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Travelling Waves for Gas-Solid Reactions

C.J. VAN DULIN and A. STRAATHOF

ABSTRACT. Bounded travelling waves, arising in a combustion model for
gas-solid reactions in a porous medium, are studied. We consider the exist-
ence, uniqueness and several qualitative properties. In particular we investi-
gate waves with finiteness and we derive estimates in the limit of vanishing
diffusion.

1. INTRODUCTION

In this paper we study travelling wave solutions of a model de-
scribing the combustion (or conversion) of a porous solid as it reacts
irreversibly and isothermally with a gas moving through its pores. We
shall assume that the reaction is distributed throughout the solid with
a rate of reaction proportional to F(S)G(C) where S and C are solid
and gas concentrations and F' and G positive non-decreasing functions
such that F(0) = G(0) = 0. The structural change of the porous
medium during combustion is neglected. Problems of this nature arise
in chemical engineering, and an important example is coal gasification,
see Froment and Bischoff [FB].

1991 Mathematics Subject Classification: 35K57, 34B15.
Editorial Complutense. Madrid, 1994.



148 C.J. Van Duijn and A. Straathof

In one space dimension, the mass balance for the solid and the gas
yields the equations

St
€Cy+qCr — DCyy

~MF(5)G(C) (1.1a)
~ 0 F(5)G(C) (1.1b)

for —oo < £ < 400 and t > 0. Here the positive constants ¢, ¢, D, A\
and ), denote the porosity, gas flux, effective diffusivity and the reac-
tion rates, respectively. The underlying gas transport is stationary and
directed from z = —oo (inlet) o ¢ = +oo (outlet). A derivation of
this model was given by Szekely, Evans and Sohn [SES]. Equations (1.1)
without convection (i.e. ¢ = 0) were studied by Dfaz and Stakgold
[DS], Stakgold [S] and Di Liddo, Maddalena and Stakgold [LMS].

In this paper we are interested in travelling wave solutions of equa-
tions (1.1). That is, we look for solutions depending on the combination
z — ct only, where c is the a priori unknown wavespeed. They satisfy the
boundary conditions '

S(-o0,t) = 0, C(-o0,t) = C*>0 t>0 (1.2a)
at the inlet, and
S(+o00,t) = §* >0, C(+oo,t) =0 t>0 (1.2b)

at the outlet, where S* and C* are constants.

The methods used in this paper are primarily developed by Van
Duijn and Knabner [vDK] for a system of equations describing non-
equilibrium multiple-site adsorption in the transport of reactive solutes
through porous media.

Travelling wave solutions for (1.1) without convection lead to un-
bounded waves. These were investigated by Di Liddo, Maddalena and
Stakgold [LMS].

In section 2 we investigate the existence and uniqueness of travel-
ling waves for classes of F' and G large enough to cover all power law
reactions.
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One has to take into account that F' or G may not be Lipschitz con-
tinuous at S = Oorat C = 0, respectively. This possible degeneration
of the problem may lead to the existence of regions where full conversion
or no conversion takes place. Section 3 contains a characterization of
these situations. It leads to finite travelling waves.

In section 4 we study the hyperbolic limit of (1.1): i.e. we consider
the case of vanishing diffusivity. We identify the limit solution for D = 0
and give an explicit upperbound for the rate of convergence.

Before proceeding we scale the. variables according to:

-5 __C
LI

U=

= E,
f(y) :== MF(yS*) and g¢(y) := G(yC").

Then equations (1.1) reduce to

w = o f(- u)g(v) (1.3a)

€vy + quy — Dvgy = —%f(l — u)g(v) (1.3b)

for —00 < £ < +00 and t > 0, where A := A3/]; is the Thiele Modulus.
The boundary conditions become

u(—o0,t) = 1, v(—00,t) = 1 t>0 (1.4a)

and ‘
u(+o00,t) = 0, v(+o00,t) = 0 t>0. (1.4d)

Looking for travelling wave solutions means that we have to deter-
mine functions

v = u(n), v = v(p) withp:= z—ct
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and the wavespeed c satisfying

—cu' = El;f(l —u)g(v) (1.5a)

*

!
—c(ev + /\-g-:u) +qv' —Dv" =0 (1.5b)
for —oo < 17 < +00, where the primes denote differentiation with respect
to 7, and
u(—o00) = 1, v(-o0) = 1,
)
u(4+00) = 0, v(+00) = 0.

Throughout this paper we assume

{ (3) f,9: R — R such that f,g € C(RF) N COH(RY);

(i) f(0) = ¢(0) = 0, anci f(s) >0, g(s) >0 for s > 0.

As a first result we have the following

Proposition 1.1. Suppose {u,v,c} is a travelling wave for (BC).
Then

(%) v'(xo0) = 0, v'(xoo0) = 0;
(i) ¢ = =50 (1.6)

Proof. Equation (1.5a), the boundary conditions (BC) and hy-
pothesis H(i) imply u'(+o00) = 0. Integrating (1.5b) yields

»*

Dv = (q-ec)v— c/\%u +A inR, (1.7)

where A € R is the constant of integration. Letting 7 — 00 we obtain

Dv'(-o0) = - c(e + /\g—) +A (1.8)
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and

Dv'(+00) = A.
Clearly v can only satisfy the boundary conditions if these limits are
zero. This implies the first assertion. Consequently A = 0, and the

expression for c results from (1.8). =

As a direct consequence of (1.6), (1.7) and A = 0 we have the
equivalent formulation of a travelling wave as a first order system, con-
sisting of (1.5a) and (1.7).

Corollary 1.2. A triple {u,v,c} withu,v: R — R(')" andc> 0 is
a travelling wave for (BC) iff

(i) u,veC(R);

() o = ——gf(1-u)g(v) (1.90)
) AcS” i
v o= DC"‘(v_u)’ (1.96)

(#17) wu and v satisfy (BC),
where ¢ is defined by (1.6).

Remark 1.3 (i) The wavespeed ¢ can be written as

which shows that ¢ < g/e.

(ii) In general the methods used in this paper also hold for the boundary
conditions

S(—o00,t) = S, C(-o0,t) = C* t>0

and

S(+o00,t) = §*, C(+o0,t) = C.,, t>0,
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with §* > S, > 0 and C* > C, > 0.
(iii) From (1.9b) it follows that v € C*(R).

2. EXISTENCE AND UNIQUENESS

In the first part of this section we prove existence of a travelling wave
consisting of monotone functions v and v. This is done by demonstrating
how to construct a connecting orbit in the phaseplane (u,v) between the
equilibrium points (1,1) and (0,0).

We start from the formulation given in Corollary 1.2. In the system
of equations given there, we reverse the dependent variable by setting

n:i= -1
This leads to
v = e f(1—u)g(v) (2-1a)
v = cy(u—v) (2.1b)
in R, where ¢; = cl? and ¢, = gg: . Because we restrict ourselves

to monotone waves, the connecting orbit cannot leave the square [0,1]
X [0,1] and in particular v < u (from (2.1b)). If we define the set

S:={(v,v)0<v<u<l}

we must look for a connecting orbit in §. The boundary of this set
consists of the segments 45;, ¢+ = 1,2,3, where

351 = {(»,0)j0 <u<1},

85, = {(L,v)o<v<1}

and

953 = {(»,w)|0<u<1}.
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Theorem 2.1. Let hypotheses H(i)-(it) be satisfied. Then there
exists a monotone travelling wave with the properties
(i) u' <0 inR and v’ <0 in {n.€ R|u(n) € (0,1)};
(i) v <0 in R and v' < 0 in {n € R|v(n) € (0,1)};
(1) 0<u<land 0 <v<1inR.

Proof. We give the proof in terms of equations (2.1), thus in the
reversed coordinate. To be specific we construct an orbit in S U 3.5

which connects the equilibrium points (0,0) and (1,1). This is done in
two steps.

1. There is a negative half orbit in S leaving (0,0).

v

85

05,

0 a5 “o 1

Fig. 1. The shooting argument in the phaseplane (u,v).

We use a shooting argument. Choose ug € (0,1). In the interval
(0, up) on the v-axis we consider two subsets A and B. These are charac-
terized as follows. A point a € (0, ug) belongs to the set A if the negative
half orbit which starts at (ug,a) has a point of 35; as exit point, see
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Figure 1. Since u'(n) > 0, v'(n) > 0 as long as (u(n),v(n)) € S this is
well defined. A has the following properties:

(i) A is nonempty by the following argument: every half orbit (u,v)
starting at (%,0) with 0 < & < up must be in S for small times. Because
v is strictly increasing in 5 the orbit cannot leave through the boundary
0S1. Next suppose the orbit leaves through 885 for n = . Clearly
v'(77) = 0 which implies that for < 7, sufficiently close, the solution
must be above 853, a contradiction.

(ii) If a1 € A, then there exists ag > a1 with a; € A. The argument is
similar. (Note that orbits in S do not intersect.)

Set a = sup A. Clearly @ ¢ A. Similarly a point b € (0,u¢) belongs
to the set B if the negative half orbit which starts at (ug,b) has a point
of 353 as exit point. Again we can show that (i) B is nonempty and (ii)
if b; € B then there exists b, < b; with b, € B. We now set b = inf B.
Clearly b ¢ B. From the definition one observes that @ < b. Choose
d € [a,b. Now consider the negative half orbit {(u(n),v(n))|n < 0}
which starts at (uo,d). Define 7 € [-00,0) as

n = inf {n < 0|(u(n),v(n)) € S}.

Clearly (u(n),v(n)) = (0,0). We distinguish the following possibilities:

e 7 = —oo. This gives the desired half orbit on R™.

e 7 > —oo. This is possible if the problem degenerates at (0,0).
We continue the solution as (u(n),v(n)) = (0,0) for n < 5. Note that
the solution remains differentiable.

2. To complete the proof we have to connect the points (ug,d) and
(1,1). As long as (u,v) € S we can continue the orbit. Define

i = sup{n > 0|(u(n),v(n)) € 5}.

First note that (u(7),v(n)) cannot leave through 953 by the same argu-
ment as above. Again we distinguish the following possibilities:

e ] = 4oo. This gives the desired orbit on R.
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o 7 < +4oo. If (u(7),v(7)) € 352 we continue the orbit as (1,v(n))
for 77 > 7 by the (unique) solution of

v = (1 - )

with initial value v(#). The solution is given by

v(n) = 1-(1-v(7)) exp (—cz(n - 7).

Note that such a solution is again differentiable in n = #.

The remaining possibility («(%), (7)) = (1,1) cannot occur by the
following argument: suppose (u(7),v()) = (1,1) for 7j < +00. Solving
equation (2.1b) on (0,7) gives

v(7)e2" — v(0) = ¢ /on u(n)e®"dn

or
7
e — v(0) < 02/ e?dn = €27 -1,
0
which leads to v(0) > 1, a contradiction. This proves assertion (iii).
]
In Figure 2 we show an example of an orbit in the phase plane and

the corresponding solutions u, v in the original independent variable.

Remark 2.2. (i) Theorem 2.1 implies the existence of a classical
solution u € C1(R), v € C*(R) of equations (1.5) for (BC), or in terms
of z and t of Problem (1.3), (1.4).

(ii) If f € C®Y(R{), then also u < 1in R.
(iii) If g € COY(RY), then u,v > 0 in R.

Next we consider the uniqueness for travelling waves. We introduce
and additional hypothesis on f and g:

H(7it) f and g are monotone non-decreasing functions.
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Fig. 2. Example of an orbit in the phase-plane and the solutions
u,v for f(s) = g(s) = s!/? (i.e. both degenerate), C* =1, §* = 1, A=
3/2, e=1/2, ¢q=2, D =3/2.
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Due to the following theorem we have uniqueness up to translation.

Theorem 2.3. Let f and g satisfy H(i)-(¢i¢). Suppose there erist
two travelling waves {u;,v;,c}, i = 1,2, which satisfy the same boundary
conditions (BC) and are such that 0 < v; < u; <1 iR fori=1,2.
Then there ezists an ng € R such that

’LI,]() = u2(-+770) and ’Ul(')‘= ’02('+7]0) in R.

Remark 2.4. Because we prove here uniqueness in a class of travel-
ling waves for which 0 < v < u < 1 we distinguish the following cases:

e The non-degenerate case, in which both f and g are Lipschitz
continuous up to zero.

The degenerate case is divided into

e The f-degenerate case, in which f is only locally Llpschltz con-
tinuous in R*;

¢ The g-degenerate case, in which g is only locally Lipschitz con-
tinuous in R*.

Before we give the proof of Theorem 2.3 we first consider the fol-

lowing lemma.

Lemma 2.5. Let the hypotheses H(i)-(iii) be satisfied and let
(ui,vi), t = 1,2, be as in Theorem 2.3. Further, let ;1, 12 € R such
that vi(m) = wva(me) € (0,1). Then

ui(m) = us(m).

Proof. We give the proof in terms of the original dependent vari-
able, thus

v = —c f(1 - u)g(v) (2.2a)
= c2(v—u) (2.2b)
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in R. Define the shifted functions

dz(n) = u2(n+m —m)

and
B3(n) = va(n+m —m)

for all € R.. Clearly this pair defines again a travelling wave for (BC)
with the same wavespeed ¢, see Proposition 1.1. By assumption we have

vi(m) = %2(m) € (0,1).

First we note that

uy(m), d2(m) > 0.

For if uy(m) = 0, for example, then also uj(m) = 0 and (2.2a) implies
nim) = 0,a contra.diction.

If us(m’) = 1, then also éiz(7m) = 1. We show this as follows. Let
ti3(m) < 1 and let

m = sup{n > mlui(n) > 2(n)}  (m = +oo, possibly).

Further let

u(n) = tz(n)—w(n) and  v(n) = vi(n) - B(n)

Testing equation (2.2b) for u and v with v* gives
1
5(”+2)' < et +utot) = avt’ on [m,m).
Using v*(m) = 0 and Gronwall’s Lemma we obtain

vt = 0  in [p,mm).
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From equation (2.2a) we now deduce

v = —e{f(1 - 82)g(%2) — (1 —w)g(v1)} <O  in [m,m).

Integrating this gives

0 = u(mp)<Lu(m)< 0,

a contradiction.

Hence we may now suppose without loss of generality

1> uy(m) > d2(m) >0 (2.3)

and show below that
ur(m) > t2(m)
leads to a contradiction.

For the differences u and v we obtain from (2.2)

u' = —cr {f(1 — H2)g(B2) — (1 — u1)g(v1)}
= —er {[f(1 — fiz) — f(1 — w1)]g(%2) + F(1 — w1)[g(P2) — g(w)]}

and

v = c(v+u)

in R. Testing the corresponding equations for 4 and v with ut and vt
respectively gives

%("J'z)' = —a{f(1 - %) - f(1 - w)}g(B)ut -
—e1 f(1 — w1 ){g(#2) - g(v1)}u*

and )
S = (vt +urt)
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in R. By (2.3) and the monotonicity we have

uy, ti2 Sul(m)< 1 on (m,+00).

This allows us to use the Lipschitz continuity of f in the whole interval
[m,+00). For g, however, we have to select a sufficiently small right
neighborhood of 7y, say (m,m + 6), where vy, % > 0 and consequently
g is Lipschitz continuous. Hence there exist constants Ly, Lz (L1 inde-
pendent of §), such that

%(’u'+2 ) < {Llu'*'2 + Lyutot}

and 1
ST S (vt +utot)

in (m,m + 6). By Gronwall’s inequality and ut(m) = vt(m) = 0 we
obtain

wt = vt = 0  in[m,m+48].

If g is non-degenerate, the argument holds for arbitrary § > 0 and
therefore
ut = vt = 0  in[m,+o0).

If g degenerates the argument holds in the interval [n;,n*], where 7* is
the first zero of v;.

Now suppose v1(n*) = 0. Hence vi(9*) = 0, and equation (2.2b)
implies u;(n*) = 0. We also have (from (2.2a))
v <0  in[m,n*])
By assumption we have u(m) < 0, and thus v < 0 in [m,%*]. Thus in
particular u(n*) < 0, implying @;(7*) < u1(n*) = 0, a contradiction.

Thus we may conclude that

+
i

0 in [, +00)
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in both cases, and also
W <0 in [m,+00).
Integrating this equation contradicts the boundary conditions at
n=+4c0. N
We are now in the position to prove Theorem 2.3.

Proof of Theorem 2.3. By Lemma 2.5 there exist points 79,7, €
R such that the transformed wave

iz(n) = ua(n+m) and  B(n) = v2(n+m) forneR

coincides with u; and v, at the point 7, i.e.

w(m) = @(m) =22 and  w(m) = %(m) =:9,

where %,% € (0,1). By the uniqueness of the initial value problem for
equations (2.2) with Lipschitz continuous right-hand side there exist
d,d > 0 such that

‘ul—ﬁz =1]1-52§0 in(m—-i,m+¢f).

In the non-degenerate case obviously d = d = +o00. In the degenerate
case, however, the argument holds only if f(1 — u;(m — d)) > 0 and
g(vi(m + d)) > 0. We therefore distinguish the cases, where 7, — d and
m + d are the first zeros of f(1 — u;(-)) and g(v(+)), respectively.

ou;(m —d) = 1. Then we continue the solution with the unique
solution of
v = e(v-1) forp<m—-d,

where v(7 — d) follows from the construction.

evy(m +d) = 0. Then we continue the solution as (0,0) for
n>m+d.
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Thus we may conclude
ul—ﬁ2=vl—62§0 in R

for both the degenerate and non-degenerate case. This proves the asser-
tion. =

3. FINITENESS

Referring to the properties of the orbit as mentioned in section 2,
we investigate here the existence of a conversion front (where v = 1 and
the solid is fully converted) and a penetration front (whereu = v = 0
and no reaction has yet taken place).

In the following we suppose that {u,v,c} is a travelling wave in the
sense of Corollary 1.2 where f and g satisfy H (#)-(41).

Definition 3.1. A travelling wave has a conversion front if
a := inf{n|u(n) < 1} > —o0
and has a penetration front if

b := sup{nju(n) > 0} < +oo.

Remark 3.2. As a direct consequence of the existence and unique-
ness we have
v(n) <1 for all n € R.

Next let _
b = sup{nlv(n) > 0}.
Then b = b. This follows from the observations

b < +oo = u(n)

= v(n)
=>b<b

Oforn>b
0 for n > b (from equation (2.2a))
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and

0 for n > b
0 for n>b (from equation (2.2b))

b < +o00 = v(n)

= u(1)
= b<b.

We have the following characterization of the existence of a conver-
sion front.

Theorem 3.3.
1 1
a>—m¢?eL(m®

for some § € (0,1).

Proof. ' ='. We first estimate equation (2.2a) by

u' = —erf(1-u)g(v) 2 —er f(1 - u)g(1).
For any a < 11 < 72 we obtain

N2yt

= dn < ec1g(1)(m — M),

or

1-u(na) 1 iz < )
/l—u(m) -f-(?) z < e19(1)(n2 — m).

Letting m \ a yields

1-u(m2) i < .
/0 m z < c1g(1)(m — a) < +o0.

Thus
1

1
7 € L(0,6)
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for some § > 0.

" «<' . We now prove that a > —oo by contradiction. Thus suppose
a = —oo. This implies

u(n) <1 forall n€eR.

Writing
!
u

- m = c19(v)

and integrating this expression from 7, to 7, for arbitrary m < n; with

v(m2) > 0 gives
/nz —u'dp /l—u(na) dz
m f(l - u’) - 1-u(m) f(z) -

=0 '/’7 " g(v(n))dn 2 e1g(v(m))(m — m),

1

where g(v(m2)) > 0. Letting 7y — —oo leads to a contradiction. ™

Remark 3.4. If f € C%(R{) then 3 ¢ L*(0,6) and consequently

a = —oo. If f(z) = 2P with 0 < p < 1 then % € L(0,6) for all

§ € (0,1), which implies the existence of a conversion front.

Next we characterize the existence of a penetration front.

Theorem 3.5. Suppose g is concave in (0,6) for some § > 0, then

1
b < 400 & —= € L'(0,6),

VG

where

G(v) = /oug(z)dz.
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Proof. Differentiating equation (2.2b) with respect to 7 and sub-
stituting the result into (2.2a) leads to the expression

v = (v +e1f(1 —u)g(v)) inR. (3.1)

Because v/ < 0in R and f is non-decreasing we can estimate the second
derivative of v by

v’ <eaef(l)g(v) inR.

Multiplying this inequality by v’ and integrating the result from 7 to
+00 yields, using v(+00) = v'(+00) = 0,

v(n)
v'(n)? < 2c1c2f(1)/ g(z)dz inR
0

and hence
o(n) > -R/Go(m) iR, (32)

where K is the positive constant given by
I-( = \/ 2c1C2f(1).

We also want to construct an upper bound for v’ which has the
same structure as the right hand side of (3.2). To obtain this upper
bound we substitute the lower bound (3.2) into equation (3.1) and find

o > c2( - K\/Gw)+eaf(l- u)g(v)) mR. (3.3)
Now define 7, such that

fA-um)>f Vp>m, (3.4)
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where f is a given constant in (0, f(1)). Multiplying inequality (3.3)
by v' and integrating the result from 7 > m to +oo gives, again using
v'(+00) = v(+o00) = 0,

_ e _ pv(n) :
('v’(n))2 > —2c2K'/0 \/G(z)dz+2c1c2f/o g9(z)dz in [m,+00)

v (3.5)
We now define 7; by v(7;) = 6. The concavity of g in (0,6) implies

) < Sosaoln)  in [my+oo) (36)
and the monotonicity of g that
/ov g(2)dz < vg(v). (3.7)

Thus (3.6) and (3.7) imply

v(n)
G(o(n)) =/o 6(2)dz < %y(v(n))z in [m,+00),  (3.8)
VG@m) < C@)g(v(n)  in [m, +o0), (39)
where

C(6) = 1/&%

Setting § = max{m, 7} and substituting (3.8) into (3.5) gives
o2 _ v(n)
@) 2 (-20RC@) +210]) [ o)z in 7, +00).
0

We now proceed as follows:
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1. Suppose g'(0+) = +4o0o. Then C(8) \, 0 as é§ \, 0 and we can
choose § sufficiently small so that

2c1c2f— 262KC(5) >0,

which yields
(v'(m)* > K*G(v(n))  in [fj, +00),
or
v'(n) < -KVG(v(n)  in [, +00), (3.10)

with

= J26162f— 2621?0(6) .
Combining the bounds (3.2) and (3.10) we find

’U,

-K<
= VG@)

<-K in [7—7’ +°°)'

We integrate this expression from 7, to m2 with ;y < 7 and m, m2 €
(7, +00). This gives

um) g4, _

From this expression the statement of the theorem immediately follows.

2. Suppose ¢g'(0+) < +00. Then g € C®(RJ) and a local unique-
ness argument near v = 0 shows that no finite wave can exist in this
case. It remains to show that

1
TG ¢ L(0,6).

This follows from (3.9). We have

1 1
7G 2 Cogt) £ L9
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as a consequence of the differentiability. =

When 715 € L(0,6) we have a precise result about the behaviour
of v near the point b.

Theorem 3.8. Let g be as in Theorem 3.5 and let {u,v,c} denote
a travelling wave with a penetration front. Define w: R — R{,F by

u(n) 4,
w(n) = /0 O}

Then

w'(n) > —\/2c1c2f/(1)  forp<d
w'(n) = —v/2c162f(1) fornp—b-—.

Proof. Multiplying equation (3.1) by v' and integrating the result
fron 7 to b with n < b yields

and

b b
3P0 = a [ V(e ds+aa [ £1- ()0 (s
n n
for 7 € (—o00,b). We divide this expression by G' and obtain

1, fao'(s)ds [ (1 u(s))g(v(s))v'(s)ds
--w'(n)’ = =—F———+cc
2 TGo(n) | 1 G(v(n)) '

Now add c¢yc; f(1) to both sides. This gives

f: v'(s)%ds
G(m) T

+ee J2AFQ = u(s)) — F(1)}g(v(s))v'(s)ds
s G(o()

. —';— w’(n)2 + c1c2f(1) =0
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=: A1 + A2

for 1 € (—o0,b). Since A; + A; > 0 the desired inequality for w’ follows
inmediately. It remains to show that A; + A3 — 0 as  — b—. Using
inequality (3.2) in the expression for Ay results in

b G(v(s))ds
é'a'((]}%‘ <2ae3f(1)(b—n)  in (—o0,b)

and thus A; — 0 as n — b—. To show that A; — 0 we first choose ¢ > 0.
The continuity of f and u and the fact u(b) = 0 yields the existence of

Ne < b such that
fA)-fQ-u(n)<e
for all 7 € (9¢,b). This means

Ay <2018 f(1)

Az < cicz¢,

from which the result follows. [ |

4. LIMIT CASE D \, 0

We study here the behaviour of the travelling waves as they ap-
proach the limit D \, 0. Then the influence of dispersion and diffusion
vanishes.

Theorem 4.1. Suppose H(i)-(iit) are satisfied. Let {D,}32,
a sequence of positive numbers for which D, \, 0 as n — oo. For
each n € N, let {un,vn,c} denote a travelling wave corresponding to
D = D, and the same boundary conditions (BC), which has been
translated such that u,(0) = 4 for some @ € (0,1). Then there ezist
functions u,v : R — [0,1] and a subsequence n; — oo such that for all

KCCR

un, —» %  pointwise on R and in C(K)
vy, > v  ae.on Randin LYK) forall ¢ > 1.
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for n; = co. Moreover we have
v = in R
and u satisfies the problem
u € CY(R);
(P){ v = —af(l-u)g(u) inR;

u(—o00) = 1, u(+00) = 0.

- o 3
Proof. Introducing the constants ¢; = —k and ¢3 = 22" in

equations (1.9) yields

v = —c1 f(1 - u)g(v) (4.1a)
v = %(v— u) (4.1b)

in R. Note that both ¢; and c3 are independent of D. Since 0 < u, <
1, 0< v, <1, —e1 f(1)g(1) < ul, < 0and v}, <0 forall n € N, we
obtain that

lualloors  Nuplloors lvnlleor and lonllr

are uniformly bounded with respect to n. Applying the Arzela-Ascoli

Theorem to the sequence {u,}3%; and using the compact embedding

WU (K) — LY(K) with 1 < ¢ < oo for the sequence {vn}32; gives that

there exist functions » € C(R) N W1°(R) and v € L*(R) such that
0<u,v<1 on R

and a subsequence n; — oo (denoted here again by n) such that

u, = u  in C(K)
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and
v, = v  in LY(K)
for all K CC R. Equation (4.1b) gives

D
l|vn — unll1r = T:-Hv:;“l,n-*o asn— o0,

from which it follows that (v possibly redefined on a set of measure zero)
v =v inR.
We now conclude that

f(1 = up)g(vn) — f(1 - u)g(u) a.e. in R.

Using this in equation (4.1a) for (u,,v,) and passing to the limit for
n — oo leads to
v € CY(R)
and
v = —af(1-u)g(x) inR. (4.2)

It remains to verify the boundary conditions for . The monotonic-
ity of u and the normalization u,(0) = w(0) = # € (0,1) implies
that u(—o0) € [#, 1] and u(400) € [0, %]. This excludes the trivial limits
u = 0 and u = 1. The proof that indeed u(—o0) = 1 and u(+o0) = 0
is given in detail by [vDK]. =

Corollary 4.2. The function u from Theorem 4.1 satisfies

(i) If a := inf{n € Rl|u(n) < 1}, thena > —o0 & % € L(0,6) for some
§>0;

(i) If b := sup{n € Rlu(n) > 0}, then b < +o00 & 1 € L*(0,4) for
some 6 > 0.

Theorem 4.3. Let { up, vp, ¢} be a monotone non-increasing
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travelling wave satisfying boundary conditions (BC) and let u be a mono-
tone non-increasing solution of Problem (P). Further let x : [0,1] - RY
be defined by '

x(u) = a1 f(1 - u)g(u)

and suppose there ezists i € (0,1) such that x is non-decreasing in (0, i)
and non-increasing in (i,1). In addition suppose that g is concave in
(0,1) and if g degenerates in zero, then also assume

g—(;l € L(0,1). (4.3)

If the functions up and u are normalized such that up(0) = u(0) = 4,
then

C
lup = ulloo,r < Déf(l)Li

and
c o\ g~
llop = vllea,r < D-{F()L: + (1 - @)g(@))
for all D > 0 and i = 1,2. We use here i = 1 to denote the non-

degenerate case with
L, = 4'(0)

and i = 2 to denote the g-degenerate case with

1
L2 = / Lz)dz
0 4

Proof. We write equation (4.1b) as
D
vp = —vp+up inR
c3

and substitute this expression in equation (4.1a) to obtain

!

D .
up = —ef(l- uD)g(z:;le +up) 2 —x(up) inR,
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where we used the monotonicity of ¢ and v, < 0. For u we have the
equation o
v = —x(uv) inR.

Taking the difference of these equations and testing with (u—up)* gives

-1} < -6 -x@o)e- )t R
Since u,up < % in R*, the monotonicity of x in (0, %) implies
-;—{(u—up)+2}f50 in RY.

With w(0) = wup(0) this gives

u<up inR*t.
‘Testing with (u — up)~ gives by the same arguments

u2> up ih R™.
Thus we have

@>up > u=x(u) < x(up) inR*

and
u>up > 4= x(u) < x(up) inR™.

At points where u, up and vp are simultaneously positive we have

(up — u)' = x(w) - e f(1 up)g(f;v',, + up)

< x(up)—eaa f(1- "D)g(c_Da'”lD +up)

9(Svp + uu)}

9(up) (44)

= x(un){1 -
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= x(up)H (gv'n), |
where
_ ,_9(a+up)
Hle) =1 g(up) ~

Because g is concave we have for a < 0

g(a+ up) > g(up)

a+up up

and thus o
H(a) L ——.
up

Hence (4.4) can be estimated further to give

I
Dvp
C3 Up

(up — u)' £ —x(uD)

D z—; f(1 = up) _g_('_:_t;;) vp. (4.5)

We distinguish the following cases: If g'(0%) < oo, then the concav-
ity implies

1) < ¢(0),

which gives in (4.5)
(up—u)' < D f(1)y (0)vp.
From this we deduce

(up —u)(n) < D 5;- (1)¢'(0)(vp(0) — vp(n)) <

< D — f(l)g (0) forp>0

and
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(u—up)(n) < D — F(1)¢'(0)(vp(n) - vp(0)) <

<D = f(1)g'(0) forn<0,

c
C3

which gives the desired estimate for ||up — u||co,r in the non-degenerate

case.

If ¢'(0%) = oo, we use again the concavity of g and vp < up to
obtain

g(up) < 9(vD)
up ~ vp ’
which results in

(up—u) < -D a f(1=up) 9(vp) vh.
C3 , Up
This leads to

v(0)
(uD—u)SDc—lf(l)/ Mdzs
€3 un) %

1
gDc—lf(l)/ 9 4y forn>o,
C3 0 z

which is finite beca.usg ﬂ;’l is integrable as was assumed and

v(7)
(u—uD)SDg-f(l)/ ggZ—)dzs
Cc3 v(0) z

1
SDc—lf(l)/ 92y p<o.
C3 0 z

This gives the desired inequality for ||u—%p||co,R in the degenerate case.

To obtain the result for ||v—vp||oo,r We solve equation (4.1b) which
yields

vp(n) = %’ /n oouu(t) eXP(%(n—t)) dt,
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and thus

(e o]

vp(n) = v(n) = vp(n) — u(n) = %‘ /,, up(t) e;cp(%‘(n —t)) dt —u(n)

in R. Hence

+o00 ¢
lvp(n) — v(n)| < %3/" lup(t) — u(n)| exp (53(17 - t)) dt<h+1,

(4.6)
where

L= 5’:/°° lup(t) — u(t)| ex (°_3( —t))dt<D-c—1-f(1)L-
1= D " D P D n = i
and o
=8 _ SB(n-
h=3 [t - u)) exo (Bin-0)ae
Equation (4.1a) and the structure of x yields
u(n) — u(t) < x(#)(t - ),

implying
D .
I < Ex(u).

Finally we combine (4.6) and the inequalities for I; and I to obtain the
second estimate of the theorem. ®

Example 4.4. Let f(2) = 2” and g(2) = 2™ with p > 0 and
0 < m < 1. The function g is concave and degenerates in zero. We find
L, = 1/m, and the estimates become

c ¢ 1 m
”“D—u”oo,k <D 4 and ”vD"'v”oo,R. <D 2 (—+—)
c3m ca\m m+p
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Remark 4.5. The function

-1
log 2

9(2) =

satisfies all the conditions in Theorem 4.3, except for (4.3). This shows
the necessity of (4.3) in the degenerate case.
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