REVISTA MATEMATICA de la Universidad Complutense de Madrid Volumen 7, número 1: 1994

# Link Homotopy Invariants of Graphs in R<sup>3</sup>

#### KOUKI TANIYAMA

ABSTRACT. In this paper we define a link homotopy invariant of spatial graphs based on the second degree coefficient of the Conway polynomial of a knot.

### 1. INTRODUCTION

Throughout this paper we work in the piccewise linear category. Let G be a finite graph without loops and multiple edges. Then there are various embeddings of G into the three-dimensional Euclidean space  $R^3$ . Two embeddings  $f,g:G\to R^3$  are said to be *link homotopic* if g is

1991 Mathematics Subject Classification: 57M25, 57M15, 05C10 Editorial Complutense. Madrid, 1994.

obtained from f by a finite sequence of self-crossing changes (Fig. 1.1) and ambient isotopy.



Fig. 1.1

Two edges of G are called *adjacent* if they have a vertex in common. Two embeddings  $f,g:G\to R^3$  are called *weakly link homotopic* if g is obtained from f by a finite sequence of crossing changes of adjacent edges (Fig. 1.2) and ambient isotopy.



Fig. 1.2

We note that a self-crossing change is replaced by crossing changes of adjacent edges as illustrated in Fig. 1.3. Therefore link homotopy implies weak link homotopy.



An n-cycle is a graph with n vertices that is homeomorphic to a circle. When G is a disjoint union of cycles our link homotopy and weak link homotopy coincide with Milnor's link homotopy defined in [4].

The purpose of this paper is to define link homotopy invariants and weak link homotopy invariants for an arbitrary graph G. By the fundamental theorem in [7] we have that a link homotopy invariant is an I-equivalence invariant and hence an isotopy invariant and also a cobordism invariant. Conversely a homology invariant is a link homotopy invariant. Thus Wu's invariant (see [8]) is a weak link homotopy invariant and hence a link homotopy invariant. Except the case that G is a disjoint union of cycles, the author knows no other link homotopy invariants and weak link homotopy invariants.

A cycle of a graph G is a subgraph of G that is a cycle. Let  $\Gamma = \Gamma(G)$  be the set of all cycles of G. Let Z be the integers. Let n be a non-negative integer. Let  $Z_n = \{0,1,2,\ldots,n-1\}$  if n>0. Let  $Z_0 = Z$ . Let  $\omega: \Gamma \to Z_n$  be a map. We call  $\omega$  a weight on  $\Gamma$ . For an embedding  $f: G \to R^3$  we define  $\alpha_{\omega}(f) \in Z_n$  by

$$\alpha_{\omega}(f) \equiv \sum_{\gamma \in \Gamma} \omega(\gamma) a_2(f(\gamma)) \pmod{n}$$

where  $a_2(K)$  is the coefficient of  $z^2$  in the Conway polynomial  $\nabla_K(z)$  of a knot K. We will show that if a weight  $\omega$  satisfies certain conditions then  $\alpha_{\omega}$  is a (weak) link homotopy invariant.

We remark here that the modulo 2 reduction of  $a_2(K)$  equals the Arf invariant of K [3]. Therefore when G is the complete graph  $K_7$ , n=2 and

 $\omega(\gamma) = \begin{cases} 1 & \text{if } \gamma \text{ is a 7-cycle} \\ 0 & \text{otherwise} \end{cases}$ 

 $\alpha_{\omega}$  equals an invariant defined in [2]. In [2] Gordon proved that  $\alpha_{\omega}$  is invariant under any crossing change. He found a particular embedding  $f: K_7 \to R^3$  such that  $\alpha_{\omega}(f) \equiv 1 \pmod{2}$ . Therefore  $\alpha_{\omega}(g) \equiv 1 \pmod{2}$  for any embedding  $g: K_7 \to R^3$ . Since  $a_2(\text{unknot}) = 0$  he could conclude that every spatial embedding of  $K_7$  contains a nontrivially knotted 7-cycle.

For our purpose it is enough that  $\alpha_{\omega}$  is invariant under a self-crossing change or a crossing change of adjacent edges. In this sense the idea in [2] was a great hint of this paper. We also remark here that our definition of  $\alpha_{\omega}(f)$  generalizes Shimabara's generalization of Gordon's invariant [6].

Let e be an edge of G. We give an arbitrary orientation to e. Let  $\Gamma_e$  be a subset of  $\Gamma$  defined by

$$\Gamma_e = \{ \gamma \in \Gamma \mid \gamma \supset e \}.$$

We give an orientation to each  $\gamma \in \Gamma_e$  by the orientation of e. We say that a weight  $\omega : \Gamma \to Z_n$  is balanced on e if the homological sum  $\Sigma_{\gamma \in \Gamma_e} \omega(\gamma) \gamma$  is zero in  $H_1(G; Z_n)$ . We remark that this property does not depend on the choice of the orientation of e.

**Lemma 1.1.** Let  $\omega : \Gamma(G) \to Z_n$  be a weight that is balanced on an edge e of G. If an embedding  $g : G \to R^3$  is obtained from an embedding  $f : G \to R^3$  by a self-crossing change of the edge e then

$$\alpha_{\omega}(f) \equiv \alpha_{\omega}(g) \pmod{n}.$$

As an immediate corollary we have:

**Theorem 1.2.** Let  $\omega : \Gamma(G) \to Z_n$  be a weight that is balanced on each edge of G. Then  $\alpha_{\omega}$  is a link homotopy invariant. Namely if two embeddings  $f,g: G \to R^3$  are link homotopic then

$$\alpha_{\omega}(f) \equiv \alpha_{\omega}(g) \pmod{n}$$
.

Let  $e_1$  and  $e_2$  be adjacent edges of G. We give an arbitrary orientation to  $e_1$ . Let  $\Gamma_{e_1,e_2}$  be a subset of  $\Gamma$  defined by

$$\Gamma_{e_1,e_2} = \{ \gamma \in \Gamma | \gamma \supset e_1, e_2 \}.$$

We give an orientation to each  $\gamma \in \Gamma_{e_1,e_2}$  by the orientation of  $e_1$ . We say that a weight  $\omega : \Gamma \to Z_n$  is balanced on a pair of adjacent edges  $(e_1,e_2)$  if the homological sum  $\Sigma_{\gamma \in \Gamma_{e_1,e_2}} \omega(\gamma) \gamma$  is zero in  $H_1(G;Z_n)$ .

**Lemma 1.3.** Let  $\omega : \Gamma(G) \to Z_n$  be a weight that is balanced on a pair of adjacent edges  $(e_1, e_2)$  of G. If an embedding  $g : G \to R^3$  is obtained from an embedding  $f : G \to R^3$  by a crossing change between  $e_1$  and  $e_2$  then

$$\alpha_{\omega}(f) \equiv \alpha_{\omega}(g) \pmod{n}$$
.

As an immediate corollary we have:

**Theorem 1.4.** Let  $\omega : \Gamma(G) \to Z_n$  be a weight that is balanced on each pair of adjacent edges of G. Then  $\alpha_{\omega}$  is a weak link homotopy invariant. Namely if two embeddings  $f,g:G\to R^3$  are weakly link homotopic then

$$\alpha_{\omega}(f) \equiv \alpha_{\omega}(g) \pmod{n}$$
.

This paper is organized as follows. In §2 we prove Lemma 1.1 and Lemma 1.3. In §3 we show some examples. In §4 we show that Milnor's  $\mu$ -invariant for 3-component homologically unlinked links can be re-defined via a weak link homotopy invariant of a certain graph.

## 2. PROOFS OF LEMMA 1.1 AND LEMMA 1.3

Proof of Lemma 1.1. We recall the equality

$$(*) \quad a_2(K_+) - a_2(K_-) = \ell k(L_0)$$

where  $K_+$ ,  $K_-$  and  $L_0$  are knots and a two-component link as illustrated in Fig. 2.1 and  $\ell k$  denotes the linking number [3].



Fig. 2.1

Let  $\gamma$  be a cycle in  $\Gamma_e$ . We recall that  $\gamma$  is oriented by the orientation of e. We may suppose without loss of generally that  $f(\gamma)$  and  $g(\gamma)$  are related as illustrated in Fig. 2.2 (a) and (b). Let  $L_{f,g}(\gamma) = \ell_{f,g}(\gamma) \cup m_{f,g}(\gamma)$  be the 2-component link as illustrated in Fig. 2.2 (c).



Fig 2.2

Then we have

$$\alpha_{\omega}(f) - \alpha_{\omega}(g) \equiv \sum_{\gamma \in \Gamma} \omega(\gamma) a_2(f(\gamma)) - \sum_{\gamma \in \Gamma} \omega(\gamma) a_2(g(\gamma))$$

$$\equiv \sum_{\gamma \in \Gamma} \omega(\gamma) (a_2(f(\gamma)) - a_2(g(\gamma))) \equiv \sum_{\gamma \in \Gamma_{\epsilon}} \omega(\gamma) (a_2(f(\gamma)) - a_2(g(\gamma)))$$

$$\equiv \sum_{\gamma \in \Gamma_{\epsilon}} \omega(\gamma) \ell k(\ell_{f,g}(\gamma), m_{f,g}(\gamma)) \pmod{n}.$$

Since  $m_{f,g}(\gamma) = m_{f,g}(\gamma')$  for any  $\gamma, \gamma' \in \Gamma_e$  we may write  $m_{f,g}(\gamma)$  as  $m_{f,g}$ . Since linking number is a homological invariant we have

$$\sum_{\gamma \in \Gamma_e} \omega(\gamma) \ell k(\ell_{f,g}(\gamma), m_{f,g}) \equiv \sum_{\gamma \in \Gamma_e} \ell k(\omega(\gamma) \ell_{f,g}(\gamma), m_{f,g})$$

$$\equiv \ell k \bigg( \sum_{\gamma \in \Gamma_s} \omega(\gamma) \ell_{f,g}(\gamma), m_{f,g} \bigg) \pmod{n}.$$

Since  $\omega$  is balanced on e we have that the homological sum

$$\sum_{\gamma \in \Gamma_e} \omega(\gamma) \ell_{f,g}(\gamma) \equiv 0 \pmod{n}.$$

Therefore we have

$$\ell k \left( \sum_{\gamma \in \Gamma_{\epsilon}} \omega(\gamma) \ell_{f,g}(\gamma), m_{f,g} \right) \equiv \ell k(0, m_{f,g}) \equiv 0 \pmod{n}.$$

This completes the proof.

**Proof of Lemma 1.3.** The proof is similar to that of Lemma 1.1. We note that one of the two components of the smoothed link is common

for all  $\gamma \in \Gamma_{e_1,e_2}$  as in the case of Lemma 1.1, see Fig. 2.3.



Fig. 2.3

Therefore the same proof works.

# 3. EXAMPLES

**Example 3.1.** Let G be the complete graph  $K_4$ . Let n=0 and let  $\omega: \Gamma(K_4) \to Z$  be a weight defined by

$$\omega(\gamma) = \begin{cases} 1 & \text{if } \gamma \text{ is a } 4\text{-cycle} \\ -1 & \text{if } \gamma \text{ is a } 3\text{-cycle}. \end{cases}$$

Then it is easily checked that  $\omega$  is balanced on each edge of  $K_4$ . Therefore  $\alpha_{\omega}$  is a link homotopy invariant.

Let j be an integer and let  $f_j$ :  $K_4 \to R^3$  be an embedding illustrated by Fig. 3.1 where the box denotes 2j-1 right-handed half twists when j > 0, -2j+1 left-handed half twists when  $j \le 0$ .



Fig. 3.1

Then  $f_j(K_4)$  contains at most one nontrivial knot. The knot is a twisted knot. Since a twisted knot has unknotting number one  $a_2$  is easily calculated by the equality (\*). Then we have  $\alpha_{\omega}(f_j) = j$ .

**Example 3.2.** Let  $G=K_5,\ n=0$  and  $\omega:\ \Gamma(K_5)\to Z$  a weight defined by

$$\omega(\gamma) = \begin{cases} 1 & \text{if } \gamma \text{ is a 5-cycle} \\ -1 & \text{if } \gamma \text{ is a 4-cycle} \\ 0 & \text{if } \gamma \text{ is a 3-cycle} \end{cases}$$

Then it is easily checked that  $\omega$  is balanced on each pair of adjacent edges of  $K_5$ . Thus  $\alpha_{\omega}$  is a weak link homotopy invariant.

Let j be an integer. Let  $f_j: K_5 \to R^3$  be an embedding illustrated by Fig. 3.2.



Fig. 3.2

Then at most two 5-cycles and a 4-cycle can be nontrivial knots. They are all the (2,2j-1)-torus knot. From the equality (\*) we have that  $a_2((2,2j-1)$ -torus knot) =  $\frac{j(j-1)}{2}$ . Therefore we have that  $\alpha_{\omega}(f_j) = \frac{j(j-1)}{2}$ .

It is known in [8] that  $\{f_j \mid j \in Z\}$  is a complete list of the homology classes of embeddings of  $K_5$  into  $R^3$ . In [5] we will show that homology implies weak link homotopy when  $G = K_5$ . Therefore  $\{f_j \mid j \in Z\}$  is also a complete list of weak link homotopy classes. Thus  $\alpha_{\omega}$  classifies the embeddings of  $K_5$  into  $R^3$  up to weak link homotopy and mirror image.

# 3. 3-COMPONENT HOMOLOGICALLY UNLINKED LINKS

Let G be the graph of Fig. 4.1.



Fig. 4.1

Let n = 0 and let  $\omega : \Gamma(G) \to Z$  be a weight defined by

$$\omega(\gamma) = \begin{cases} 1 & \text{if } \gamma \text{ is a } 9\text{-cycle that contains zero or two of} \\ v_1, v_2 & \text{and } v_3 \\ -1 & \text{if } \gamma \text{ is a } 9\text{-cycle that contains one or three of} \\ v_1, v_2 & \text{and } v_3 \\ 0 & \text{if } \gamma \text{ is a } 4\text{-cycle.} \end{cases}$$

Then  $\omega$  is balanced on each pair of adjacent edges of G. Thus  $\alpha_{\omega}$  is a weak link homotopy invariant.

A 3-component ordered oriented link  $L = \ell_1 \cup \ell_2 \cup \ell_3$  is called homologically unlinked if  $\ell k(\ell_1, \ell_2) = \ell k(\ell_2, \ell_3) = \ell k(\ell_3, \ell_1) = 0$ . Let H be the subgraph of G that is the disjoint union of three 4-cycles of

G. Let  $f: H \to R^3$  be an embedding. Let  $\ell_i(f) = f(v_i s_i u_i t_i v_i)$  (i = 1,2,3). Then  $L(f) = \ell_1(f) \cup \ell_2(f) \cup \ell_3(f)$  is a 3-component ordered oriented link.

**Theorem 4.1.** Let  $f,g:G\to R^3$  be embeddings such that both  $L(f|_H)$  and  $L(g|_H)$  are homologically unlinked. Then f and g are weakly link homotopic if and only if  $f|_H$  and  $g|_H$  are weakly link homotopic.

**Proof.** The 'only if' part is clear. We show 'if' part. Suppose that  $f|_H$  is weakly link homotopic to  $g|_H$ . Then f is weakly link homotopic to an embedding, still denoted by f, so that  $f|_H = g|_H$ . It is sufficient to show that a crossing change between the edge  $s_i t_{i+1}$  and an edge of G is realized by a weak link homotopy (here we consider the suffix modulo 3). By replacing a crossing change by some crossing changes as in Fig. 1.3 we have that a crossing change between  $s_i t_{i+1}$  and an edge that is not on the cycle  $v_{i+2} s_{i+2} u_{i+2} t_{i+2} v_{i+2}$  is realized by some crossing changes of adjacent edges. Then by the symmetry of G is sufficient to show that a crossing between  $s_1 t_2$  and  $v_3 s_3$  is realized by a weak link homotopy. We choose a small ball  $B^3$  near the crossing where the crossing change is desired, see Fig. 4.2.



Fig. 4.2

Step 1. By a weak link homotopy outside of  $B^3$  we deform f so that  $\ell_1(f) \cup \ell_2(f)$  is a trivial 2-component link.

Step 2. We choose a disk  $D^2$  in general position so that  $\partial D^2 = \ell_1(f), D^2 \cap \ell_2(f) = \emptyset$  and  $D^2 \cap B^3 = \emptyset$ .

Step 3. We remove the intersection if any of  $D^2$  and  $f(s_1, t_2)$  by a weak link homotopy outside of  $B^3$ .

Step 4. We perform the crossing change by a weak link homotopy as illustrated in Fig. 4.3.



Fig. 4.3

Step 5. We re-fix the 3-ball  $B^3$  and retrace one's steps from Step 3 to Step 1.

Thus we have the desired crossing change.

Let L be a homologically unlinked 3-component ordered oriented link. Let  $f: G \to R^3$  be an embedding such that  $L(f|_H) = L$ . Then by Theorem 4.1  $\alpha_{\omega}(f)$  is a well-defined weak link homotopy invariant of L. Since weak link homotopy equals link homotopy for links  $\alpha_{\omega}(f)$ 

is a link homotopy invariant of L. It is known in [4] that 3-component homologically unlinked links are classified up to link homotopy by Milnor's  $\mu$ -invariant. Let j be an integer and let  $L_j$  be a link illustrated in Fig. 4.4.



Fig. 4.4

Then  $\mu(L_j)=j$  and  $\{L_j|j\in Z\}$  is the complete list of link homotopy classes [4]. Let  $f_j:G\to R^3$  be an embedding illustrated in

Fig. 4.5.



Fig. 4.5

Then  $L(f_j) = L_j$ . It is easy to check that  $f_j(G)$  contains at most two nontrivial knots that are twisted knots. Then we have  $\alpha_{\omega}(f_j) = j$ . Thus Milnor's  $\mu$ -invariant is re-defined, cf. [1].

Acknowledgements. The author would like to thank Professor Shin'ichi Suzuki for his encouragement.

#### References.

- [1] Cochran, T.D. Concordance invariance of coefficients of Conway's link polynomial. Invent. Math. 82, (1985), 527-541.
- [2] Conway, J.H. and McA. Gordon, C. Knots and links in spatial graphs. J. Graph Theory, 7, (1983), 445-453.

- [3] Kauffman, L. On knots. Ann. of Math. Studies, 115, Princeton Univ. Press, Princeton, N.J., (1987).
- [4] Milnor, J. Link groups. Ann. Math., 59, (1954), 177-195.
- [5] Motohashi, T. and Taniyama, K. Homology and weak link homotopy of graphs in  $\mathbb{R}^3$ , in preparation.
- [6] Shimabara, M. Knots in certain spatial graphs, Tokyo J. Math., 11, (1988), 405-413.
- [7] Taniyama, K. Cobordism, homotopy and homology of graphs in  $\mathbb{R}^3$ , to appear in Topology.
- [8] Taniyama, K. Homology classification of spatial embeddings of a graph, preprint.

Department of Mathematics
College of Arts and Sciences
Tokyo Woman's Christian University
Zempukuji 2-6-1, Suginamiku
Tokyo, 167
JAPAN

Recibido: 17 de marzo de 1993