set of all simple integrable functions \Im is dense in L^{φ} with respect to \mathcal{J}_P^{φ} and \mathcal{J}_I^{φ} .

Now we are in position to prove our main theorem.

Theorem 4.5. Let $\varphi \in \Phi_1$. Then the equality

$$\mathcal{J}_{I}^{\varphi} = \mathcal{J}_{P}^{\varphi}$$

holds, i.e., for $\varphi \in \Phi_{1i}$ (i = 1, 2) the generalized mixed topology \mathcal{J}_I^{φ} is generated by the family $\{||\cdot||_{\psi \mid L^{\varphi}} : \psi \in \Psi_{1i}^{\varphi}\}.$

Proof. For $\varphi \in \Phi_{11}$ this equality is proved in [14, Theorem 2.4].

Next let $\varphi \in \Phi_{12}$. It is enough to show that the inclusion $\mathcal{J}_I^{\varphi} \subset \mathcal{J}_P^{\varphi}$ holds. Since the spaces $(L^{\varphi}, \mathcal{J}_P^{\varphi})$ and $(L^{\varphi}, \mathcal{J}_I^{\varphi})$ are complete (see Theorems 2.1 and 3.9), in view of Theorem 4.4 and [4, Corollary of Lemma 4, p. 34] if suffices to show that

$$\mathcal{J}_{I|\Im}^{\varphi}\subset\mathcal{J}_{P|\Im}^{\varphi}.$$

To his end, in view of Definition 2.1, given a sequence of positive numbers $(\varepsilon_n: n \geq 0)$ we shall find $\psi_0 \in \Psi_{12}^{\varphi}$ (i.e., $\psi_0 \stackrel{s}{\prec} \varphi$) and $r_0 > 0$ such that

$$B_{\psi_0}(r_0) \cap \Im \subset \bigcup_{N=0}^{\infty} \left(\sum_{n=0}^{N} (B_{\varphi}(2^n) \cap B_{\mu}(\varepsilon_n)) \right). \tag{1}$$

Without loss of generality we can assume that $\varepsilon_n \downarrow 0$, $\varepsilon_0 < 1$ and $\varepsilon_0 \varphi(1) < 1$. Moreover, for the reasons of convenience we can assume that $\varphi(u) < \infty$ for $u \le 1$ and $\varphi(u) = \infty$ for u > 1.

Let us choose subsequence (ε_{k_n}) of (ε_n) in such a way that:

(a)
$$k_0 = 0$$
.

(b) k_1 is the smallest natural number such that

$$\varphi(\varepsilon_{k_1})<\frac{1}{\varepsilon_{k_1}}.$$

(c) Given k_n $(n \ge 1)$ we take $k_{n+1} > k_n$ such that

$$\varphi(\varepsilon_{k_n})/2>\varphi(\varepsilon_{k_{n+1}}) \quad \text{and} \qquad \varepsilon_{k_n}<\varepsilon_{n+1}/2.$$

Let

$$N(t) = \sup\{n \in \mathcal{N} : \varepsilon_{k_n} \ge t\} \text{ for } t \in \varepsilon_{k_1}.$$

We shall now define a φ -function ψ_0 such that $\psi_0 \stackrel{*}{\prec} \varphi$ and

$$\psi_0(u) \ge \frac{1}{N(u)} \varphi\left(\frac{u}{N(u)}\right) \text{ for } 0 \le u \le \varepsilon_{k_2},$$
(2)

$$\psi_0(n) \ge \frac{1}{\varepsilon_{n+1}} \quad \text{for } n \ge 1 \ .$$
 (3)

Let us denote by:

$$A_n' = \{t > 0 : \ \varepsilon_{k_{n+1}} < t \le \varepsilon_{k_n} \} \ , \ n = 1, 2, \dots \ ,$$

$$A = \{t > 0 : \varepsilon_{k_1} < t < 1\},\,$$

$$A_n'' = \{t > 0: n \le t < n+1\}, n = 1, 2, \dots,$$

and

$$B'_{n} = \{s > 0 : \varphi(\varepsilon_{k_{n+1}}) < s \le \varphi(\varepsilon_{k_{n}})\}, n = 1, 2, \dots,$$

$$B = \{s > 0 : \varphi(\varepsilon_{k_1}) < s < \varphi(1)/2\},$$

$$B_n'' = \{s > 0 : \varphi(1) \ n/2 \le s < \varphi(1)(n+1)/2\}, \ n = 1, 2, \dots$$

Let us put

$$p(t) = \begin{cases} 0 & \text{for } t = 0 \ , \\ \\ \frac{2}{n-1} & \text{for } t \in A'_n \ , \ n \ge 2 \ , \\ \\ 2 & \text{for } t \in A'_1 \cup A \cup A''_1 \ , \\ \\ n & \text{for } t \in A''_n \ , \ n \ge 2 \ , \end{cases}$$

and

$$q(s) = \begin{cases} 0 & \text{for } s = 0 \ , \\ \\ \frac{2}{n-1} & \text{for } s \in B'_n \ , \ n \ge 3 \\ \\ 1 & \text{for } s \in B'_2 \cup B'_1 \cup B \ , \\ \\ \frac{2}{\varphi(1)\varepsilon_{n+1}} & \text{for } s \in B''_n \ , \ n \ge 1 \ . \end{cases}$$

Next, define for $u \geq 0$ and $v \geq 0$

$$\xi(u) = \int_0^u p(t) dt$$
 and $\eta(v) = \int_0^v q(s) ds$.

Let us put

$$\varphi_{o}(u) = \begin{cases} \varphi(u) & \text{for } u \leq 1 \\ \varphi(1)u & \text{for } u > 1 \end{cases}$$

At last let

$$\psi_0(u) = \eta(\varphi_{\scriptscriptstyle 0}(\xi(u))) = \int_0^{\varphi_{\scriptscriptstyle 0}(\xi(u))} q(s) \ ds \quad ext{for } u \geq 0 \ .$$

Similarly as in the proof of [14, Theorem 2.4] we can show that $\psi_0 \stackrel{s}{\prec} \varphi$ and that the conditions (2) and (3) hold.

Now let us put

$$r_0 = min(\frac{1}{2}, d_0 \, \varepsilon_0 \, \varphi(\varepsilon_0)) \tag{4}$$

Where

$$\frac{1}{d_0} = \sup \left\{ \frac{\varphi(u)}{\psi_0(u)} : \ \varepsilon_{k_2} < u \le 1 \right\}.$$

We shall now show that the inclusion (1) holds. Indeed, let

$$x = \sum_{i \in I} \lambda_i \chi_{H_i} \in B_{\psi_0}(r_0)$$

where I is a finite subset of \mathcal{N} , and $\mu(H_i) < \infty$. Denote by

$$K = \{i \in I: \varepsilon_{k_2} < |\lambda_i| \le 1\},\,$$

$$L = \{i \in I: \ |\lambda_i| \le \varepsilon_{k_2}\}, \ J = \{i \in I: \ |\lambda_i| > 1\}.$$

Let

$$x_1 = \sum_{i \in K} \lambda_i \chi_{H_i} , x_2 = \sum_{i \in L} \lambda_i \chi_{H_i} , x_3 = \sum_{i \in J} \lambda_i \chi_{H_i} .$$

Since $x \in B_{\psi_0}(r_0)$ and $r_0 < 1$ we have

$$m_{\psi_0}(x) = \sum_{i \in I} \psi_0(|\lambda_i|) \mu(H_i) = c \leq r_0.$$

Write

$$c_i = \psi_0(|\lambda_i|)\mu(H_i) .$$

Arguing as in the proof of [14, Theorem 2.4] we get

$$x_1 \in B_{\varphi}(1) \cap B_{\mu}(\varepsilon_0) \tag{5}$$

and moreover, using (2) we can find $N_1 \in \mathcal{N}$ such that

$$x_2 \in \sum_{n=1}^{N_1} \left(B_{\varphi} \left(\frac{1}{2} \ 2^n \right) \cap B_{\mu} \left(\frac{1}{2} \ \varepsilon_n \right) \right). \tag{6}$$

Now we shall find $N_2 \in \mathcal{N}$ such that

$$x_3 \in \sum_{n=1}^{N_2} \left(B_{\varphi} \left(\frac{1}{2} \ 2^n \right) \cap B_{\mu} \left(\frac{1}{2} \ \varepsilon_n \right) \right). \tag{7}$$

Let

$$n_i = \sup\{n \in \mathcal{N} : n \le |\lambda_i|\} \text{ for } i \in J.$$

Then $n_i \geq 1$ and $n_i \leq |\lambda_i| < n_i + 1$. Let j_1, \ldots, J_{m_0} be the different numbers in the set $\{n_i : i \in J\}$ and let us assume that $j_1 < \ldots < j_{m_0}$. Write

$$J_1 = \{i \in J : n_i = j_l\}$$
 for $1 \le l \le m_0$.

Then

$$x_3 = \sum_{i \in J} \lambda_i \chi_{H_i} = \sum_{l=1}^{m_0} \left(\sum_{i \in J_l} \lambda_i \chi_{H_i} \right).$$

and let

$$y_l = \sum_{i \in J_l} \lambda_i \chi_{H_i} \text{ for } 1 \leq l \leq m_0.$$

Then $j_l \leq |\lambda_i| < j_l + 1$ for $i \in J_l$ and using (4) we get

$$m_{\varphi}(y_l/(j_l+1)) = \sum_{i \in J_l} \varphi(|\lambda_i|/(j_l+1))\mu(H_i)$$

$$\leq d_0^{-1} \sum_{i \in J_l} \psi_0(|\lambda_i|/(j_{l+1})) \mu(H_i) \leq d_0^{-1} r_0 < j_l + 1.$$

Thus

$$y_l \in B_{\varphi}(j_l+1) \subset B_{\varphi}\left(\frac{1}{2} \ 2^{j_l+1}\right). \tag{8}$$

Let

$$E_{y_l}(\varepsilon) = \{t \in \Omega : |y_l(t)| > \varepsilon\} \text{ for any } \varepsilon > 0.$$

Then

$$E_{y_l}\left(\frac{1}{2}\ \varepsilon_{j_l+1}\right) = \bigcup_{i \in J_l} H_i.$$

Hence, using (3) we get

$$\mu(E_{y_l}(\frac{1}{2}\varepsilon_{j_l+1})) \leq \sum_{i \in J_l} \mu(H_i) \leq \sum_{i \in J_l} c_i/\psi_0(|\lambda_i|)$$

$$\leq \sum_{i \in J_l} c_i / \psi_0(j_l) \leq \big(\sum_{i \in J_l} c_i\big) / \psi_0(j_l) \leq \frac{1}{2} \varepsilon_{j_l+1}$$

and this means that

$$y_l \in B_{\mu} \left(\frac{1}{2} \, \varepsilon_{j_l+1} \right). \tag{9}$$

Thus from (8) and (9) we have

$$y_l \in B_{\varphi}\left(\frac{1}{2} \ 2^{j_l+1}\right) \cap B_{\mu}\left(\frac{1}{2} \ \varepsilon_{j_l+1}\right).$$

Hence for $N_2 = j_{m_0} + 1$ we obtain

$$x_{3} \in \sum_{l=1}^{m_{0}} \left(B_{\varphi} \left(\frac{1}{2} 2^{j_{l}+1} \right) \cap B_{\mu} \left(\frac{1}{2} \varepsilon_{j_{l}+1} \right) \right) \subset \sum_{n=1}^{N_{2}} \left(B_{\varphi} \left(\frac{1}{2} 2^{n} \right) \cap B_{\mu} \left(\frac{1}{2} \varepsilon_{n} \right) \right).$$

At last, using (5), (6) and (7), for $N_0 = max(N_1, N_2)$ we get

$$x = x_1 + x_2 + x_3 \in B_{\varphi}(1) \cap B_{\mu}(\varepsilon_0) + \sum_{n=1}^{N_0} \left(B_{\varphi}(2^n) \cap B_{\mu}(\varepsilon_n) \right)$$

$$\subset \bigcup_{N=0}^{\infty} \bigg(\sum_{n=0}^{N} \big(B_{\varphi}(2^{n}) \cap B_{\mu}(\varepsilon_{n}) \big) \bigg).$$

Thus the proof is completed.

5. A TOPOLOGICAL CHARACTERIZATION OF THE γ_{φ} -CONVERGENCE IN L^{φ}

In this section by applying of Theorem 4.5 we obtain a topological characterization of the γ_{φ} -convergence in L^{φ} .

Theorem 5.1. Let $\varphi \in \Phi_{1i}$ (i = 1, 2). Then for a sequence (x_n) in L^{φ} and $x \in L^{\varphi}$ the following statements are equivalent:

(i)
$$x_n \to x$$
 for \mathcal{J}_I^{φ} .

(ii)
$$||x_n - x||_{\psi} \to 0$$
 for every $\psi \in \Psi_{1i}^{\varphi}$.

(iii)
$$x_n \to x \ (\mu - \Omega)$$
 and $\sup_n ||x_n||_{\varphi} < \infty$.

Moreover, for $\varphi \in \Phi^c_{1i}$ (i=1,2,3,4) the above statements are equivalent to

(iv)
$$|||x_n - x|||_{\psi} \to 0$$
 for every $\psi \in \Psi_{1i}^{\varphi}(N)$.

Proof. $(i) \Leftrightarrow (ii) \Leftrightarrow (iii)$. It follows from Theorem 2.4. and Theorem 4.5.

 $(i) \Leftrightarrow (iv)$. It follows from Theorem 4.5 and Theorem 3.12.

Now we apply the above theorem to some classes of Orlicz spaces. Let

$$\chi_p(u) = u^p \text{ for } u \ge 0 \text{ and } \chi_\infty(u) = \left\{ egin{array}{ll} 0 & \text{for } & 0 \le u \le 1, \\ \infty & \text{for } & u > 1. \end{array}
ight.$$

Let $||\cdot||_p$ and $||\cdot||_{\infty}$ denote the usual norms in L^p $(p \ge 1)$ and L^{∞} respectively.

Examples

A. For $p \ge 1$ let

$$\varphi(u) = \begin{cases} u^p & \text{for } 0 \le u \le 1, \\ \infty & \text{for } u > 1. \end{cases}$$

Hence $\varphi(u) = \chi_p(u) \vee \chi_\infty(u)$ for $u \ge 0$, so $L^\varphi = L^p \cap L^\infty$ by Lemma 1.1. We see that $\varphi \in \Phi_{14}^c$ for p = 1 and $\varphi \in \Phi_{12}^c$ for p > 1. Hence by applying of Theorem 5.1 and Lemma 1.1 we get the following two theorems:

Theorem 5.2. For a sequence (x_n) in $L^1 \cap L^{\infty}$ and $x \in L^1 \cap L^{\infty}$ the following statements are equivalent:

(i)
$$x_n \to x \ (\mu - \Omega)$$
 and $\sup_n ||x_n||_1 < \infty$, $\sup_n ||x_n||_{\infty} < \infty$.

(ii)
$$|||x_n - x|||_{\psi} \to 0$$
 for every N – function ψ .

Theorem 5.3. Let p > 1. For a sequence (x_n) in $L^p \cap L^\infty$ and $x \in L^p \cap L^\infty$ the following statements are equivalent:

(i)
$$x_n \to x \ (\mu - \Omega)$$
 and $\sup_n ||x_n||_p < \infty$, $\sup_n ||x_n||_\infty < \infty$.

(ii) $|||x_n - x|||_{\psi} \to 0$ for every N-function ψ such that $\psi(u)/u^p \to 0$ as $u \to 0$.

B. For p > 1 let

$$\varphi(u) = \left\{ \begin{array}{ll} u & \text{for} & 0 \le u \le 1, \\ u^p & \text{for} & u > 1. \end{array} \right.$$

Then $\varphi(u) = \chi_1(u) \vee \chi_p(u)$ for $u \geq 0$, so $L^{\varphi} = L^1 \cap L^p$. Then $\varphi \in \Phi_{13}^c$ and using Theorem 5.1 and Lemma 1.1 we get:

Theorem 5.4. Let p > 1. For a sequence (x_n) in $L^1 \cap L^p$ and $x \in L^1 \cap L^p$ the following statements are equivalent:

(i)
$$x_n \to x \ (\mu - \Omega)$$
 and $\sup_n ||x_n||_1 < \infty$, $\sup_n ||x_n||_p < \infty$.

(ii) $|||x_n-x|||_{\psi} \to 0$ for every N-function ψ such that $\psi(u)/u^p \to 0$ as $u \to \infty$.

References

[1] Alexiewicz, A., On two norm convergence, Studia Math., 14 (1954), 49-56.

- [2] Alexiewicz, A., Semadeni, Z. A generalization of two-norm spaces, Linear functionals, Bull. Acad. Polon. Sci., 6 (1958), 135-139.
- [3] Cooper, J.B., Saks spaces and applications to functional analysis, North-Holland, Math. Studies 139, 1987.
- [4] Cristescu, R., Topological vector spaces, Leyden 1977.
- [5] Davis, H.W., Murray, F.J. and Weber, J.K., Families of L_p -spaces with inductive and projective topologies, Pacific J. Math., 34 (1970), 619-638.
- [6] Davis, H.W., Murray, F.J. and Weber, J.K., Inductive and projective limits of L_p -spaces, Portugal. Math., 38 (1972), 21-29.
- [7] Garling, D.J.H., A generalized form of inductive-limit topology for vector spaces, Proc. London Math. Soc., (3) 14 (1964). 1-28.
- [8] Hudzik, H., Intersections and algebraic sums of Musielak-Orlicz spaces, Portugal. Math., 40 (1985), 287-296.
- [9] Krasnosel'skii, M.A. and Rutickii, Ya., Convex functions and Orlicz spaces, P. Noordhoff, Groningen 1961.
- [10] Lesniewicz, R., On two equalities for Orlicz spaces, Bull. Acad. Polon. Sci., 27 (1979), 557-560.
- [11] Luxemburg, W.A., Banach function spaces, Delft 1955.
- [12] Matuszewska, W., Orlicz, W., A note on the theory of s-normed spaces of φ -integrable functions, Studia Math., 21 (1961), 107-115.
- [13] Nowak, M., On two linear topologies on Orlicz spaces $L^{*\varphi}$, I, Comment. Math., 23 (1983), 71-84.
- [14] Nowak, M., Inductive limit of a sequence of balanced topological spaces in Orlicz spaces $L_E^{*\varphi}(\mu)$, Comment. Math., 25 (1985), 295-313.
- [15] Nowak, M., On some linear topology in Orlicz spaces $L_E^{*\varphi}(\mu), I$, Comment. Math., 26 (1986), 51-68.
- [16] Nowak, M., On some linear topology in Orlicz spaces $L_E^{*\varphi}(\mu)$, II, Comment. Math., 26 (1986), 69-74.
- [17] Nowak, M., Some equalities among Orlicz spaces I, Comment. Math., 29 (1990), 255-275.

- [18] Nowak, M., Some equalities among Orlicz spaces II, Bull. Acad. Polon. Sci., 34 (1986), 675-687.
- [19] Orlicz, W., Linear operations in Saks spaces I, Studia Math., 11, (1950), 237-272.
- [20] Orlicz, W., A note on modular spaces I, Bull. Acad. Polon. Sci., 9 (1961), 157-162.
- [21] Persson, A., A generalization of two-norm spaces, Ark. Math., 5 (1963), 27-36.
- [22] Turpin, P., Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math., 131 (1976).
- [23] Wiweger, A. A topologization of Saks spaces, Bull. Acad. Polon. Sci., 5 (1957), 773-777.
- [24] Wiweger, A. Linear spaces with mixed topology, Studia Math., 20 (1961), 47-68.
- [25] Wiweger, A. Some applications of the mixed topology to the theory of two-norm spaces, Bull. Acad. Polon. Sci., 9 (1961), 571-574.

Institute of Mathematics, Adam Mickiewicz University Matejki 48/49, 60-769 Poznan, Poland. Recibido: 9 de octubre de 1992