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Localization of Bounded Sets

in Tensor Products

A. PERIS and M.J. RIVERA

ABSTRACT. The problem of topologies of Grothendieck is considered for
complete tensor products of Fréchet spaces endowed with the topology defined
by an arbitrary tensor norm. Some consequences on the stability of certain
locally convex properties in spaces of operators are also given.

Grothendieck, in his work about Fréchet and (DF)-spaces and ten-
sor products (see [12], [13]), studied locally convex properties of func-
tion spaces. Many examples of spaces of vector-valued functions can
be represented as tensor products and this motivated the study of the
topological structure of tensor products of Fréchet and (DF)-spaces.

The “probléme des topologies” of Grothendieck asks if every boun-
ded set B of the complete projective tensor product EQ,F of two
Fréchet spaces £ and F can be “localized”, i.e. if there are bounded
subsets C, D of F and F respectively with B C I'(C ® D). Due to
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the important work of Taskinen (see [22]) we know that the answer is
negative in general. Bonet, Diaz and Taskinen [6], inspired by Bonet
and Diaz [5] and Taskinen [22,23], introduced the classes of (FG) and
(DFG)-spaces as a general frame in which the “probléme des topolo-
gies” of Grothendieck (see [13]) and some related dual questions have
a positive answer. The purpose of this paper is to extend the results
of Bonet, Diaz and Taskinen for arbitrary tensor norms and show that
the bounded sets of the a-tensor product EQ,F of two (FG)-spaces E
and F can be localized in a “canonical sense”. Analogously it is proved
that the a-tensor product G ®, H of two (DFG)-spaces G and H is al-
ways a (DF)-space. This also extends the corresponding results for the
Lapresté’s ap,-tensor products due to Lépez Molina and Rivera [18] and
Junek [16]. It is also shown that, if (A4, a) is a normed ideal of operators
in the sense of Pietsch [21], F is an (FG)-space and G is a (DFG)-space,
then A¥(E, F) is a (DF)-space, where A" denotes the largest (weak)
extension of \A. The classes of (FG) and (DFG)-spaces are large as was
shown in [5], [6], [9]. Concrete examples are mentioned after Definition
1. Some consequences on the distinguishedness of EQ,F and the bar-
relledness of G® 4 H for E, F Fréchet spaces and G, H (DF)-spaces are
also indicated.

Some of the results here are contained in the Doctoral Thesis of the
first author written under the guidance of J. Bonet.

Our notation is standard, we refer to [15], [17] and [19]. If E is a
locally convex space (l.c.s.), Up(F) and B(FE) stand for the families of all
absolutely convex (abx.) 0-neighbourhoods and abx. bounded sets in E
respectively. If E is a Fréchet space, we will say that (Up)nen is a 0-basis
in F if it is a decreasing basis of abx. closed 0-neighbourhoods in E. The
absolutely convex hull of a subset A of E is denoted by I'(4). If A is an
abx. subset of E, we denote by ps the Minkowski functional associated
with A and E,4 := [A]/ker ps endowed with the norm induced by p4.
We mean by Ej the strong dual of E.

If £ and F are l.c.s., we denote by L(E, F) the space of all linear
mappings from F into F and L(E,F) is the subspace of continuous
linear mappings.

We recall the definitions of (FG)-spaces and (DFG)-spaces given by
Bonet, Diaz and Taskinen [6]. The definitions given below are slightly
different from the original ones. The reason for this modification is that
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these are less restrictive than the original definitions, all the known re-
sults for these classes remain valid (see [6, Lemma 6]) even with clearer
proofs and, surprisingly, it is possible to obtain more stability properties.
Since Bonet, Diaz and Taskinen will use in the future these new defini-
tions for the (FG)-spaces and (DFG)-spaces (personal communication),
it will not cause any confusion.

Definition 1. A Fréchet space E is said to be an (FG)-space if
there is a 0-basis (Uyp)nen in E such that for every sequence (ak)ren,
ay > 1 (k € IN) there are a sequence of operators (Py)ren in L(E, E)
and a bounded subset B C E satisfying

(1) z=3;en Pi(z) , Vz € E,
(2) Pn(anUn) - B, n € N.

A (DF)-space (G,t) is said to be a (DFG)-space if there is an in-
creasing fundamental sequence (Bi)ren of closed abz. bounded sets in
G and there is a locally convex topology s in G weaker than t such that
(G,t) has a basis of s-closed abz. 0-neighbourhoods and, for every se-
quence (ax)ken, 0 < ax < 1, there are a sequence of operators (Qk)keN
in L((G,t),(G,t)) and an s-closed abz. 0-neighbourhood U in (G,t) such
that

(1) z=3,nQi(z) , Yo € G, where the series converges for the

topology s,
(2) U C Q5 (cxBy) for every k € N.

If the topology s can be taken equal to t in the definition we will say
that (G, 1) is a strong (DFG)-space.

The following are examples of (FG)-spaces [6]:

(i) Banach spaces and countable products of Banach spaces.

(ii) Banach valued Kothe echelon spaces of order p, 1 < p < o0 or
p =0, A\p(A4,(Xi)ien) with X; Banach (i € N).

(iii) Generalized Dubinsky echelon spaces with decreasing steps
which are Montel.

(iv) The Fréchet spaces of measurable functions introduced by Rei-
her, L,(A) with absolutely continuous p. In particular the spaces
L,((#in)nen) of Grothendieck, 1 < p < o0, where p; are o-finite mea-
sures (¢ € IN).
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(v) Fréchet Schwartz spaces with a finite dimensional decomposition
and a continuous norm.

(vi) The Fréchet space of continuous functions C Ao(X).
Moreover, it is easy to see that (with the above definition) complemented
subspaces of (FG)-spaces are also (FG)-spaces, then every Fréchet Sch-
wartz space with the bounded approximation property and a continuous
norm is an (FG)-space (see [5]).

The following are examples of (DFG)-spaces [6]:

(i) Normed spaces and countable direct sums of normed spaces.

(ii) Strong duals of (FG)-spaces.

(iii) The inductive limit of continuous functions ind,C(vy)o(X)
and the projective hulls CV(X), CVo(X).

1. TENSOR PRODUCTS OF FRECHET AND (DF)-SPACES

We need some definitions and a technical lemma on tensor norms.
We refer to [19] and [8] for the notations.

If £ and F are l.c.s. and « is a tensor norm, the topology of
E ®4 F is given by the system of seminorms (py ®4 pv)(2) := a((®Pv ®
®y)(2);Eu,Fv),z€ E®Q F,U € Uy(E),V € Up(F), where &y : B —
Ey, ®v : F — Fy are the canonical maps.

If A and B are abx. subsets of E and F, respectively, we will denote
by a(A,B) := {z € EQa F [ (pa®aps)z) < 1} = {z € [4]®
[B] / o((®4 ® ®B)(z); E4, EB) < 1}.

Definition 2. If F and F are l.c.s., a is a tensor norm and B is
a bounded subset of EQ.F, we will say that B is localizable if there are
C € B(E), D € B(F) such that B C o(C, D).

This concept of “localization” of bounded sets in a-tensor products
coincides with the usual ones when @ = = (x(C,D) = I'(C ® D)) or
o = ap 4, the Lapresté tensor product (see [18], [16]).

The following lemma is necessary to obtain our main result

Lemma 3.([20]) If E; and F; are l.c.s., T; € L(E;, F}), 1 = 1,2;
then
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(Th ® T2)(a(A, B)) C o(T1(A),T2(B))
for every A C E;, B C E, absolutely convez.

The following proposition improves [6, Corollary 4.6] and [18, The-
orem 2|.

Proposition 4. If F and F are (FG)-spaces and o is a tensor
norm, then the bounded sets of EQ.F are localizable and EQ,F is an
(FG)-space. ‘

Proof. By hypothesis, there are (U )nen and (V3 )nen 0-basisin E
and F, respectively, such that for every sequence (Ax)ken, 1 < Ax < 00
(k € IN), there are B € B(E), C € B(F), Q; € L(E,E), and R; €
L(F,F), ¢ € N, satisfying:

(a) Vie N

1
Q,‘()\,'U,') - §B, R,‘(A.‘V,‘) C %C,

(b)

o0

ZQi = IEg; ZR,- = Ir pointwisely.
1

1

Defining P; := Z;=1 Qi®R; + 2;____11 Q; ® R;, + € N, we easily
obtain 1" P; = (17 @i)®(X1" R:) and the sum converges pointwisely
to Iggr when m tends to infinity. On the other hand, the equicontinuity
of (P;)ien follows from the equicontinuity of (Q:)ien and (R")‘EN’ and
this implies that Y 7° P; converges pointwisely to Ipg p, where P; is the
extension to EQ.F of P;, i € N.

Setting H := a(B,C’)E®°'F, we obtain

Pi(\ia(Us, Vi) C (i Q6®Rj) (a( Ui, A3V5))

i=1

=1
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i i-1
1 1 1 1
— —H H
< 2' 21 T 2‘ 21 2i-1 gt

t =1,...,00. Ther‘efore EQ.F is an (FG)-space and, moreover, if
z € NP MU, Vi) 22" then

m . m 1
1 1
Thus, since £ = limm—00 Y7 Pi(z) € 2H,

)E BaF

ﬂ,\ a(U;, V; C 2H,

which implies that the bounded sets of EQ,F are localizable. =

The following technical lemma is essential to show that G @, H
and A¥(E,G) are (DF)-spaces whenever E is an (FG)-space and G, H
are (DFG)-spaces. It provides a useful property which is very close to
(DFop) introduced in [7].

Lemma 5. Let E be an (FG)-space and G a (DFG)-space. There
are two sequences: (V,)nen @ O-basis in E and (By)nen a fundamental
sequence of bounded sets in G such that

(a) For every sequences (€x)keN of strictly positive escalars and
(Cr)nen of bounded sets in E, there are C € B(E) and (Qx)ren C
L(E,E) such that

Qr(Vk) CcexC, (I- EQk)(Cn) cC, k,neN.

(b) For every sequences (ex)ren of strictly positive escalars and
(Un)nen of 0-neighbourhoods in G, there are U € Uy(G) and (Ri)ren C
L(G,G) such that

Ry(U)C exBx, (I-) Re)(U)CUn, k,n€eN.
k=1
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Proof. We will show (b). The proof of (a) is analogous.

Since (G,t) is a (DFG)-space, it has a fundamental sequence
(Bn)nen of absolutely convex bounded subsets and there is a locally
convex topology s on G, coarser than t, such that (G,t) has a basis
of s-closed absolutely convex 0-neighbourhoods and for every sequence
(6x)ren of strictly positive escalars there is a sequence (Ri)ken C
L(G,G) such that

(i) = = > ren Bi(z) Yz € G, where the series converges for the
topology s,

(i) Nien Bi ' (66 Bk) € Uo(G).

Given two sequences: (€x)xen of strictly positive numbers and
(Un)nen of O-neighbourhoods in G (which we can suppose s-closed),
we can find another sequence (6x)ken such that 0 < 6 < €k, k € N,
and Y7, 6xBr C Uy, n € N, m > n. Now choose (Ri)ken satlsfymg
(i) and (11), and define U := ﬂkeN Rk1(6kBk) Then we have

z—ZRk(m)—s— hm E Ry(z) € Uy,

k—n+1
for all z € U, since U, is s-closed,n€ N. &
We also need an easy but key lemma due to J. Bonet and the first

author (see e.g. [11, Theorem 5.8]). A similar argument can be found
n [15].

Lemma 6. Let E be a l.c.s. and (By)neN a sequence of absolutely
convez bounded sets in E with 2B, C Bny1, n € N, which satisfies the
following property:

For every sequence (Un)nen of 0-neighbourhoods in E there is U €
Uo(E) such that

Uc ﬁ(U,, + Br).

n=1

Then (Bp)nen is a fundamental sequence of bounded sets in E.

Proof. Let us suppose that there is B € B(E) such that B ¢ nB,,
Vn € N. Then we can find a bounded sequence (z;)nen in E with
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z, € nB, and, hence, there exists U, € Up(E), n € N, such that
zn, & n(Bn + Uy). But (), cn(Br + Uy) is a neighbourhood of 0 in E,
which contradicts the fact that (2, )nen is bounded.

Thus there is ng € N with B C ngB,,, C Bzp,. W

From this lemma and the characterization of (DF)-spaces given by
Bierstedt and Bonet in [3, 5.A.Lemma), we deduce (see [11, 5.8]) that
a l.cs. E is a (DF)-space if and only if it has a sequence (Bj)nen
of absolutely convex bounded subsets such that for every sequences
(ex)ken of strictly positive numbers and (Uy,)nen of absolutely convex
0-neighbourhoods, there is U € Up(E) such that

UcC n (zn: €x By + Un).

neEN k=1
This will be useful in the following

Proposition 7. If a is a tensor norm and G, H are (DFG)-spaces
(respectively, strong (DFG)-spaces) then G®q H is a (DF)-space (resp.,
a strong (DFG )-space).

Proof. Let (Bp)nen and (Cr)nen be the fundamental sequences
of bounded sets in G and H, respectively, which satisfy the property
(DFG).

Given a sequence of strictly positive escalars (ex)ren(€x < 1,k €
IN) and a sequence (W, ),en of 0-neighbourhoods in G @, H, find two
decreasing sequences (Un)nen and (Vp)nen of 0-neighbourhoods in G
and H, respectively, such that

©) a(U,,V,) C Wy,

(#1)  a(e;Bj,Va) C Wh,
(i27) a(Un,€;C;) C Wy,

n € N, j = 1...n. By Lemma 5, there are two sequences (Qx)ren C
L(G,G) and (Rg)ken C L(H,H) and there are U € Up(G) and V €
Up(H) such that
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. €
(7 Q) cC 2_:Bk; Ry(V)C ;_’;Ck,

g - 1 - 1
(i) T=)_QU)c gUni (- Y R)(V)C 3Vm
k=1 k=1
n,k € N. Now we claim that

aU,V)C (}5 €xa(Bk, Cr) + W,)
ne€N k=1

To show this, take z € a(U,V). Given n € IN, define

=1

k-1
(EQk®R,+ZQ,®Rk>(z), k=1...n.
=1

Since Qx(U) C 34 Bi and R;(V) C 7#C;, we have that (Qx ® R;)(z) €
st (B, Cj), ],k € N. Hence

T € Z 31+3 a(Bk,C )+ Z 2147 a(B,,C’k)

i=1 j=1

k k-1
1 1
€k (Z 21+ 7o(Br, Cj) + E 21+] a(B”C")> C exa(Br, Cu),
J=

j=1

k=1...n. Define now y, := = — Y ;_, zx . It easily follows that

(Z(I EQk) ® R; ) (=) + (ZQJ' ®[ - ZRk)) (z)
j=1 k=1

i=1
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+((I -~ eue - ZRk)) (2).
k=1 k=1

Finally, from (i), (3¢), (ii), (§) and (jj), we obtain

V) (=Y QW@R)E) € 5 5allae&C)C 5 5
k=1 .

® (@80~ LR €7 galaBi ) € 5 W

® (1= 008U -3 r0)@ € g ) C gWa

j = 1...n, which implies that y, € W,. This shows that G ®, H is a
(DF)-space by lemma 6.

If G and H are strong (DFG)-spaces, to prove that G ®, H is a
strong (DFG)-space, it remains to show that lim, Y ;_; zxr = z. But
this is a consequence of the fact that (}p_; Qk)nen and (3 j—; Ri)nen
converge pointwisely to the identity of G and H, respectively. ®

Remarks: (1) For finitely generated tensor norms ¢, it is possible
to give a shorter and more elegant argument to show that G ®, H is a
(DF)-space whenever G and H are (DFG)-spaces. The proof was kindly
provided by Andreas Defant: By [8, 29.2, 29.7, 29.8 and 35.3}, there is
a Banach space X and a surjective topological homomorphism

U:(GRX")®r (X ®a H) — G®, H.
Since G is a (DFG)-space, the space G ® X* is a (DF)-space (see

[6, Proposition 9]). By the same argument, H ® X is a quotient of
(H®c X*)®x (X ® X ), which is a (DF)-space since H is a (DFG)-space
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and the projective tensor product of two (DF)-spaces is a (DF)-space.
This implies that G ®, H is also a (DF)-space.

(2) Note that, by Lemma 6, we have shown in the above proposition
that the bounded subsets of G ®, H are localizable if G and H are
(DFG)-spaces.

In order to obtain more properties, such as distinguishedness for a-
tensor products of Fréchet spaces or barrelledness for a-tensor products
of (DF)-spaces, we need some definitions and notation.

The density condition, (DC), was introduced by Heinrich [14] and it
was thoroughly studied by Bierstedt and Bonet (see [1], [2], [3], [4]) in the
context of Fréchet spaces. A Fréchet space FE has the density condition
if and only if the bounded sets of £} are metrizable [1]. Quasinormable
spaces and Fréchet Montel spaces have the (DC). Every Fréchet space
E with (DC) is distinguished, that is E} is bornological. Bierstedt and
Bonet also introduced the dual density condition, (DDC), (see [2]). A
(DF)-space G has the (DDC) if and only if its bounded sets are metriz-
able, and every (DF)-space with (DDC) is quasibarrelled (see [2]).

The (DC) and (DDC) are stable under projective and injective ten-
sor products in the context of (FG)-spaces and barrelled strong (DFG)-
spaces, respectively (see [4], [9]). Our purpose is to generalize these
results for arbitrary tensor norms. We need the following

Definition 8. Let E be a Fréchet space and (Up)nen a 0-basis in
E. E is said to satisfy the density condition by operators, briefly (DCo),
if there is B € B(E) such that for allm € N and B' € B(E), there ezist
A>0and P € L(E,E) such that

(i) P(B') C Un,
(ii) (I - P)(B') C AB.

Let G be a (DF)-space and (By)nen @ fundamental sequence of
bounded sets in G. G is said to satisfy the dual density condition by
operators, briefly (DDCo), if there is U € Up(G) such that for allm € N
and V € Uy(G), there are € > 0 and P € L(G,G) such that

(i) P(Bm) CV,
(ii) (I — P)(eU) C V.
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Remark: It easily follows from these definitions and the character-
izations of (DC) and (DDC) due to Bierstedt and Bonet in the context
of Fréchet spaces and (DF)-spaces, that every Fréchet space E (respec-
tively, (DF)-space G) with (DCo) (resp., (DDCo)) satisfies the (DC)
(resp., (DDC)).

Proposition 9. Every (FG)-space with the (DC) satisfies property
(DCo).

Proof. Let E be an (FG)-space with a 0-basis (U,)nen and
(Pr)nen any sequence of bounded operators in E associated to some
sequence of strictly positive scalars by property (FG). Then, as a con-
sequence of [10], (P,)nen is a resolution of the identity of E with prop-
erty (M) of Diaz and Mifiarro, that is, for every B € B(E) and every
U € Up(E), we have

o o]
lim su Pi(z)] =0.
Am_sup pu (Z i ))

j=n

Now, since (Py)nenN is a sequence of bounded operators, we can
find B € B(E) such that P, }(B) € Up(E), Vn € N. Let m € N and
B' € B(E). Then, by property (M), there is ny € IN such that, for
P:=3Y 7 .1 Py, the following is satisfied

e o]
P(B')= )" Py(B') C Un.
no+1
Moreover,

no -1
(I-P)'(B)= (Z Pn) (B) € Up(E),
1
which yields the result. =

Proposition 10. If G is a barrelled strong (DFG)-space with
(DDC), then it satisfies (DDCo).

Proof. Let (B,)nen be a fundamental sequence of bounded subsets
in G and (Pp)nen any sequence of bounded operators in G associated
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to some sequence of strictly positive scalars by property (DFG). Then,
as a consequence of [9], (P, )nen is a resolution of the identity of G with
property (M).

Now, since (Pp)nen is a sequence of bounded operators, we can
find U € Up(G) such that P,(U) € B(G), Vn € N. Let m € N and
V € Uy(G). Then, by property (M), there is ng € N such that, for
P := Y 7° P,, the following is satisfied

(I - P)(Bn) = i Pu(Bm) CV.
no+1

On the other hand,

no
P(U) =) _ Pa(U) € B(G),
1
and we obtain the result. [ ]

Dfaz, Lépez Molina and Rivera showed in [9] that the strong duals
of (FG)-spaces with (DC) are examples of barrelled strong (DFG)-spaces
with (DDC).

Proposition 11. If a is a tensor norm, E and F are Fréchet
spaces (respectively, (DF)-spaces) with the (DCo) (resp., (DDCo)) and
the bounded subsets of EQ,F are localizable, then EQ,F also satisfies
(DCo) (resp., (DDCo)).

Proof. We will show the result for (DCo). The proof for (DDCo)
is analogous.

Let (Uk)ken and (Vi)ken O-basis in E and F, respectively. If E
and F satisfy (DCo), then there are B € B(E) and C € B(F) such that
for all m,m' € N and for all B' € B(E), C' € B(F), there are A\, X' > 0
and P € L(E,E), @ € L(F, F) which satisfy

(i) P(B'YC U, (I- P)B')CAB.

(i) Q(C") C Voy (I - Q)(C") C AC.

Let n € N, B' € B(E) and C' € B(F). Find m € N (m > n) with
2U,, C €Uy, where € > 0 satisfies eC' C V,, and find m' € N (m' > n)
with 2V, C €'V,, where ¢’ > 0 satisfies ¢’A\B C U,,. Then we have
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(a)
(I~ P)® (I~ Q)((B',C") C &(Um,Vinr) C o(Un, Vz).
(b)

[I-(I-P)®I-Q)((B',C")=[I-P)®Q+ PRI a(B',C")) C

1 1
a(AB, Vm') + a(Um, C,) C EO(U"', Vn) + Ea(Un, Vn) = a(Un, Vn)-
From this we conclude that EQ, F satisfies (DCo). W

Corollary 12. If a is a tensor norm and E, F are (FG)-spaces with
the (DC) (respectively, barrelled strong (DFG)-spaces with the (DDC)),
then EQoF is a Fréchet space with (DC), hence distinguished (respec-
tively, a barrelled (DF)-space with (DDC)).

It is worth to mention that the Fréchet spaces quasinormable by
operators (respectively, the (DF)-spaces with property (QNo)’), intro-
duced and studied in [20], are examples of Fréchet spaces with (DCo)
(resp., (DF)-spaces with (DDCo)).

2. IDEALS OF OPERATORS AND (DF)-SPACES

Following Piestch [21], the following properties define a normed ideal
(A, a) of operators on the class of Banach spaces:

(I1) F(X,Y) C A(X,Y) C L(X,Y), for all Banach spaces X, Y,
where F(X,Y) denotes the space of all finite rank operators.

(12) If § € A(X,Y), T € L(Z,X) and R € L(Y, Z,), then Ro S o
T € A(Zy,2Z,).

(13) a is a complete norm on each component A(X,Y) satisfying
a(#'®y) =]l o' |l y =’ € X*,y € ¥, and a(RoSoT) <|| R ||l T || a($)
for all operators R, S,T as in (12).

Among the several possibilities to extend an ideal A of operators
on Banach spaces to the category of locally convex spaces, we will con-
centrate on the largest extension A" (see [21]). More precisely, if £
and F are locally convex spaces (E quasi-complete) and S € L(E, F),
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then § € AY(E,F) if, and only if, for all Banach spaces X, Y and
for all operators T € L(X, E), R € L(F,Y) the product Ro SoT
belongs to A(X,Y). That is, for all B € B(E) and U € Up(F) the
operator ®y 0 5 o &g belongs to L(EB,FU) where &5 : Eg — E and
®y : F — Fy are the canonical mappings.

The space AY(E,F) admits a natural topology induced by
proj A(EB, FU) In order to give a description of a basis of 0-neighbour-
hoods, let us establish the following notation: If A C E, B C F are
absolutely convex and § € L(E,F) satisfies S(A) C B, we denote by
Sa,B: E4 — Fg the induced map. Now we write

W(A, B) == {S € A“(E,F) | S(A) C B, Sa.p € A(Ea,Fg)

and a(SA,B) S 1}.

With this notation, the family {W(B,U) / B € B(E), U € Up(F)} is a
basis of 0-neighbourhoods in AY(E, F).

For instance, if A is the ideal of all bounded operators and « is the
operator norm, then A¥(E,F) is the space L(E, F) of all continuous
linear operators endowed with the topology of uniform convergence on
the bounded subsets of E. And, for A = K the ideal of compact op-
erators, K*(E, F) coincides with the space of Montel operators from E
into F, that is, the operators that send each bounded subset of E into
a precompact set in F.

Remark: As a consequence of (I2) and (I3), it is easily seen that,
for Ay, A; C E and By, B; C F absolutely convex, S € W(A;, By) and
T € L(E,E), R € L(F, F) satisfying T(A1) C A; and R(B1) C Bs, the
product Ro S o T belongs to W(A;, Bz). This will be used later on.

The following theorem should be compared with [6, Theorem 4.5],
where Bonet, Diaz and Taskinen show that, under the same hypothesis,
the space Ly(E,G) is a (DF)-space using a similar argument.

Theorem 13. Let (A, ) be a normed ideal of operators in Banach
spaces, E an (FG)-space and G a (DFG)-space. Then A“(E,G) is a
(DF)-space.
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Proof. Let (V3)nen and (Bp)nen be the 0-basis and fundamental
sequence of bounded sets in E and G respectively, which satxsfy the
corresponding properties (FG) and (DFG).

Given a sequence of strictly positive escalars (ex)ren(€x < 1,k €
N) and a sequence (W, ),en of 0-neighbourhoods in A¥(E,G), find a
sequence (Cp)nen of bounded sets in E and a sequence (Up)nen of
0-neighbourhoods in G such that

(2) W(C,,U,) C Wy,

(1)  W('V;,Un) C W,
(15)  W(Chn,¢€;B;) C Wy,

n € N, j =1...n. By Lemma 5, there are two sequences (Qx)ren C
L(E,FE) and (Rk)ren C L(G,G) and thereare C € B(E) and U € Up(G)
such that

() Qr(Vk) C =C;  Ry(U) C =¥ Bx,

(i) (=Y Qn(Ca)C %c; (1= RW) € 30,
k=1 k=1

n,k € IN. Now we claim that

W(C,U) C n (Zn: eeW(Vi, B) + Wy,)
neN k=1

To show this, take f € W(C,U). Given n € N, define

k-1
fk—ZRkof Q,-I-ZR ofoQk, k=1...n.
i=1 i=1

Since Rix(U) C £k By and Q;(V;) C 5C, we have that Rro foQ; €
s+ W(V;, By), 5,k € IN. Hence

k—
fre Z 75 W(Vir Bi) + Z W(V, B;)
j=1
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k k-1
1 1
C e (Z s V(i Br) + ) 'QWW(V:"B,-)) C e&W(Vi, By),
i=1 i=1

k=1...n. Define now g, := f — Y 5, fx - It easily follows that

gn=) (I-) Ri)ofoQj+» Rjofo(I-> Q)
j=1 k=1 ) k=1

=1

+(I - iRk)ofo(I— Xn:Qk)
k=1 k=1

Finally, from (2), (i1), (i), (§) and (j7), we obtain

. 1 1. 11
(1) (I—ng)ofijeg-é—;W(ej VisUn) C 3+ 55 Wa,
() R'°f°(I—-iQ)el~—1—W(C iB;)C =~ W,
3 P k 3 2 ny &304 3 97 ny

n n 1 1
o (o] o I_ —w Cﬂ,Un _Wn,
@) kS:lek) fo( ;czk)eg ( )C 3

3 =1...n, which implies that g, € W,,. =

Remark: Given (A, a) a normed ideal of operators, there is an-
other interesting extension of A to the category of locally convex spaces,
the smallest (strong) extension A’ (see [21]): If E, F are l.c.s. with F
quasicomplete and § € L(E,F), then § € A*(E,F) if, and only if,
there is some factorization § = Ry o Sy o Ty, where Ty € L(E, Xp),
Ry € LYy, F) and Sy € A(Xo,Yp) for certain Banach spaces Xo, Yp.
The Banach spaces Xy, Yy can be choosen to be the canonical Banach
spaces Ey, Fp for some U € Up(E), B € B(F). Since
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A'E,F)= |J A(Eu,Fp),
U€Ug(E)
BeB(F)
the natural topology on A°(E, F') is the locally convex inductive topol-
ogy ind A(Eu,FB).

Obviously A*(E, F) is continuously embeded in A¥(E,F). Now,
following the proof of the above theorem, if E is an (FG)-space and G
is a quasicomplete (DFG)-space, the bounded sets of A¥(E,G) are con-
tained in the closure (in A%(E, G)) of the bounded subsets of A*(E,G)
by Lemma 6. This can have consequences on the algebraic (or even
topological) equality A*(E,G) = A¥(E,G).

Acknowledgement: We are indebted with J. Bonet for his valu-
able suggestions concerning the final version of this paper.
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