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ABSTRACT. In this work we study the existence of local solutions for the
Cauchy problem of the hyperbolic-parabolic equation

(Klu’)'+Kgu'+Au+M(t,|A%u|2)Au= f (%)

We represent by A a self-adjoint, positive linear operator of a Hilbert
space, M is a real C'!-function with time dependence, such that M (t,mn >0
for all (t,7) € [0,T] X [0, 00[ and K4, K3 are real functions defined on [0, 7]
satisfying the conditions, K1(t) > 0 and K5(t) > 6o > 0.

The existence of local solution for (*) is proved by Diagonalization The-
orem.
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1. INTRODUCTION

In this work we study the existence of local solutions to the initial
value problem associated to the equation

(K1u') + Kou' — Au — M(t,/ |Vu(t,a:)|2dx) Au=f (1)
Q

where © is a bounded or unbounded open set of R®, M is a real C'-
function with M(t,n) > 0 for all (¢,7) € [0,T] x [0, 00[ and K7, K, are
real functions defined on [0, T, satisfying the conditions K;(t) > 0 and
K,(t) > 80 > 0.

Since K;(t) > 0, on the set of [0, 7] where K;(t) = 0, the equation
(1) degenerates into a parabolic case, therefore, the equation (1) is an
equation of hyperbolic-parabolic type.

When K; = 1 and K, = 0, equation (1) is connected with nonlinear
model of elastic strings cf. Kirchhoff [14] and Carrier [6], that describe
small vibrations of a stretched string when we consider only vertical
component for the tension and there is time dependence. In this case
the temperature of the string at time ¢ is considered. The mathematical
formulation of this model is

0%u

57 " M(t,/Q |Vu(x,t)|2dx) Au = f. (2)

In this work we suppose M a Cl-function in [0,7] x [0, 00[, with
time dependence, such that M(¢,7) > 0 and the temperature of the
string, at time ¢, is decreasing.

Equations of hyperbolic-parabolic type has been studied by several
authors motived by fluids with high speed, which is not our case, cf. for
example Larkin [15]. In the linear case, with non identically vanishing
initial data, we mention the work of Bensoussan-Lions-Papanicolau [3]
and Lions [17]. In [26] Vragov studied the linear problem with null
initial conditions when the functions K; and K, depend on (z,t) for
(z,t) € @ = Q@ x[0,T].
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Nonlinear hyperbolic-parabolic problems were studied, among oth-
ers, by Larkin [15], Medeiros [22], Gadzhiev [2], Bryukanov [5], Popi-
vanov [25], Bubnov [4], Maciel [19] and Ferreira [11].

When K; =1, K; =0 and there is no time dependence, there is a
large number of works connected with the equation

‘(9;7;‘ _ M(/n |Vu(:c,t)|2dx)Au = f (3)

In [24] Pohozaev, [2] Arosio-Spagnolo, [1] Arosio-Garavaldi, the authors
obtained global solutions to problems related with model (3). In [24] and
[2] the initial data {uo,u;} were choosen in a regular class of functions.

When n = 1 we have the work of Dickey [8] in the case that
is the positive real line. His result was generalized for @ = R", by
Menzala [23]. These two results were obtained by the method of Fourier
transforms.

In [20], Matos obtained the local solution of (3) when M(s) > mg >
0 and  is a bounded or unbounded domain of R", by Diagonalization
Theorem. About local solutions of related problems with model (3), we
can mention, among others, the work of Ebihara-Medeiros-Miranda [10],
Crippa [7], Medeiros-Miranda [21] and Yamada [27].

In this work we study the model (1) in an abstract formulation, i.e.,
the eqution

(Klu')'+K2U'+AU+M(t,|A%“|2)AU= f (4)

where A is a self-adjoint positive operator in a real Hilbert space H, Al
is the square root of A, by Diagonalization Theorem cf. Dixmier [9],
Huet [13] and Lions-Magenes [18]. This method allows us to consider
the cases in which there is compactness conditions or when there is no
compactness conditions. Note that this method is abstract and powerfull
and is not used with frequence in nonlinear problems.
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2. TERMINOLOGY AND MAIN RESULT

We use some definitions cf. Lions-Magenes [18], Huet [13]. A field
of Hilbert space is by definition a mapping A — H()), that for each real
number ) is associated to a Hilbert space H()). A vector field on real
number R is a mapping A > u(A) defined on R such that u(A) € H(A).

The real vector space of all vector fields on R will be represented
by F and by p we represent a positive real measure.

A field of Hilbert spaces A — H(A) is said to be u-measurable when
there exists a subspace N of F satisfying the conditions:

a) The mapping A — ||[u(A)||3») is p-measurable for all u € V.

b) If u € F and A — (u(A, v(A))s») is p-measurable for all v € N,
then u € NV.

c) There exists in NV a sequence (tn)nen such that (un(A))nen is
total on H(A), for each A € R.

The objects of N are called p-measurable vector fields. In the
following, A — H()), represents a p-measurable field of Hilbert spaces
and all the vectors fields considered are y-measurable.

The space Ho = [® H(A\)du()) is defined in the following way: a
vector field A — u()) is in Hy if and only if

[ I B < .
R

Two vector fields that are equal a.e. in Hy, relative to the measure
u, will be identified. In Ho we define that scalar product

(,0)0 = [ (W) o mapd() for all 0 € Ho

With this scalar product, the vector space Hp turns out to be
a Hilbert space, which is called the Hilbertian integral or measurable
Hilbertian sum (cf. Lions and Magenes [15]) of the field A — H(X).
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By Ho, @ € R, we denote the Hilbert space of the vector fields u
such that the field A — A%u()) is in Hop. In H, we define the following
norm

hﬁ=M%ﬁ=LVWﬂW&mw0Lu€Hm

The topological dual H!, of H,, is identified with the space H_,
by the isomorphism o : H!, — H_q defined by o(f) = A\?*uy, f € H.,
where u; is obtained by using the Riesz representation theorem. The
duality between H_, and H, is denoted by (,)-q,q-

Let H be a separable Hilbert space. We represent by (,) and | - |,
respectively, the inner product and norm in H. We consider in H a
self-adjoint operator A such that (Au,u) > 0 for all u € D(A), where
D(A) is the domain of A.

Let T > 0 be a fixed real number. We consider the following as-
sumptions about the functions M, K;, K, and initial data:

M e CY([0,T] x [0, 00[, R), M(t,n) > 0,
¥(t,n) € [0, 7] x [0, +oo]. (2.1)
2 M(t,m) <0, ¥(t,n) € [0, 7] x 0, +oof. (22)

{uo,u1, f} € D(A%) x D(A%) x L? (O,T; D(A%)). (2.3)

K, € Wh(0,T), Ki(t) > 0. (2.4)
Ky € L®(0,T), K() > 6 > 0. (2.5)
Ka(t) - %[K{(t)| >6>0ae. in |0, T]. (2.6)

The following theorem is the main result of this work.
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Theorem 2.1. Under the hypothesis (2.1)-(2.6) there ezxists 0 <
To < T and a vector function u: [0,To) — H satisfying the conditions

( we L®(0,To, D(A))
! uel? (O,To; D(A%)) (2.7)

VEu' € L*® <0,T0; D(A‘l‘))

\

(K'Y + Kau' + Pl + M(-, |A%u|2)] Au= fin L? (O,TO;D(A‘})'>
) (2.8)
u(0) = uo,  u'(0) = uy. (2.9)

We observe in this case that A is not necessarily a coercive operator.
Then we consider for each ¢ > 0 the operator A, = A+¢l. Therefore, A,
satisfies the conditions of Diagonalization Theorem cf. [9], [18] and [20].

It follows that there is a Hilbertian integral Ho . = ® H(A)dp.()) where
pe is a positive Radon measure with support in JA.,00[, 0 < A, < ¢,
and an unitary operator U, from H onto Hg ., such that

U (A%u) = XU, (u) for all u € D(AZ) = D(A%), a > 0.

U, is an isomorphism from D(AZ) onto H,,. where D(AZ) and D(A%)
are equipped with the graph norm,

|u|§)(‘4?) = |u|? + |A%u|? for all u € D(AZ).

For simplicity we will write H, instead of H, ¢, @ € R and observe that
the norm | - |, of H, depends on €. We also observe that if @ > 3 then
Ho C Hp.

The vector function u that satisfies Theorem 2.1 is obtained as the
limit when ¢ — 0% of a net of functions (u¢)o<e<1, e in the class (2.7)
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for each € > 0, and satisfying the family of coercive problems:

(vt + Koot + |1+ 00 (- abucr) | A=
in L? (O,To; D(A%)f) (2.10)

ue(0) = up, ul(0) = uy.

Applying formally the djagonalization operator U, to the equation
(2.10), we have that formally v, = U.(uc), i.e. ve(t)(A) = ve(t,A) =
Ue(ue(t))(A) satisfies the problem

(K1vl)' + Kavl + [1 + M(-, |v€|;)] Ave = g, in L? (O,To;,’h!_})

v¢(0) = vo, vL(0) = vy,
(2.11)
where voe = Ue (o), v1e = Ue(t1), ge = Ue(f).

The problem (2.11) is equivalent to (2.10) because U, is an iso-
morphism from H onto Hp . then, if v, satisfies (2.11) we have that
ue = U1 (v,) satisfies (2.10).

We also observe that on the set where K;(t) = 0, the equation (2.11)
degenerates into a parabolic equation then, we perturbe the equation
(2.11) adding the term £v”, 0 < £ < 1, £ € R, obtaining the perturbed
problem: ‘

(o) + Kuvlg + [1+ 31 el ) | poce =
in Lz(o,To;H,,%) (2.12)

veg(0) = voe,  ge(0) = vie

where K¢(t) = K1(t) + €.
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The solution ve¢(t, A) of the problem (2.12) is obtained as the limit
of a sequence of local solutions (ve¢k)ken, Where vegy for each k € N is
a solutioin of a truncated problem associated to (2.12).

3. TRUNCATED PROBLEM

We denote by Ho x, k € IN, the subspace of Hp of the fields v(A)
such that v(\) = 0 p-a.e. on [k,+oo[, and by vy the truncated field
associated to v, such that

{ v pu—ae on|A,k[,0< A <e.
Vg =

0 u—a.e. onlk,+oo[.

The subspace Hp x with the norm M, is a Hilbert space and v, €
Ho,x. We have that vy — v strongly in H,, and if g is the truncated
field associated to g € LP(0,T;Ha), 1 < p < 00, then g — g strongly
in L?(0,T; Hq)-

The truncated problem associated to (2.12) consists of finding one
field veex : [0, To) = Ho,k,0 < To < T, satisfying the conditions

Veek € LOO(O, TO;HO,k)
vle € L2(0,To; Ho k) (3.1)

\/Klgvéek € Loo(O, To; HO,k)

(K]f’véek)’ + széfk + )\'veek + M(-, Ivefkli))‘vsfk = Gek
in L2(0, To; Ho,k) (3.2)

Veek(0) = voek,  Vegk(0) = vViek,

where voek, Viek, gek are the truncated fields associated to v, Vie, 9e
respectively.
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We represent by X the Banach space L*(0,T%;Mo ) equipped
with the norm

[vegk|x, = ess sup |veck(t)ly,  veek € X
0<t<T:

and we define the map Si by Sk : Xi — Xk, Sk(veek) = Week, Where
Week is the unique field that satisfies the conditions:

{week,wgsk, \/Klfvéek} € Lw(O;Tk;Ho,k) X L2(0,Tk;7'{o,k)><

(3.3)
X L°°(0,Tk; 'Ho,k)
(Klgwéek)’ + K2'w25k + )\wefk = Gek — M(’ |vs£k'§) ’\vcfk
(3.4)
in L*(0, Tx; Ho k)
wsfk(O) = Vock, wLEk(O) = Mek- (3.5)

Taking the scalar product in Ho of both sides of (3.4) with 2w, (t)
and integrating from 0 to ¢t < T%, we have

|VE el (8)13 + [y (2K2 + K1)(5)|weer(s)[3ds + |lweer($)]] <
< |V Ky (0) + f'"leltz) + |”05|§2. + |Gsk|%,o <

< Co [|U1e|(2) + |”03|2% + |Gsk|§,o]

(3.6)
where

Gs,k(t, A) = gek(t, A) - M(t, "vefk(t)lz%) A’veek(t, A),
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and by |-|p,o We represent the norm of L?(0,Tk; Hqa), 0 < p < 00, a € R.
Cy is a constant independent of 0 < e <1, 0<{<1and k€ N.

Let veex € B, = {vk € Xk, |vk|x, < a}, then we have
|Gekl30 < 219130 + 2C1cka® T (3.7

where
Cie = max{|M(t,n)|%; 0<t < Ty; 0< n<a’} (3.8)

Substituting (3.7) into (3.6) then it follows that

|Sk(veer )k, = |weeklk, < Foe +2CoC1ca®Tx (3.9)
where

Boc = o on g + ool + 2o (3.10)

If Vetks '17,5k € B, and Zegk = S('v,_-fk) - S(fv\sek) then Zetk satisfies
the problem:

{ (Krezier)' + Kazigr + Mzegk = Fegr in L2(0, Ti; Ho i) (
3.11)

zegk(0) =0, 2 (0) =0,

where

Feek(t, A)=M|t, |v,5k(t)|21 /\’vtek(t, A)-Mit, |"55€k(t)|21 Afl)\ssk(t, A).
2 2
(3.12)

Taking the scalar product of both sides of (3.11) with 22/,,(¢), inte-
grating from 0 to ¢t < T and considering the hypothesis (2.2) we obtain
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t |
IvVEKezier(2)3+ /0 (2K2(8) + K1(3))l2Ler(s)l3ds + lzsek(t)li <

1 [T 2 ¢ ' 2
; / | Fece()l3, , dt +p /0 |2t ea(s)[3ds

where p > 0 is an arbitrary constant.

Using the condition 2K,(t) + Ki(t) > 26 > 0 and choosing p = §
we have

t
|V Klezel:fk(t)lg +/o |225k(3)|(2)d3 + |Zc£k(t)|§/2 < Cs|Fuilio (3.13)

where C3 > 0 independs of 0 < £ <1, 0< ¢ <1, k € N and ¢ € [0, T%].
From (3.2) results

|Fegl2 o < [2C1ck + 8Caca* K] Tk|veek — Deekl, (3.14)
where Cj. is defined by (3.8) and

Cse = max{||[VM(t,n)||?, 0 <t < Tk, 0 < < 24%}. (3.15)
Substituting (3.14) into (3.13) we obtain

¢
IVEesier(® + [ 1ten(o)lbda + e <

< C3[2C1ck + 8C2ca* K] Tk|vegk — Deckl,
or

IS(vcfk)_S(acEk)l?Xk < [2C3CIsk+8C3C2ca4k]Tk|'ve€k—%}ekl?x,,- (3.16)
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Choosing a® > 2E, where E; is defined by (3.22) and
Tk = Tk(s) = min {%, (4000151602)_1; (4C3Cl€k + 160302,0416)_1}

it follows, from (3.9), (3.16) and noting that Ey > Ep ., that S; has
a unique fixed point veex in B,. Therefore the truncated problem has
unique solution on [0, T%].

In order to pass the limit when £ — oo in the truncated problem
we need to establish priori estimates:

FIRST A PRIORI ESTIMATE

Taking the scalar product in Hy of both sides of (3.2) with 20, (2),
integrating from 0 to ¢ < T and using the hypothesis (2.2) we get:

IVE1evlex (D13 + J3 (2Ka(s) + K1 (8))|vleh(s)3ds + lveer (D} ;o +
+J/V-’\(t, Iveﬁk(t)l?}) < |VEL(0) + Evield + |”o:|i+

+M (0, [v0cl}) + % fy lger(s)l3ds + p fy 0Lex(s)lEds

where p > 0 is an arbitrary constant:

Using (2.6) and choosing p = § we have

WELLe BB+ fy [ohen()lds + lvege (D)3 + M (8, [veee(8)]}) <

< C4[|'vls](2) + |005|2% + ﬁ(O, |110e|f}) + lye|§,o]

(3.17)
where Cy > 0 independs of 0 < ¢ <1, 0< £ <1, k€ N, t € [0,T%] and

M(t,n) = /0 ’ M(t,7)dr.

We have the following estimates
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N .
|”0e|2§ = |AZuo)? < |uol? + |[Atuo)?, O0<e<1
|”1e|g = We(ul)lg,o = |u1|2, 0<e<l
|913,0 = [U:(F)I3 0 = |f|§,ﬂ(o,:r;11), 0<e<l.

Substituting (3.18)-(3.20) into (3.17) we get

t
IV Rrevies + [ Iuten(o)lds + Iocen(t)l} < Eo
where
Eo = Cy[lur]® + luol* + | A3 uo|? + | flLa(0,z:r) + Co

and

Co = max {|M(0,n)}; 0 < 7 < |uol® + | A% uo[?}.

SECOND A PRIORI ESTIMATE

Taking the scalar product in Hy of both sides of (3.2) with
2)\‘%0;5 () and integrating from 0 to ¢ < T, we obtain

t
|v Klev;{k(t)li + /0 (2K2 + K{)(s)lvéekﬁds + lvcék(t)|2§+

+M(t, |”e€k(t)|§)|veek(t)|§—

t
0
_/o aM(s,|'Ucfk(3)|2%)|’veek(s)|2%d3S

413

(3.18)
(3.19)

(3.20)

(3.21)

(3.22)
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<| KIE(O)vlskl?} + Ivo.sklix + M (0, Ivoacli)lvo;lelf}
t ' 2 d 2 2

+ IM (3,Ivefk(s)lé)”T"ték(3)|1|”=£k(3)|1ds+
0 S 2 4

t
+ [ 2laau(allyleten(o)lyds.

We have

2
LS 2{vger(8)]1veek(s)l3
2

d
|gs'”eek(8)

then, using the hypothesis (2.2) and (2.6) we get
t
v/ Rreotes(l} + 26 [ nece(o)jds + boe ) +

+ M(t, |”e€k(t)|2%)|”c£k(t)|§ <

1 t
< 1y/Kse@miel} + (€1 + Dlonely + = [ lac(e)jae

C t t
+ 22 | [vee(s)l3ds + (14 Co)p [ |vign(s)l}ds
P Jo * (i} ‘
where p > 0 is an arbitrary constant, and

C1 = max {|M(0,n)}; 0 < 1 < |uol® + 4% uo|’}
Cp = max {|M'(t,n)l; 0< t < T; 0 <0 < Juof? + |43 uol*}.

Choosing p = ﬁ and from the estimates true forevery 0 < e <1



Hyperbolic Parabolic Equations... 415
1
I'chli = |Afu1|? < |ua]? + |At w2
K3
lvoel} = |42 uo® < 23 [luof* + |ATuol’]

1
|gc|§,} = |uz(f)|§,} < |f12a,r.m) + 1A% flLa,r,my

we obtain:

t
IV Erevies O + [ loten(o)3da + Ioces ()3 +
(3.23)

t
+ Mt s Iocen(®} < B+ C [ Jocen(s)lgas
where
Ey =Cy[(jua® + 4% w1 ]?) + 23 (Juol? + [A% o) (1 + C1)+
+ Ifli’(O,T;H) + IA%fﬁﬁ(O,T;H)]

and C4,Cs > 0 are constants independents of 0 < ¢ < 1,0 < £ < 1,
k€ N and t € [0,Ty).

If heer(t) = |v¢£k(t)|§, 0 < t < Ty, from inequality (3.23) we obtain,

t
0 < hees() < Ey + Cs / hegr(s)ds, 0<t< Ty, (3.24)
0

If Oeer(t) = [y h3ci(s)ds then 62, () < (Ey + Csbeer(t))® and Ey +
2 i
Cseei(t) < {1—:2%’15-@}2, 0<t< T
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Taking T* = ﬁé—c—.s— and 0 < Tp < T*, Tp a fixed real number, we
1
have ’

t
WVEa®h + [ Wa@hds + @i <B 02

independent of k € N, 0< e <1,0<¢<1landt€[0,Ti,0< T} <
. E? 1
To<T , where FE; = {m?m}g.

From the estimate (3.25) it follows that the local solution v.¢ can

be extended to the hole interval [0, Tp], To independent of ¢, £ and k. In

this interval the estimate (3.25) holdsforallk e N,0 < <1,0<¢<1
and 0 <t < Tps.

4. LIMIT OF THE TRUNCATED SOLUTIONS
The solution v¢x of problem (3.2) satisfies

(K1gVeer)' + Kavger + Avegr + M (-, lveekli)f\%ek = ek
(4.1)
in the sense of L? (0, To;’H_}).

From veer € L°°(0,To;7'{%) and vy € L2(0,T0;H‘}) it follows
that veex € C°([O,To];'H%) which implies that the function .¢x(t) =
|veek(t)|2 is continuous on [0, Tp).

2

From (3.21) we have that

‘Peék(t)SEm VkeN,()(ESl,O(fSl,OStSTo. (42)
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Given tg,t; € [0,Tp) we obtain

Peer(t1) = eer(to)l < Colveek(t1) — veer(to)ls <

" (4.3)
< Cs/ |’Ué€k(8)|}d8 < C7|t1 - toll2~
to
forevery k€ N, 0<e <1, 0<{<1, to,t; € [0, To].
As a consequence of (4.2) and (4.3) and the Arzéla-Ascoli theorem,

exists a function . € C°([0,Ty],R) and a subsequence of (@e¢k)keN,
still denoted by (@c¢k)keN, such that

Week = Pee  in C°([0,To), R) when k — oo. (4.4)
By the assumption M € C([0,T] x [0, +oo[, R) it follows

M, lveer()}) = M(,0e(1)) in C°([0, oL, R).  (4.5)

Therefore, from this convergence and estimate (3.25) we obtain

Vegk — Veg in L™ (O,To;'H.}) weak star (4.6)
Vigr — vpe in L (O,TO;H}) weakly (4.7)
vV K1gvier = /K1gvl in L(0, To;'H.}) weak star  (4.8)

M (-, veer()1}) = M(-, 0ee(+)) in C([0, To), R). (4.9)

From the convergences (4.6)-(4.9) and observing that g, — g, in
L*(0,To; H3), taking the limit in (4.1) when k — co we obtain:
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(K1gvze)' + Kavge + Mveg + M(:, pee())Aveg = ge
in the sense of LZ(0, To;'H_}) (4.10)
vee(0) = voe, vee(0) = vie.
Lemma 4.1. If v is the field that satisfies (4.10) then pee(t) =
|v€€(t)|2% comes up for every t € [0, To).

Proof. We consider Wegk = Vegk — Ve¢ then weey satisfies the prob-
lem

(K1gwler)' + Kowigp + Mweek + M (-, |veer ()1 ) Mveer—

(4.11)
"‘M(‘, ‘P('))Avﬁ = Gek — Ge in L? (O,To;H_})
Wegk(0) = voek — voe — 0in Hg, strongly, when k£ — oo

(4.12)
wéek(O) = Viegk — Vie — 0 in ’H}, strongly, when k£ — oo

Taking the duality (,)_1 1 of both sides of (4.11) with 2w, we get

( ((K1ewlen(1))s 2wign(D) + (Kawge (), 2weei () +
+(Awegi(t), 20Lei(t)) + M (2, |veer(t)[] ) (ween(t), 2wie(t)) =
= (gek(t) — 9¢(1), 2w¢,s£k(t)) + [M(t,(t))-

-M(t, |ve€k(t)|";)] (Avee(), 2wig,(2))-

(4.13)
We have
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, .
{ £ V/Erewlew(t)|y = 2(v/EKrewlen(t), VEiewie(t)) = (4.14)

= (K1gwger (1), 2wee(t)) 1,1 + (K wigy (), weer(t))—1 .1

44

and

3 [M (2, |veer ()1} lveen(D)}] = M (t: lveen(®)1}) %[week(t)lzﬁ
Hweer(2)[ FM(t lveer(D)]) + M (t, veek(t)13) %|”e€k(t)|21;]

(4.15)
where M'(t,n) = %M(t,n).

Substituting (4.14), (4.15) into (4.13) and integrating from 0 to
t < Tp we obtain

t
IRl + [ (Ko + Ki)o)ulen(o)ids + hoeer()} +
ta
+ M (2, lvee(t)[3) lweer ()} — / 35 M (5, veer(9)1}) ween(s)l}ds <
0 S 2 2

|wegx(s)|j ds+

t
d
< Bt [ M/ oer(oI)] | loeen(0)
0 8 2
i
+2 [ 1Mo, 006)) = M (s Iogal o)) Il uten(ol

t
+2 / 19k(5) — 9e(8) |0 ex(5)1ds.
(4.16)
where
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2 .
E3er = l\/Klﬁ(o)('vlek—vle)lo'*‘lvOek"'vlzli+M(0,|”Osk|?})|”05k—”0c|g-

Considering the hypothesis (2.2) and estimates (3.25) we have

t
|VE1eweer (D5 + Jo [ween(s)lods + [weer(t)I3+
+M (1, [oeer(t)[}) lweer(t)l} < Eaert (4.17)
+Cs fy [1+ [viei(s)l} ds] lwegn(s)[3 ds
where E;;ek — 0 when k — oo independently of t € [0, Tp].
The Gronwall’s inequality and (3.17) imply that

klim |week(t)ly =0 uniformly in {0, To]. (4.18)
—00

Finally, given t € [0, To] we have

{ |ee(t) = Ivee(tT| < 10ee(t) — eer()] + |@er(t) — lvee (DI} ] <

< Ipee(t) = Peer(D)] + [[veer()lg + [ve()]3] lweer()13 -
(4.19)

Taking the limit when k — oo in (4.19) and using (4.4) and (4.18),
we have from (4.19)

ee(t) = |vee(D)}; Ve €[0,T].

From the estimates (3.25) and the Uniform Boundedness Theorem
we obtain
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'”ef(t)lg;t < Co
h |ve(s)|1ds < Cy (4.20)
Kigvge($)l} < Co

where Cg > 0 is a constant independent of 0 < ¢ <1, 0 < § <1 and
te [0, To]

From the above estimates we conclude that exists a vector field v,
such that
Veg — Ve in L™ (O,To;’H.}) weak star
vée — ol in L? (O,To;'H%) weakly (4.21)

VEievl - vVEiv, in L? (O,TO;H}) weakly.

Using the same arguments used to proof (4.5) we conclude that

M(', |ve€()|2%) - M(', I”e()li) in Co([ov TO]’R)' (4‘22)
Taking the limit in (4.10), when £ — 0% we obtain

{ (K19}) + Kyv) + Mve + M (- |vel}) Mo = ge in L2(0,To; H_3)

v¢(0) = voe, v2(0) = vie.
(4.23)
The vector function u, : [0,To] = H defined by u(t) = U (ve(t))
satisfies (2.10) and from Uniform Boundedness Theorem we obtain the
estimates
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3
e + [4d ue(®) < Co
Jo? lu(OPdt + [P |aul())Pdt < Cro  (4:24)

1
WEiu(t)]? + |42 (VEu)(#)? < Cro
where C19 > 0 is a constant independent of € and ¢ € [0, Tp).

From the estimates (4.24) we conclude that the family of continuous

l I'd
functions @,(t) = |A2 u.(t)]* satisfies the hypothesis of the Arzel4d-Ascoli
theorem, therefore, there exists a continuous function ¢ € C°([0, Ty, R)
and a subnet of (#¢)o<e<1, Which we still represent by (u.)o<e<1, such
that

[ w, > uin L® (O,TO;D(A%)) weak star

ul — o' in L? (O,TO;D(A%)) weakly

< (4.25)
VEu, — /Equ' in L*(0,To; D(A%)) weakly

M (t, | A2 ue(t)?) — M(t, (1)) in CO([0, To}; R).

Using the convergences (4.25) we can take the limit in (2.10), when
¢ — 01, and we obtain

{ (K'Y 4 Kau' + Au+ M(59(-)) = f in L*(0, To; D(AY))
u(0) = uo, v'(0) = uy.
(4.26)
To complete the proof of Theorem 2.1 it is sufficient to prove that
o(t) = |Au(t)?, ¥t € [0, To].

Lemma 4.2. If u is the field that satisfies (4.26) then ¢(t) =
|A¥u(t)[2,Vt € [0, Ty)].
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Proof. Let z € D(A%) and w, = u, — u. By (4.26) we obtain

{ L(Kywl(t),2) + (Kawi(t),2) + (Atw,(t), At2)+

+M(t, 0c(t)) (AT uc(t), ALz) — M(t, o(2))(Atu(t), A22) = 0
(4.27)

for every z € D(A%).
If we take z = 2w(t) we have

2(Atw,, Atwl) = 2(A§w£,A;‘lw’c) - 2¢(we, wl) (4.28)

d

2 . "y
dt = 2(Ad w.(t), Afw(?)) (4.29)

Aw,(t)

and

{ LMt oe(t))| AT we (D] = M(t, 0o(8) B1AZ we(t)2+

A w0 [2M (2, () (Adue(t), ARl (D) + ZM(2,0e(8))]-
(4.30)

Substituting (4.28)-(4.30) into (4.27) we have
d 1|2 1 2 3 | 2
| VE 1w () + [A2we()" + M(2, 0e(2))] A2 we(t)] 1+
0 1
+ (2K + KOl ()" - 5, M (2, @e(1))] Al we(t)* =

= 2M'(t, pe(1)) (AT ue(t), A} ol (1) | A} we (D) +

+2[M(t, 0() - M(t, 0e(t))] (A u(t), AT (1)) + de(we(t), we(2)-
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Integrating from 0 to ¢t < Tp and cdnsidering the hypothesis (2.2)
and (2.6) we obtain

IV E1wi(t))*+

+26 / [w(s)[ds + [Adwe () + M(t, o)) Adwo () <
<2 [ slabulab il vt a0
+2 / M (s, 0e(s)) — M(s, 0(5)) | AT u(s) || AT wl(s)]ds+

+4e /o [we(s)llw!(s)lds.

We observe that |M'(t, o(t))], | A% ue(t)], |4} u(t)| and |Atwl(t)| are
bounded independent of ¢ and ¢ € [0,7p]. We also have that the terms
|IM(t, e(t)) — M(t,0(t))| and 4¢ fot |we(8)||wl(s)|ds converge uniformly
to zero in [0, Tp) when ¢ — 0F.

From (4.31) we have

t
A2 w.(t)? < O(e) + Cu / [1+|Adul(s)2])|Af we(s)Pds  (4.32)
0

where C1; > 0 is a constant independent of ¢ and ¢, and lim,_,o+ O(¢) =
0, independent of ¢ € [0, Ty).

From (4.32) and Gronwall lemma we have
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|A§ we(t)]* — 0 uniformly in [0,7o], when £ — 0. (4.33)

Given t € [0,To] we have

lo(2) — 1A% u(®)?] < l@(t) — @] + |@e(t) — |AZu()?]  (4.34)

and

loe(t) - 143 u(D)?] < || Afue(t)? - |AF )|+
+lAdu(r)? - |AYu(r)? < (4.35)
< [14due(t)] + |Adu(o)l]| A2 we ()] + elu(e).

Substituting (4.35) into (4.34) and observing that |A§ ue(t)|+
i
+|AZu(t)| is bounded independent of € and t € [0, To] we obtain

lo(t) — 143 u()?] < |o(2) — pe(®)] + elu(®)? + CralAdwe(t)]. (4.36)

Since ¢, — ¢ in C%([0,To),R) we obtain from (4.36) and (4.33) that
@(t) = |A3u(t)|?> when ¢ — 0*.

5. APPLICATIONS

(i) Let Q be a bounded open set of R" with smooth boundary I' and
A = —A the operator defined by the triple
{H}(2); L*(2); () Hy)}- As a consequence of Theorem 2.1, we
find a function u: [0,Tp) — L?() such that
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(K'Y + Kyu' — [1 4 M(t, Jo IVu(t, z)|%dz)) Au = f
uw(0,2) = uo(z), 2%(0,2)=w(z), z€Q

u=0 on Xy =Ix]0, T

We observe that the example 5(i) can also be solved making use of
compactness arguments which can not be applied to case 5(iii).

The importance of the diagonalization method is that it allows us
to solve problems when 2 is a bounded open set of R® and we have
compactness condition, or in the case where  is unbounded and so
there is no compactness condition.

(ii) Let 2 be as (i) and B the operator defined by the triple { H(Q);
L*(Q);a(u,v)} where

a(u,v) = Z/a,,(z)gu ;’: dz+/ao(x)uvdz, u,v € HY(Q)

i,j=1

with ag,a;; € L*(Q),a:j = aji,i,j = 1,-++,n,a0(z) > ap > 0 for
almost z € 2, and exists a > 0 such that E"J 16ii(z)EE; > alél?,
for almost z € Q and every £ € R™.

The operator B is B = -X7,

P o (T 331_) + aoI with domain

D(B) = {u € H}(Q), 5%% =0onT}

where n
au Z au
m—= a;j(z)7— cos(v, ;)
31/13 i7=1 8z,

v is the outward normal to T.

Let A be the operator A = —X7,_, 52 2 (a:;52- ) with domain D(A)
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= D(B). A is a self-adjoint operator and by Gauss lemma it follows

that o
(Au,u) = (— > aa (a,J(z)a ), )=

i,j=1

/ E a,](z)aau ﬂdz

1,7=1

/ Z cz,3(ac)a -u cos(v, z;)dI’ >

1,7=1

> a|Vuf?!,  Vue D(A).

Hf (aij)nxn = I where I is the identity matrix than A = —A and D(4) =
{ue HY(Q),% =0 on T}.

By Theorem 2.1 exists a function u : [0,Tp] — L%(Q) such that
(K1) + Kpu' — [1+ M (2, [, |Vu(t,2)|’dz)] Au = f
u(0,2) = uo(z),  (0,2)=wm(z) z€Q
g% = 0 on Iy = I'x]0, To|

iii) Let @ = R™ and A = —A the operator of L?(R®) with domain
D(A) = H(R").

By Theorem 2.1 exists a function u : [0,Tp] — L*(R"™) such that
{ (Kyu') + Kyu' — [1+ M(2, [ga |Vu(t, z)|%dz)]Au = f

u(0,z) = uo(z), 2%£(0,z)= uy1(z), =z€R".

We observe that when the abstract results are realized in the concret
case (iii) with K; = 1, K; = 0 and M depends only on [g. |Vu(t, z)|%dz,
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we obtain the results proved by the method of Fourier transform, by
Dickey [6] and Menzala [19].
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