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On The Locally Uniformly Weak Star
Rotundity of Orlicz Spaces -
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ABSTRACT. In the paper, a sufficient and necessary condition is given for
the locally uniformly weak star rotundity of Orlicz spaces with Orlicz norms.

A Banach space X is said to be locally uniformly rotund (LU R),
locally weakly uniformly rotund (LWU R), locally uniformly weak star
rotund (LW*U R) provided that ||z,|| =1 (n = 0,1,2,...), ||zn+20|| —
2 imply ||zn — zo|| = 0, Zn — o — 0, T — o %, 0, respectively.
X is said to be uniformly weak star rotund (W*UR) provided that
llzall = llynll = 1, l|2n + nll = 2 imply 2, — y» = 0. At a glance we
know that

LUR= LWUR = LW*'UR= R

W*UR = LW*UR

where 'R’ stands for the rotundity.
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In the sequel ((+, %, 1) denotes a finite non-atomic measurable space,
M and N denote a pair of complemented N-functions, p and ¢ denote
their right-hand derivatives, respectively. For a measurable function z(t)
we denote the modular of z by Ry(z) = [, M(x(t)) du. Lm(G,Z,p)
denotes an Orlicz space generated by M, that is

Lm(G,2,n) = {z(t): for some a > 0, Ry(az) < oo}

and endowed with the Orlicz norm

lell = sup [ alt)u(®) du = juf 21+ Rag(ke).

Ru(y)<1 JG

M € A, stands for that M which satisfies the condition A, for large
u, M € 57, stands for N € Ay, M € SC stands for that M which is
strictly convex on the whole axis i.e. for 0 < A < 1,u,v, u # v,

M(u+ (1= M) < AM(w) + (1 = \)M(v).

(cf [1] and [3]).

In Orlicz spaces, for Luxemburg norm, it was obtained in [2] that
LUR® LWUR & LW*UR & R& M € SCNA;; for the Orlicz norm,
it is more complicated, for instance, LUR & LWUR & M € A, NN
SC(cf[3]), W*UR & M € SCNUC(cfl4]) and R & M € SC(cf[5]).
But so far it has not been discussed for LW*U R. The goal of this paper
is to fill this gap, we will find a criterion for Orlicz space equipped with
the Orlicz norm to be LW*UR. For the sake of convenience, we first
establish several lemmas.

Lemma 1. For arbitrary 0 < A\, 6§, X < 1, there exists 0 < §' < §

such that for all u,v > 0 if M(Au + (1 — A)w) < (1 = 8§ (AM(u) + (1 -
A)M(v)), then

MVu+ (1= X)) < (1= 6)NM()+ (1= N)M(v))
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Proof. Without loos of generality, we assume that A’ > A. Take
[
& = min{l, %%1{_—)\/\%}6

Hence 0 < §' < 6 and

MNu+(1-Ny)= M [11__),\\’('\" +{1-A)v))+ /\1,::“]
< ll:lj\'M(/\u-lj(l - Aw) + /;I_;:\ M(u)
< TS = M) + (1= WM+ T3 M(w)

=NM(u) - 11%/'\)\/)\6M(u) +(1=-68)(1-=M)M(v)

- (1 - ’A‘,((ll—‘_’i\ga> NM () + (1= 8)(1 = N)M(v)
< (1= M) + (1= 61 = N)M(o)

=(1-6)AM(u) +(1-N)M(v)). =

Remark. Notice that for fixed A,6,8'(A) = min{l, %;1_—_)‘3-}5 is

continuous over the interval (0,1). We deduce that for any [a, 8] C (0,1),
in Lemma 1, there is a common ) such that for all ' € [a, ], and
u,v >0, u#v,

MNu+ (1= M) <1 -8)NM@)+ (1 - XN)M(>v)).

Lemma 2. For x € Ly, if for some k > 0, Rn(p(kz)) =
fe; N(p(kz(t))) du < 1 and for all A > 1, Rn(p(Mkz)) > 1, then

lell = (14 Ranlkz) ). (e/B3)
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Lemma 3. For z € Ly, there is k > 0 satisfying

lell = (14 Rarthn)). (ef13)

Lemma 4. If M € SC, ||z.|| = -,;1;-(1 + Rp(knzy))

(n=0,1,2,...) with bounded {kn}2o and ||z + zo|| = 2, then
(cf(3])

kn.’tn - koxo ﬁb 0.

Lemma 5. Under the same assumption as in Lemma 4, let y, €
LN, Rn(yn) < 1 with [ (za(t) 4+ 2o(t))yn(t) du — 2. Then for every

en C G,

Jm [ aza(Oa(t) = M(Enalt)) = Nm(®)] du = 0,

Jim [ Broza(n() - M(kozo(t) - Nun(®)] du = 0,

lim / (knzn(t) — kozo(t))yn(t) du =

7=+ 00

= lim / M(knzn(t)) — M(kozo(t)) du.
n—oo en
As n tends to oo, the above limits hold uniformly with respect to subsets
€n.
Proof. We have the following
1

1
Lo [ kuea(un(t) du < (RN(yn) 4 RM(k,,z,J)
n (€ n

1
< (14 Bu(kazn)) = |l2all = 1.
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Hence

[ [MOuzn@) + K a0 = a0 = 0

Since the integrand is nonnegative, we inmediately get the first and
the second identity. The third one is a simple consequence of the others.
]

Lemma 6. In Orlicz space Ly (G, E, 1) endowed with Orlicz norm,
the set

A= {a:(t) € Ly : Rn(p(kz)) =1 where ||z|| = %(1 + RM(Icz))}

is dense in L.

Proof. It is enough to show that for any z € Lps with Ry(p(kz)) >
1 or < 1 where ||z]| = %(1+ Rm(kz)), and for any £ > 0, there is
z' € A, such that ||z — z|| < € and Rn(p(kz')) = 1.

Let Rn(p(kz)) > 1.

Notice that for any € > 0, Rn(p((1 — €)kz) < 1. When Rn(p((1 -
e)kz)) = 1,set z'(t) = (1 —¢€)z(t). Then Ry(p(kz')) = 1. Now by
Theorem 10.5 in [1], we get that ||z|| = 1(1+ Ram(kz')),ie., 2’ € A.
Clearly ||z — z'|| < e.

When Rn(p((1 — €)kz)) < 1, since (G, X, ) is nonatomic, there is
G'CcG

Lw@m—amm»w+LwNmmm»w=l

Setting z'(t) = (1 —€)z(t)xc(t) + z(t)xa\a' (1), we get
Rn(p(kz')) = 1. Also by [1], ||z'|| = (1 + Rm(kz')). Clearly
llz — 2’|l <e.

The argument is analogous for the case Ry(p(kz)) < 1. =
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Theorem. Endowed with the Orlicz norm, Orlicz space
Ly(G, 2, ) is LW*UR if and only if

(i) M € 5C,

(1) M € 2,

(iii) for any € > 0, there exist §, a > 0 such that for u,v satisfying
€2 <eu<v<u, M(u)> ecup(u), and M (%£2) > (1 - §) MM@)

we have
p((1 —&)u).< ap((1 - 6)v).

Proof. Sufficiency. Suppose ||z,,|| = kl—n(1+RM(knzn)) =1l(n=
0,1,2,...) and ||z, + 2o|| — 2. By Lemma 6, assume Rn(p(knzn)) =
1 (n=1,2,...).

In view of M € V2, we know from [3] that {k,}32, is bounded.

Denote & = sup kn. In the following we shall show that z, = zo, i.e.,

n
any subsequence of {z,, },=1 has its subsequence w*-convergent to zo. So
we can assume that k, — k. On the other hand, by Lemma 4, it yields

knZn — koTo — 0. Therefore by Theorem 14.6 in [1], knzn — kozo By .

At first we claim that £k > ko. Indeed, for any n > 0, take
y € En,Rn(y) < 1 such that [ zo(t)y(t) du > |lzoll =9 = 1 -1
Since f(_.,. knz,y du — fG kozoy du, we get that for n large enough
f(.‘; knzny du > f(_.’. kozoy du —m > ko(l =) —n. So k « k., =
”knmn” 2> f(_‘,' knxny dll' > f(,v kOxOy dll' -n> kO(l - 77) -7

Now we only need to show that & = kg, so z,, — x¢ £ 0. Then by
Theorem 14.6 in [1], we get that z,, — Ey g ie., 2, — 29 2 0.

Take y, € En, Rn(yn) < 1 satisfying [(2n(t) + zo(t))yn(t) du —

2. Then [ zn(t)yn(t) du — 1, and [ 2o(t)yn(t) du — 1. Therefore we
have

k—k = lim /( (kna(t) = kozo(t))yn(t) dp (1)

Let € > 0 be arbitrary. By M € /2, there exists ¢ > 7/(¢) > 0 (cf[6,3])

such that for all |u| > ¢, and for all A, 1—_}_—; <A< %, it holds

M(Mu) < (1-7')AM(u) (2)
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Denote m = 1+ k. For p = L, by (iii), there exist §, a > 0

such that for u,v, 0 < 772 < nu < v < u, if M(u) > nup(w), and

P((1 = n)u) < ap((1 - 6)v) (3)

For such 6 and [e,8] = [Hl_k, l_’;fk] by the remark after Lemma 1,
it follows that there exists ' such that if M(52)<(1- 6)M3)“2"—M-§21,
and X' € [1+k,—5] then

M(Nu+ (1= Nw) < (1-8)NM@)+(1-N)M@).  (4)

Since [ |kozo(t)|p((1 — 6)kozo(t)) du < RM(kozo) + Rn(p((1 -
0)kozo)) < ko we can find Go C G such that #(G\Gy) is small enough
to get the following

L Thoma(@lp((1 ~ 8)kozo(t) du < =
G\Go a

/ M(koso(t)) dp < ¢ )
G\Go

and

knZn(t) — kozo(t) 2 0
uniformly over Gj.

For each n, we split G\G) into the five parts:
An ={t € G\Go : |knzn(t)| < |kozo(t)]}
By, = {t € G\Go\ A~ : maz(|knz.(t)|,|kozo(t)]) < €}

Ch={te G\Go\A,\B, : M(knzn(t)) < Ulkn“’n(t)lp(lknxn(t)l)}a
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D, = {t € G\Go\An\B,\Cy, : [kozo(t)| < ﬁ'knzn(t)l; or z,(t)zo(t) < 0;

or M(knmn(t) —2+- kozco(t)) <(1-96) M(knzn(t)) -24- M (kozo(t)) },

En = G\GO\An\Bn\Cﬂ\Dn
= {t € G\GO :zn(t)wo(t) 2> 0; ne < nlknmn(t)l < |k030(t)| < Ikna’n(t)l

M (kpz(t)) > nkalzn(t)|p(kalzn(t)]); and

M(knx,,(t) -2+ koa:o(t)) > (1= 6)M(k,,zn(t)) ; -M(koa:o(t))}.

In the following, one by one, we estimate the integrals of the integrand
(knxn - kaO)yn over GO’ A'm B‘na C'm D‘n, and En-

From (6), for n large enough

(onzn — Ko%0)7 du' < ellwallony )

Go

From the structure of A,,, by Lemma 5, it follows that for n large enough

(Enzn — kozo)yn dp < /A (M(knzn(t)) = M(kozo(t))) dut + € < &.
) (8)

An

From the structure of B,,,

l/B (knmn - kozo)yn dﬂ" < 25”ynll(N) < 2. (9)
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Since ||z,|| = 1, Rm(zy) < 1. From'RN(p(kna:n)) = 1, it yields

that for n large enough

/C"(kn:cn — koZo)yn dp < / (M(kna;n(t)) - M(ko:vo(t))) du+ ¢

‘n

< / M(knzn(t)) dp+ 2 < 77/ Iknzn(t)lp(knzn(t)) du + 2¢
Cn Chn

<ok ( [ Men®) du+ | Npllnza(®) ) + 26
< 2kn+ 2 < 2(1 + k)e.

When t € Dy, |kozo(t)|] < n|knzn(t)|, since t ¢ A, U B,. So
|knzn(t)] > €, and from (2) it fo]]ows

M (ke (2n(t) + o(t)) < M (Yetthak o, (1))

< (1-my) kko_ﬁ:T"M(kn"’n(t)) = (1-mn) "°—ch,’& rﬁ.qu M(knzn(t))

<A-7 %% kn+k0 M(knza(t))

< (1-n) [5385 M(knza(0)) + g2 M(Kozo(t))] (%)

When t € Dy, z,(t)zo(t) <0, since t ¢ A, U B,. While |z,(t)] >
|zo(2)],

M (fako "+k° (zn(t) + 2o(t))) < M (k - 2,(t))
<(A-7) 75 *n +k° M(knza(t))

< (1=7) [ M(knza(t) + g2 M(kozo(1))] (x+)

While |z,,(t)| < |zo(2)],
M (kn+/¢° (zn(t)'*'zO(t)) <M (k T ko zO(t))

< w2 M(kozo(t))
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< (1-54%) [ritm M(knza(8)+ 505 M(Kozo(1)))]- (+x+)

Taking 6" = min(§',7, :33), and applying (4), we have
0—2- “zn + 1'0”

v

& (1+ Rar(knz0)) + (1 + Rar(kozo))-
— et (14 Ru (32 (20 +20)))
= %:*é“ Jo [t M(knza(®)+ ghpgs M(kozo(t))~
~M (25 (2 + 20)(1))] dp
> fatho [ [ M(kuza(1) + g5 M(Kozo(t))-
-M (25 (2 + 20)(t))] dp
batle [, 8" [ M(kaza(t) + g M(kozo(t))] dp
> %” I, (M(Eazn(t)) + M(koso(£)) d.

Obviously, for n large enough

/ (knn — komo)yn du < / M(knan(t)) = M(kozo(2)) du + € < 2.
Dy D,

(11)
When t € E,,, then |nk,z,.(t)| < |kozo(t)| < [knza(t)|,
and M(knZa(t)) 2 nkn|za(t)|p(knlzn(t)]), and

M (kn:vn(t) ;— kozo(t)) > (1 _ 6) M(kn:vn(t)) -2|— M(ko:to(t)) '

Hence
P((1 = n)lkazn(t)]) < ap((1 - 8)|kozo(2)])-

Moreover, from Lemma 4 and condition (5) we get for n large enough
that
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fE,‘ (knzn — koTo)yn dp

=1n fE" knZnyn dp + fE” (1 - n)knZnyn du — fE" kozoyn du

IN.

nk+ [ M((L=n)knzn(t)) du+ [z N(ya(t)) du— [, M(kozo(t)) du

= Jg, N(yn(?)) du+¢

IN

nk + e+ [ (1= n)knla(8)lp((1 = n)ka|zn(t)]) dp

IN

nk+e+(1-n) 2 [, kolzo()lp((1 — 6)Ikozo(t)]) du

< pk+e+ ¥ = k42 < (2+ k).

na

Combining (7) - (12), and (1), we deduce that
0<k-—ko <0(€),

where 0(¢) — 0 as ¢ — 0.
Hence k = ko, which completes the proof of the sufficiency.

Necessity.

LW*UR = M € SC. Since LW*UR = R, it follows (i), by [5].
LW*UR = M € v7;. Indeed, if we suppose that it is not true, then there
exist u, /" 00, satisfying ﬁ‘ﬁ%"‘% > 2" (n = 1,2,...) (cf [6,3]). Choose
¢ >0, Go C G, with u(G\Go) > 0 and N(p(c))pGo = 1. Moreover,
choose G, C G\Go, with u,p(u, )uG, = 1. Hence N(p(u,))pGrn < 2%
Then take T,, C Gy, such that N(p(c))uT, + N(p(un))pGr = 1. Hence
uT,, — puGo. Now set

ko = cp(c)uGo; kn = cp(c)uTn + unp(un)pGrn. (n = 1,2,...)

Obviously, kn, — ko + 1. Define

2(®) = =X o(®) = - (OXn O+ uxe®): (0 = 1.2,..)
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Since Rn(p(kozo)) = Rn(p(knzy)) = 1, by Theorem 10.5 of [1], it
follows that

1
looll = = ep(c)uGo = 1;
0

1 ,
llzall = = (eP(JuTn + unp(un)uGn) = 1(n=1,2,...)

and

1 1 . 1
[|zn + zo|| > (k_ + k—o)CP(C)HTn + o (unp(un)pGrn — 2.

But on the other hand, we have

1 1 c Uy
Zo— Ty = (E - E) exr, (t) + E)‘XGO\T,. (t) - k—n'XG.. @)

Since u(Go\T,) — 0, uG, — 0, T, / Go, by Theorem 14.6 in [1], we

derive that 1 1
w.
Ty — Ty — (E - I_TI?J)CX% # 0.

This contradicts to the fact that Ly, is LW*U R, which show that M €

V2.
LW*UR = (iii). Otherwise, suppose there exist ¢ > 0, u,, v, /
oo such that €2 < cup, < vn < Up, M(uy) > eunp(uy),

un+vn) > (- _1_) M(un)+M(vn), .

M( 2 - 5 nd

P(1 = e)un) > 27p((1 = =)un).

In view of the continuity of M(u), we select ©,, 0 < ©, < 1 with
0, ./ 1and

Uy + envn) > (1 _ l) M(un) + M((")n’l)n).

M ( 5 ~ 5 (13)
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We first construct two sequences {wy}32,; and {7,}3, satisfying
el
o \ 1, Onv, < wy < (1 - g)um and p(Tn'wn) > 2"P(wn)- (14)

Since 1 < ¥= < -ls—, without loss of generality, if necessary we can pass to

a subsequence, we assume that lim 2= = b> 1. Denote
n—oco ®

- s om PA-$)bon) _
£ = sup{t’>0: Jim, = (0] = oo}

Obviously, 1 < £ < (1 - %)b In the following we discuss two cases.

— p(L=$bon) _
O e I gy S

For any A > 1,

p((1 = 3)bvn) _ p((1 - 3)bon) p(Afvn)
p(€vn) p(Avy) p(€vn)

Since on the right side of the identity the first quotient formula is

p(Aévn _

bounded, lim o) = - Passing to a subsequence if necessary, we

n—oo

assume that p((1+1))&v,) > 2"p(€vy,). Easily we know that for n large
enough, v, < €v, < (1-5)bv, < (1-§)un. Forw, = fvn, 7, = 141,
- condition (14) is satisfied. -

— p((1 = Fbvs)

For any ©,, < 1,

p((1— §)bwi) _ p((1—5)bvi) _ p(wi)
P(On€v;) p(év;) P(On&v;)
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T _p(Eui
Hence lim 5. %a
P(€v,) > 2"p(0,,€v,). Obviously ©,v, < Onlvy, < Ev, < (1 - £)bo, <
(1= £)un. If we take w, = ©On€vp,and 7, = el—“, then (14) is satisfied.

= o0o. Passing to a subsequence if necessary, we get

By (14), we can choose disjoint subsets G,, C G, G, N G,, =
@ (n # m) such that

N(p(wn))p,Gn =" (n = 1,2,..))

2n+1
For n large enough,

) . 1
N(p(un))uGrn > N(p(Tawn))uGa > 2" N(p(wn))uGn = 3

Pick out G,, C G, satisfying

N(p(un))uGn = % (n = 1,2,...)

Now set

ko = 1+ M(w)uGi,

=1

kn = 14 MwiuGi+ M(u)pGn  (n = 1,2,...)
i#n

By M € v7;, it yields that m“%(%; <d (u > up) (cf[6,3]). Then

Y M(wuGi < Y wip(wi)uGi < &Y Np(wi)uGs = 5,
i=1

i=1 =1

M(un)ﬂ(_:n < unp(un)llén < dN(p(un))p'én =

N R
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So {k,}2, is bounded. Passing to a subsequence if necessary, we
assume that k, — k. From

_ - = £
M(un),an > Eunp(un)llfGn > EN(p(un))/‘Gn = 5

we get that k — kg > £. Define

1 [ee]
zo(t) = E,Zw"XG‘(t);
i=1

zn(t) = %(Zwi)(c:.-(t)wLunxG“(t)) (n = 1,2,...)

i#£n
We have

[ Nha(®)) di = 30 NG+ Np(un))uC < 1.
- i£n
In addition, for any A > 1, take ig > n such that A > 7;;. Then

| NG Okza@) di = 3 NGOG + N (pOu) G
G i#En

> Y N(p(riw))pG: > > 2 N(p(wi))uG; = oo.

i:io ‘l=‘lo

By Lemma 2, it follows that
1 1 _
llonll = = (1 Rm(knon)) = 3= (143 M(wiuGi+M(up)uGy) =
Fn ko T2

= 1. (n = 1,2,...)

Similarly,
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1
llzoll = & (1+ Rm(kozo)) = — (1+ ZM(w,)uC ) = 1.
i=1
Since
[ w; teG  (1#n)
Tc-,ﬁ*i-—To wﬂ t E Gn\én
knko

T () + 20(1) =

kg ko
otk Wnt 5gE Un tEGH

. 0 ' otherwise

we derive that

knko
[ Vo o a0 d < SN GGt

+N(p(wn))u(Gn\Gr) + N(p(un))pGn < 1
But for any A > 1,

k. ko
N A n d N —
[ VOO g (oot ) d > 3N = o
Hence, by Lemma 2, it yields that

kn + ko knk

Hwn+30” kn (1+R (k‘ +k (zn'l‘xO)))

From (13), we get

u’n,+w'n, 1 M Uy +M Wn
(e 5 Ly M)+ M)
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By the remark after Lemma 1, we deduce that there exist 8, \, 0 with

knwy, + koty,
___i__) >(1-

M= he

o) (5

ko
wn) + K M (tn ))
Therefore,

s+ soll = 538 |1+ 53 M0+ M (gl n) WG\ Gt

M (Sagtasn)ucs,|

> [1 + 1§1 M(’UJ,)[.I.G + (1 - 611.)(*, +%o M(wn)+

+ e M (un))uG‘n]
>(1- 6,,)[-,3—0(1 + i§n M(w;)pGi)+

+'k17(1 + ; M(’wi)#Gi + M("n)#én)]

-2

Since uG,, — 0, we have that

zo(t) — za(t) kl - E wixe. (1)
=1

which contradicts with the fact Ly, is LIW*UR. [ |

Finally we give an example of an N-function M that satisfies (i)
and (ii), but not (iii). So Ly is separable and Ljys is rotund, but not
LW*UR.
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Let

t 0<t<1
p(t) = .
(k+ 1)k 4 2 2k <t < 2kH (k=0,1,2,...)

and

fu
MW)ﬁ.A p(2) dt.

Then M € SC, since p(t) is strictly increasing on the whole axis.

And M € v7;. Indeed, from ¢(s) = sup t (cf § 2 of [1]), it yields that
p(t)<s

(S 0<s<1

2k k* + 5y < s < (K + 1)1

9(s) =
linear (k+1)**!' <s< (k+ 1)k+1 4 '21’?

(251 (k4 D 4k <o (kDM (k=1,2,..)

For any s, there is k such that k* + 5l < s < (k+ 1)k ¢ 3% > SO
2s < (k + 2)*+2. Hence qqza’ < %:—1- = 2. By the Young inequality, it
yields that N(2s) < 2s¢(2s) < 4sq(s) < 8sq(3) = 162¢(%) < 16N (s),
ie, M€ vya.

But M does not satisfy (iii). In fact for vy = 2F, u, = 26+1 (k =
1,2,...), we have

D up = 20 >0 = 325-2‘2>(-;-)2.

9) Mlus) > pleadwe-w) _ p@HE*I-24) __ (kDPME
urp(ue) = upp(ur) p(2FFT)ze41 . T (k+1)k+1+2k-02-1_2k 2

(where 2F+1 = 9k+1 _ @),
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M(u!.)+M(u&)
3) —2—— — 1. Indeed,
M (2t
ur+v
uk + vk Uk B
M)+ M) =2 (U52) = [ syt [T pe) a
_Ez_lf. vk
“ Uk — Vg U — Vg
= —_ - < —
Jorz PO =P = P 2) < 2 o) plo)
gk+1 _ gk 1, 2819k 2t 2k 1
= —5—(k+ )™M+ 5= -G+ )] = S o = 3

Since M (%:4%) - oo. It follows that 3) holds.

ok _gk—1

4)p((1-3)ux) = p(%) = p(ve) = (k+1)*1 > (k+1)(kF+ L)
>k+p((1-%)w) k = 1,2,...

Combining 1) - 4), we see that M does not satisfy (iii).

References

[1] Krasnoselskii, M.A., Rutickii, Ya.B. Convez functions and Orlicz
spaces. Groningen, 1961.

(2] Kaminska, A. The criteria for locally uniform rotundity of Orlicz
spaces, Studia Math, 2 (1984), 201-215.

(3] Chen, S. Some Rotundities of Orlicz Spaces with Orlicz Norm. Bull.
Pol. Acad. Sci. Math., 34 (1988), 585-596.

[4] Wang, T., Wu, Y., Zhang, Y. The criterion of W*UR of Orlicz
Spaces, J. Heilongjiang Univ., (Nature), 3 (1991), 10-16, (Chinese)

[5] Wu, C., Zhao, S., Chen, J. Formula of Orlicz Norm and Criteria
of Rotundities of Orlicz Spaces, J. Harbin Inst. Tech., 2 (1978), 1-12,
(Chinese).



98 Tingfu Wang and Zhongrui Shi

[6] Wu, C. Wang, T. Theory and Applications of Orlicz Spaces, Harbin,
H.LT. Print. House, 1983, (Chinese)

P.0O.Box 610, Recibido: 4 de julio de 19Qi
Math. Dept. Revisado:20 de octubre de 1993
Harbin Univ. Sci. Tech,

Harbin,

CHINA.



