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Link Homotopy Invariants of Graphs in R’

KOUKI TANIYAMA

ABSTRACT. In this paper we define a link homotopy invariant of spatial
graphs based on the second degree coefficient of the Conway polynomial of a
knot.

1. INTRODUCTION

Throughout this paper we work in the piccewise linear category.
Let G be a finite graph without loops and multiple edges. Then there
are various embeddings of G into the three-dimensional Euclidean space
R3. Two embeddings f,g: G — R® are said to be link homotopic if g is
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obtained from f by a finite sequence of self-crossing changes (Fig. 1.1)
and ambient isotopy.

4 \ f * Ny ’ ’ \
same edge N

Fig. 1.1

Two edges of G are called adjacent if they have a vertex in common.
Two embeddings f,g : G — R® are called weakly link homotopic if g
is obtained from f by a finite sequence of crossing changes of adjacent
edges (Fig. 1.2) and ambient isotopy.

Fig. 1.2
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We note that a self-crossing change is replaced by crossing changes
of adjacent edges as illustrated in Fig. 1.3. Therefore link homotopy
implies weak link homotopy.

Fig. 1.3

An n—cycle is a graph with n vertices that is homeomorphic to a
circle. When G is a disjoint union of cycles our link homotopy and weak
link homotopy coincide with Milnor’s link homotopy defined in [4].

The purpose of this paper is to define link homotopy invariants
and weak link homotopy invariants for an arbitrary graph G. By the
fundamental theorem in [7] we have that a link homotopy invariant is
an I-equivalence invariant and hence an isotopy invariant and also a
cobordism invariant. Conversely a homology invariant is a link homo-
topy invariant. Thus Wu’s invariant (see [8]) is a weak link homotopy
invariant and hence a link homotopy invariant. Except the case that G
is a disjoint union of cycles, the author knows no other link homotopy
invariants and weak link homotopy invariants.

A cycle of a graph G is a subgraph of G that is a cycle. Let ' =
I'(G) be the set of all cycles of G. Let Z be the integers. Let n be
a non-negative integer. Let Z, = {0,1,2,...,n~ 1} if n > 0. Let
Zo = Z. Letw: I' > Z, be a map. We call w a wetght on I'. For an
embedding f : G — R3® we define a,(f) € Z, by

au(f) = Y w)ax(f(7)) (mod n)

~Yer
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where ay(K) is the coefficient of 22 in the Conway polynomial 7k (z) of
a knot K. We will show that if a weight w satisfies certain conditions
then a, is a (weak) link homotopy invariant.

We remark here that the modulo 2 reduction of a3 ( K') equals the Arf
invariant of K [3]. Therefore when G is the complete graph K7, n = 2
and 1 if yis a 7—cycle

w(n) = {0 otherwise
a,, equals an invariant defined in [2]. In [2] Gordon proved that a, is
invariant under any crossing change. He found a particular embedding
f: K7 — R® such that a,(f) = 1 (mod 2). Therefore a,(g) = 1 (mod
2) for any embedding g : K7 — R3. Since az(unknot) = 0 he could
conclude that every spatial embedding of K7 contains a nontrivially
knotted 7-cycle.

For our purpose it is enough that ¢, is invariant under a self-
crossing change or a crossing change of adjacent edges. In this sense
the idea in [2] was a great hint of this paper. We also remark here
that our definition of a,(f) generalizes Shimabara’s generalization of
Gordon’s invariant [6)].

Let e be an edge of G. We give an arbitrary orientation to e. Let
I'. be a subset of I' defined by

e = {yeT|yDe}.

We give an orientation to each ¥ € I'. by the orientation of e. We say
that a weight w : T — Z, is balanced on e if the homological sum
Y. er.w(7)7 is zero in Hy(G;Z,). We remark that this property does
not depend on the choice of the orientation of e.

Lemma 1.1. Let w : I(G) — Z, be a weight that is balanced

on an edge e of G. If an embedding g : G — R3 is obtained from an
embedding f : G — R3 by a self-crossing change of the edge e then

a,(f) = au(g) (mod n).

As an immediate corollary we have:



Link Homotopy Invariants of Graphs in R3 133

Theorem 1.2. Let w: I'(G) — Z, be a weight that is balanced on
each edge of G. Then o, is a link homotopy invariant. Namely if two
embeddings f,g: G — R® are link homotopic then

a,(f) = a,(g) (mod n).

Let e; and e; be adjacent edges of G. We give an arbitrary orien-
tation to e;. Let I, ., be a subset of I defined by

Fereo = {7 €T|y D er,e}.

We give an orientation to each y € T, ., by the orientation of ;. We
say that a weight w : I' - Z,, is balanced on a pair of adjacent edges
(e1,€2) if the homological sum Zyer,. , w(7)y is zero in Hy(G; Zy,).

e1.,€e2

Lemma 1.3. Let w: I'(G) — Z, be a weight that is balanced on
a pair of adjacent edges (e1,e2) of G. If an embedding g : G — R® is
obtained from an embedding f : G — R3 by a crossing change between
ey and ey then

au(f) = au(g) (mod n).
As an immediate corollary we have:

Theorem 1.4. Let w : T'(G) — Z, be a weight that is balanced
on each pair of adjacent edges of G. Then a,, is a weak link homotopy
invariant. Namely if two embeddings f,g : G — R® are weakly link
homotopic then

a,(f) = au(g) (mod n).

This paper is organized as follows. In §2 we prove Lemma 1.1 and
Lemma 1.3. In §3 we show some examples. In §4 we show that
Milnor’s u-invariant for 3-component homologically unlinked links can
be re-defined via a weak link homotopy invariant of a certain graph.

2. PROOFS OF LEMMA 1.1 AND LEMMA 1.3

Proof of Lemma 1.1. We recall the equality

(*) a2(K4)—ax(K-) = fk(Lo)
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where K, K_ and Lg are knots and a two-component link as illustrated
in Fig. 2.1 and ¢k denotes the linking number [3].

.
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Fig. 2.1

Let 4 be a cycle in I'.. We recall that v is oriented by the orientation
of e. We may suppose without loss of generally that f(y) and g(y) are
related as illustrated in Fig. 2.2 (a) and (b). Let Ly () = £y 4(y) VU
my,4(7) be the 2-component link as illutrated in Fig. 2.2 (c).

. '\/l ' : ’\/‘ , l’ ) %
\ _k"’ ?‘.’1' \‘ ”/ ‘-" "\ y <.-_’:
f(e) —k— ) *_ - my45(7)

Lrg(7)

f0) 9(7) Lyg(7)

(a) (b) ©

Fig 2.2
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Then we have

au(f) - au(e) = 3 wMaa(f) - T w(1)ea(s))

~er ~yer

=) w(r)(a2(f(7)) - a2(9(7))) = Y w(M)(a2(f(7)) - a2(9(7)))

~ver ~v€r.
= E w()lk(Ls,9(7),m1,6(7)) (mod n).
v€r. '

‘Since myg4(y) = myg(y') for any 7,7 € I'. we may write my 4(7) as
my q. Since linking number is a homological invariant we have

> W@k g(1)smpg) = D Lk(W()lsg(1)smy,)

~v€r. ~er,

= ¥ w(v)ef,g(v),n%f,g) (mor ).

~v€l,

Since w is balanced on e we have that the homological sum

D wMsg(1)=0 (mod n).

~v€r.

Therefore we have

L’k( Z w('y)lf,g('y),m,,y) = lk(0,m;,) =0 (mod n).
v€r.

This completes the proof. B

Proof of Lemma 1.3. The proof is similar to that of Lemma 1.1.
‘We note that one of the two components of the smoothed link is common



136 Kouki Taniyama

for all y € ', ¢, as in the case of Lemma 1.1, see Fig. 2.3.

Fig. 2.3

Therefore the same proof works. W

3. EXAMPLES

Example 3.1. Let G be the complete graph K4. Let n = 0 and
let w: T'(K4) — Z be a weight defined by

_J1 if v is a 4—cycle
wir) = { -1 if v is a 3—cycle.

Then it is easily checked that w is balanced on each edge of K4. Therefore
a,, is a link homotopy invariant.
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Let j be an integer and let f; : K, - R® be an embedding illus-
trated by Fig. 3.1 where the box denotes 25 — 1 right-handed half twists
when j > 0, —2j + 1 left-handed half twists when j < 0.

fi(Kd) -

Fig. 3.1

Then f;(K4) contains at most one nontrivial knot. The knot is a
twisted knot. Since a twisted knot has unknotting number one a, is
easily calculated by the equality (*). Then we have a,(f;) = j.

Example 3.2. Let G = K5, n = 0andw: I'(K5) —» Z a weight
defined by

1 if v is a 5—cycle
w(7) { -1 if v is a 4—cycle
0 if 7 is a 3—cycle

Then it is easily checked that w is balanced on each pair of adjacent
edges of K5. Thus a, is a weak link homotopy invariant.
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Let j be an integer. Let f; : K5 — R® be an embedding illustrated
by Fig. 3.2.

fi(Ks)

Fig. 3.2

Then at most two 5-cycles and a 4-cycle can be nontrivial knots.
They are all the (2,25 -—1)-torus_ lgnot. From the equality (*) we have that
a2((2,2j — 1)-torus knot) = L(lfll Therefore we have that a.(f;) =
j(.iz—l! .

It is known in [8] that {f; | 7 € Z} is a complete list of the homology
classes of embeddings of K into R3. In [5] we will show that homology
* implies weak link homotopy when G = Kj. Therefore {f; | j € Z} is
also a complete list of weak link homotopy classes. Thus o, classifies
the embeddings of K5 into R® up to weak link homotopy and mirror
image.
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3. 3-COMPONENT HOMOLOGICALLY UNLINKED
LINKS

Let GG be the graph of Fig. 4.1.

u

8 t
ty 83

s ts

Fig. 4.1

Letn = 0and let w: I'(G) — Z be a weight defined by

1 if v is a 9—cycle that contains zero or two of
vy, vz and v3
w(y) =4 -1 if 7is a 9—cycle that contains one or three of
vy, vz and v3
0 if v is a 4—cycle.

Then w is balanced on each pair of adjacent edges of G. Thus a,, is a
weak link homotopy invariant.

A 3-component ordered oriented link L = ¢ U {3 U {3 is called
homologically unlinked if £k(€i,€2) = Ck(ly,€3) = €k({3,¢;) = 0. Let
H be the subgraph of G that is the disjoint union of three 4-cycles of
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G. Let f: H — R3 be an embedding. Let Li(f) = fluisiuitiv;) (i =
1,2,3). Then L(f) = &(f)U &(f)U €3(f) is a 3-component ordered
oriented link.

Theorem 4.1. Let f,g: G — R® be embeddings such that both
L(f|u) and L(g|u) are homologically unlinked. Then f and g are weakly
link homotopic if and only if f|y and g|y are weakly link homotopic.

Proof. The ‘only if’ part is clear. We show ‘if’ part. Suppose that
fla is weakly link homotopic to.g|g. Then f is weakly link homotopic
to an embedding, still denoted by f, so that flg = g|g. It is sufficient
to show that a crossing change between the edge s;t;4; and an edge of G
is realized by a weak link homotopy (here we consider the suffix modulo
3). By replacing a crossing change by some crossing changes as in Fig.
1.3 we have that a crossing change between s;t;41 and an edge that is not
on the cycle viy28i42uitatis2vit2 is realized by some crossing changes
of adjacent edges. Then by the symmetry of G is sufficient to show that
a crossing between s;t; and v3sj is realized by a weak link homotopy.
We choose a small ball B® near the crossing where the crossing change
is desired, see Fig. 4.2.

W \ f(v383)

Fig. 4.2
Step 1. By a weak link homotopy outside of B® we deform f so
that £1(f) U €a(f) is a trivial 2-component link.

Step 2. We choose a disk D? in general position so that dD? =
6(f),D N eEy(f) = Pand D2NB® = 0.
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Step 3. We remove the intersection if any of D? and f(s1,t2) by a
weak link homotopy outside of B3.k

Step 4. We perform the crossing change by a weak link homotopy
as illustrated in Fig. 4.3.

Fig. 4.3

Step 5. We re-fix the 3-ball B3 and retrace one’s steps from Step 3
to Step 1.

Thus we have the desired crossing change. W

Let L be a homologically unlinked 3-component ordered oriented
link. Let f: G — R® be an embedding such that L(f|g) = L. Then
by Theorem 4.1 a,(f) is a well-defined weak link homotopy invariant
of L. Since weak link homotopy equals link homotopy for links o (f)
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is a link homotopy invariant of L. It is known in [4] that 3-component
homologically unlinked links are classified up to link homotopy by

Milnor’s p-invariant. Let j be an integer and let L; be a link illustrated
in Fig. 4.4.

-

AY
z 3

L; (j=3)

Fig. 4.4

Then u(L;) = j and {L;|j € Z} is the complete list of link
homotopy classes [4]. Let f; : G — R® be an embedding illustrated in
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Fig. 4.5.

VR

f(t2)

f(v)

f(s2) _
fi(G) (=3

Fig. 4.5

Then L(f;) = Lj. It is easy to check that f;(G) contains at most
two nontrivial knots that are twisted knots. Then we have a,(f;) = j.
Thus Milnor’s u-invariant is re-defined, cf. [1].
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