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A Note on the Extensions
of Eratosthenes’ Sieve

A.R. QUESADA and B. VAN PELT

ABSTRACT. Given k € N, let S; denote the set of natural numbers
relatively prime to the first k£ primes. The k-extension of the Sieve of Eratos-
thenes, recently found, provides a set of rules that govern the positions in Sk
of the multiples of the elements of Sj. In this paper we provide an alternative
approach to the k-extension which yields an easier implementation in parallel
processing. In addition it is shown that, with an appropriate layout of the set
Sk, the rules governing the sieving process can be made similar to those in
the original sieve.
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1. INTRODUCTION

The needs of modern cryptography, fueled by an increase in elec-
tronic transmission of information, and the need for computer-testing
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algorithms, explains in part the resurgence of activity in the area of pri-
mality that we have witnessed in the last twenty five years. The search
for efficient algorithms to generate large tables of prime numbers has pro-
duced excellent new results from, among others, Mairson (3], Pritchard
(4] and Bengelloun {1]. It has also produced noticeable improvements of
traditional algorithms like Eratosthenes’ Sieve.

The Sieve of Eratosthenes is probably the best known way to gener-
ate the table of all prime numbers less than a given natural number N.
The reason for this is that, despite its simplicity, the Sieve is reasonably
efficient. The primes on an initial set of candidates § = {2,3,..., N} are
found iteratively by first crossing out all the multiples of 2 larger than
2 in S. Then, in each subsequent step, the multiples of the smallest
remaining number p (larger than p) in S, not previously considered, are
crossed out. Marking the multiples of p can be accomplished simply by
counting, since they are located p units apart starting at p. This process,
of “sieving” the composite numbers in S, continues until p> > N.

This classic algorithm, as described above, can be readly improved
by first letting the initial set be the subset S; of all the odd numbers
in §; in addition, we can mark the multiples of p, still p units apart
in S, starting at p?. We call this the first extension of the Sieve of
Eratosthenes; and we remark that, quite often, the modern-day Sieve of
Eratosthenes is identified with this first extension [2].

In 1988, X. Luo [7] achieved the second extension by sieving an
initial set S5, obtained from S, that was devoid of both the multiples
of 2 and 3. In 1991, A. Quesada [5] obtained the third extension by
further removing the multiples of 5 from the sieving set S. Finally,
in 1993, Quesada [6] developed the generalized k-th extension where
the initial set of candidates Sj is obtained from S by removing the
multiples of the first k£ primes in §. In each subsequent extension, the
reduction of the size of the new initial set produces a change in the
position of the remaining elements in the set. As a result, the positions
of consecutive multiples of any given number p € S; are no longer p
units apart. Instead, for each p in S a constant finite set of differences
between consecutive multiples of p was found. Then the positions of
the multiples of p in S; were easily obtained by adding cyclically the
elements of this finite set to the position of p. As the size of k increases,
so does the size of this set of differences, making the calculations needed
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for sieving the k-extension too cumbersome to be done by hand. In
this paper we provide an alternative approach to the k-extension which
yields an easier implementation in parallel processing. In addition it is
shown that, with the proper layout of the sieving set, the rules governing
the sieving process can be made almost as simple as those in the original
sieve.

2. NOTATION AND BASIC DEFINITIONS
Let p1,p2,...pi,..., denote the sequence of prime numbers, and
k

let 7x = [[ pi, K € N. The initial set is defined as S, = {z € N :
=1

(z,mx) = 1}. We denote by Ci the subset of elements of Sy less than

Tk; that is, Cx = {¢ € N: ¢ < 7k, (¢,mx) = 1}. We let m; stand for the

cardinality of C which can be easily obtained from the Euler totient
k
function of m; i.e., mg = |Ck| = &(mk) = [[(pi — 1).
=1
Proposition 1. Let Cy = {ey,e2,...,em,}, where e; < e; for
i < j. The following statements hold:

a) Sk =[e1]U[e2]U...U[em,], where [e;] = {x € Sk : z = ei(modmy)}
for 1 < i< my, and [e;]N[e;] = @ fori # j.

b) For1<i< my, [&] = {ei e+ Tky...r€i+ (n—1)mg,...}

c) Sr = {qmx + e : e € Cx, ¢ € NU{0}}, and is closed under
multiplication.

Proof. Part a) simply states that, by the Partition Theorem, the
equivalence relation of “congruence mod wi” partitions the initial set
Sk into equivalence classes which have the elements of C as canonical
representatives. Part b) follows from the definition of congruence mod
Tk in Sk. Finally, from a) and b), we see that Si can be obtained by
adding successive multiples of 7; to the elements of Ci. Furthermore,
(z,7) = 1 and (y,mx) = 1iff (zy, 7x) = 1 yields the closure of Sy under
multiplication.

Definition 2. Ifz € Sk and t € N, then the t-th multiple of z in

Sk will be denoted by (at;). That is, (:;:)= z8;, where s; is the t-th element

OfSk.
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From now on we will refer to a multiple of an element z in Sy, or
to the ¢-th multiple of z in S by a simply saying a multiple of z or the
t-th multiple of z.

MAIN RESULTS

Proposition 3. Let z € S;. Any my consecutive multiples of
fall into different equivalent classes.

Proof. Let zs;,z8i+1,...,ZSi+m,-1 be a set of my consecutive
multiples of z. Proceeding by way of contradiction, suppose that zs,,
z3y € [e:] for some e; € Ck, and u # v, where ¢ < u, v < i+ mg — 1.
Thus we have that zs, = q7x + e; and zs, = g7 + €;, for some
q1,92 € N U {0}. Without loss of generality, assume that s, > s,.
Therefore,

2(8y — 8v) = (@1 — @2) k-

Since z and 7, have no common factors, this implies that m¢|(sy, — s4),
which is a contradiction since by construction 7 > s, — 8, > 0.

Next we show that the multiples of any element x € S that appear
within a given equivalence class can be found, like in the original Sieve,
by counting every z positions starting from the first multiple of z in the
class.

Theorem 4. The difference between the positions of two consecu-
tive multiples of any element ¢ € Sy within a given equivalence class is
z.

Proof. If z = 1, then we are done. So let z € Sk, z > 1, such that
(:::)E (e;], for some e; € C and t € IN. We want to show that the next
multiple of z in Si that falls into the equivalence class [e;] is (;:) +zmg.

Let (:::)= qmi + e; for some ¢ € N U {0}. Then,

t
(a:) tzme = (qri + ;) + 2mk = (¢ + )7k + € € [ej].

Thus ¥ +z7 is a multiple of z in [e;]. All that remains to be shown

is that there does not exist a multiple of z, say (g), such that (75)6 le;]
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and (:::)<(7a':‘)<(:? +z7. By way of contradiction, suppose that such an
2 does exist in (e;]. Thus, (P urg + €, for some v € N U {0}. Then

from (;)<(g:l)<(:::) +z7; it follows that

qmi +ej <ump+e; <(g+ )Tk +ej, andsog<u<g+z.

Now, u = ¢ + r for some r € N, where 1 < r < z. Hence,

t
(':g)z (g+ r)7k +€j = (qmx + €;) + rmy =(:c) +rmg.
Thus, (Z:L) — (at:)z rm, with 1 <7 < z. But (z,7x) = 1 and a:|( (’;) - (;;) )
This implies that z|r, which is a contradiction.

We have seen in theorem 4 that for any element z € Sk, once we
find its first multiple in an equivalence class, the remaining multiples are
found by constant addition. By proposition 3, the first m; multiples of
z fall each into a different equivalence class. Hence, we have reduced to
my the number of products needed to determine all of the multiples of
z. Our next result shows that the position within an equivalence class of
any multiple of z is totally dependent on the canonical representative of
the equivalence class containing z. More precisely, once we have found
the first multiple of e; € C in some equivalence class [e;], then we can
find all the multiples of z € [e;] that fall in [e,] by adding some constant
to the first multiple of e; in [es].

Proposition 5. Let z € Sk be the (g + 1)-th element in the equiv-
alence class [e;], for some e; € Cx. If g,) is the v-th element of some
equivalence class [e;], then D is the (v + gs¢)-th element of [e;], where

st 1s the t-th element of Sk.

Proof. Since z is the (¢ + 1)-th element . in the equivalence class
[e;], from Proposition 1 b), we can write x = gy + e;. Hence,

t t
(:c)= (ei + qmi)se = €ist + qsg =(e,) +gsim = [(v — 1) + €] + gs¢m.
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t
But this says that (z)z (v + gs¢ — 1)mx + €;, and this is precisely what
we want.

Corollary 6. If z = (¢ + 1)7x + €; and eje; € [e;] then zeq, the
first multiple of z in [e;], is the (ge:)-th element from e;e; in [e;].

Proof. This is just a restatement of the former proposition in the
particular case when s; = e;.

We have seen that the first m; multiples of the canonical represen-
tative of an equivalence class determines the positions of the first m;
multiples of any element in the class. This suggests that, before initiat-
ing the sieving process on S, we should have available a table containing
the products e;e; for 1,5 € {1,2,...,mi}.

Definition 7. We denote by A the my X my array containing the
products e;e; for 1 <i,j < my.

Notice that A is symmetric, since both the :-th row and the i-th
column of A consist of the first m, multiples of e; and that the first
row (column) consists of the elements of Cx. Hence, we only need to
calculate the elements a;; for 2 < i < j < my of A. However, the
number of calculations my(mg — 1)/2 is still considerably large even for
small values of k. Our next result shows that the number of calculations
needed to obtain A can be further reduced.

Theorem 8. Let Cy = {e1,€3,...,€6n,} where e; < e; fori < j.
The following hold:

a) mx — e; € Cy, for each e; € Cy,

b)eitej=mg iffi+j=mr+1, and

c) ejem,+1-t = Tke; — eje; for 1 < j,t < my.

Proof. a) We need to show that 7 —e; and 7 are relatively prime.

But if p|(7x — ;) and p|r for some prime p, then p|[ri — (7 —€;)] = e,
which is a contradiction to e; € Sk.

b) By hypothesis e; < e; for i < 7, thus it follows from a) that

Tk —€my <Mk —€mp-1<...<Tp— € < T — €,
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but this says that e; = T — em, —; for 1 < ¢ < my, since 75 — e; € Cy.
c) Since t + (mx + 1 — t) = my + 1, it follows from b) that e, +
Emp+1—t = Mk

Corollary 9. A is completely determined by the set

T ={eiej: 2<1<j<mg/2}.

Proof. Consider the four { Bt x %t ) submatrices B,C,D and E

of the matrix A as depicted below. Clearly the first row of A consists of
the elements of Cy, since e; = 1.

Once the set T is calculated, B is completely known by symmetry.
Using Theorem 8 c) the submatrix C is immediately obtained from B.
Moreover, the submatrix D is then the reflection of C upon the main
diagonal of A. Finally, E is obtained from D by applying Theorem 8 c)
again.

We remark that corollary 8 establishes that A is completely deter-
mined by less than -;— of its elements.

€16, €1€2 6162’5_ I 616'_"55__*_1 elem,, T
eze; eze e egemy | e2€mpyy o E2€m,

: : B : | f c :
empe;  Empey i empem : empemyyy v €mpem,
€nk 161 €mp g€t €mpg€ma | €rp 1€k 41 "7 €mh g Cm,

r b E

| em,€1 €my€2 ‘7t Emy€mp | €my€mhyy  C Emgem,

The following example illustrates our main results.
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Example 10. Let £ = 3. Then fr3 =2:3:-5=230, C3 =
{1,7,11,13,17,19,23,29}, and m3 = $(30) = (2 - 1)(3 — 1)(5 — 1) = 8.

The set T = {72,7-11,7-13,11%,11-13,13?} contains the elements
bij, where 1 < ¢ < j < 4, of the submatrix B. The remaining elements
of B are found by symmetry. Theorem 8 c) yields C, since ¢;; = 30b;; —
bis—j), 1 < 14,5 < 4.

1 7 11 137. 17 19 23 29
B= 7T 49 77 91 C= 119 133 161 203
11 77 121 143’ 187 209 253 319
13 91 143 169 221 247 299 377

By symmetry on A we obtain D, i.e., d;; = ¢ji, 1 < 1,5 < 4. Finally, E
is obtained from D by applying Theorem 8 c) again.

! 7 11 13
7T 49 77 91
11 77 121 143
13 91 143 169
A= |- —— - __
17 119 187 221
19 133 209 247
23 161 253 299
L 29 203 319 377

17 19 23 29
119 133 161 203
187 209 253 319
221 247 299 377
289 323 391 493
323 361 437 551

391 437 529 667
493 551 667 841

Using the characterization of Proposition 1 c) we obtain S3 by
adding multiples of 30 to C3. Thus, as depicted in Table 1, we may
express S3 as an infinite array where each column is an equivalence class
whose canonical representative is the corresponding element of Cj in the
first row.

The second row of A contains the first eight multiples of 7 in S3,
each in a different column, which we have parenthesized in the table. To
delete the remaining multiples of 7 in an equivalence class, say those in
[13], we locate the first multiple of 7 in [13] which is 133. Then we cancel
every 7-th element after 133 in that column. The first eight multiples of
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a prime number in the i-th row of table 1 and in the equivalence class
[7], can be easily obtained by adding 30(: — 1)e;; to az;, 1 < j < 8.
Thus, the first eight multiples of 67 are 60 + 7,420 + 49,...,1740 + 203.
We have also underlined the multiples of 11 in the table.

We remark that after A is obtained, the sieving of S becomes an
additive process. Moreover, the deletion of the multiples of any prime
in different columns can be done independently. Because of these two
reasons, this is a fast algorithm particularly suited for parallel imple-
mentation. :

1 (m [ (@8 7] [19] [23] [29]
1 37 41 43 47 (49) 53 59
61 67 71 13 (1) 9 83 89
(91) 97 101 103 107 109 113 (119)
121 127 131 (133) 137 139 143 149
151 157 (161) 163 167 169 173 179
181 187 191 193 197 199 (203) 209
211 (217) 221 223 227 229 233 239
241 247 251 253 257 (259) 263 269
271 277 281 283 (287) 289 293 299
(301) 307 311 313 317 319 323 (329)
331 337 341 (469) 347 349 353 359
361 367 (371) 373 377 379 383 389
391 397 401 403 407 409 (413) 419
421 (427) 431 433 437 439 443 449
451 457 461 463 467 (469) 473 479

Table 1
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