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Approximation of Almost Periodic Functions
by Convolution Type Operators

P. PYCH-TABERSKA and M. TOPOLEWSKA

ABSTRACT. For SP- and §*-almost periodic functions f the convolution
type operators L, f are considered. The rates of convergence of L, f(z) to
f(z) at the Lebesgue or Lebesgue-Denjoy points & of f are estimated.

e

1. PRELIMINARIES
Let L? (1 < p < oo) be the class of all measurable complex-valued

loc
functions Lebesgue-integrable with p-th power on each finite interval
and let D}, be the set of all complex-valued functions integrable in the
Denjoy-Perron sense on each finite interval. Denote by S? and by §*
the spaces of all functions f € L}, and f € Dy, which are $P-almost
periodic and S*-almost periodic, respectively, with the norms

v41

Ifllse := sup (/If(t)|”dt)1/p

—o0o<v<00
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and

e

Write S = S? and use the symbol B for the space of all complex-valued
functions f almost periodic in the Bohr sense, i.e. uniformly almost
periodic, with the norm

Iflls:= swp |-
—~00<v<00

The theory of Bohr’s and §P-almost periodic functions is given in [6].
Some properties of §*-almost periodic functions can be found e.g. in

(7], [8]-

Let E be a set of positive numbers, having the accumulation point
at infinity. Introduce the convolution type operators L, (1 € E), defined
for functions f € § or f € §* by the improper Denjoy-Perron integral

Iflls- == sup (sup

—oco<v<oo \ 0<u<1

L f(z) = (f4,)(z) = / e )pu(0)it (2 € Ri= (~o0,00), (1)

— -~ 00

where 9, are measurable (complex-valued) functions satisfying some
additional assumptions. In particular, if f € §7 with some p > 1 and
if 9, is Lebesgue-integrable on R (in symbols P, € L) then L,f is of
class SP. If f € §? (p > 1), ¥, € L], (where 2=1- —) and

k41

Wulle= 3 (/ |¢u(t)|wt)”q<oo,
k

k=—o00

then L, f is uniformly almost periodic; the same is also true if f € 5,
¥, € Lfy, (i.e. 1, is measurable and essentially bounded on each finite
interval) and if

NYullo == Z es<st<suP [%u(t)] < oo.

k=-—o00
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In the case when f € §*, the assumptions

[|%ulloo < 00 and var_osoct<oo¥ult) < 00
imply the uniform almost periodicity of L, f, too (see 8], [9]).
In this paper, letting u — 0o, we present some estimates for the
rate of convergence of L, f at the Lebesgue or Lebesgue-Denjoy points

z of f. As a measure of deviation of L,f(z) from f(z) we take the
quantities

S =

h
wo(h; f) i= / lea(t)ldt if f €S,
0

aiti )= s 3 [ecto] it fes,
0<v<h U’ ]

where h > 0 and ¢,(t) := f(z+t)+ f(z —t) —2f(x). For f € S we also
use the quantity

Ws(h; f) := sup wy(v;f).
0<v<h

Clearly, w;(h; f) < oo for all z and A > 0. In view of the well-known
Lebesgue theorem and the fundamental properties of the Denjoy-Perron
integral [5], for almost every z,

Jm we(hi f) = lim og(h; f)=0and lim wi(h;f)=0

(we call these z the Lebesgue and the Lebesgue-Denjoy points of f, re-
spectively). Further, w,(h; f) and w}(h; f) are non-decreasing functions
of h on (0,00), provided they are finite at z. The so-called local integral
modulus @;(h; f) (in a slightly different form) was first used in [1] to
obtain the quantitative version of the known Fejér-Lebesgue theorem.

For f € SP (p > 1) we introduce also the quantities
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h 1/p
walhi fyp i= (% / I%(t)l”dt) (k> 0),
0

which have the properties similar to that of w,(h; f).

Throughout, the integral part of a real number a is denoted by [a].
The symbol {(s), s > 1, means the well-known Riemann zeta function.

2. MAIN RESULTS

Consider operators L, defined by (1), in which 4, are even measur-
able functions such that ||%,||cc < 00 or ||9,]l; < 00 with some ¢ > 1
(clearly, this implies that 1, are Lebesgue-integrable on R).

Theorem 1. Suppose that ||1,||c0 < o0,

/ Yu(t)dt =1forallpe E (2)

and that there erist positive numbers o,a, such that

|%u(t)] < aut™ for ae. t € (0,1] and all y € E. P 3)
If f € S, then for every real z,

|Luf(z) = f(=)] <2(|Iflls + |f@)) (e + 74)

| 1 @)
+ Bubuwz(6,; f) + ooy / t™%ws(t; f)dt,
bu

where 8, are arbitrary positive numbers not greater than 1 and

o0
By :=ess sup [ (t)], vu:= Zess sup |,(2)|.
0<t<5 k=1 kSt<k+l

=Y
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Proof. In view of our assumptions, the convolution (1) exists for
all z as the ordinary Lebesgue integral and

|Luf(z) = f(z)| < (7+ /l + ]o) lpz(t)¥u(t)dt = I + I, + I3, say.
0 1

bu

Clearly,

6“
b < By [ 1oe®ldt = Bubwa(ssi ),
0

oo k+1
<Y e o 19,00 k/ I%(t)ldts2(Ilflls+|f(z)l)7u-

/
Further, by (3) and partial integration,

1 1 t ’
L<a, / oo (D)t~ dt = a, / ( / |¢,(u)|du) =7 dt
b
by 0

< au{wz(l;f) + a/lt“’wz(t;f)dt}-

b

Collecting the results and observing that w.(1; f) < 2(||flls + |f(z)])
we get (4), immediately.

Remark 1. Assuming that w,(1; f) < oo, one can easily verify
that



136 P. Pych-Taberska and M. Topolewska

1

/ t 0w, (t; f)dt<f(0)Ek" 2w ,lc,f)

bu

where m := [1/6,], 7(0) := max{1,2°2}. Also, if o > 1,

_ _ .1 o+1 -
(8 f) < w2 (—; f sm,HZk

0+1 99— 1 g— 2
-
= (m+ 1)1 Ek

<277 Yo+ 1)65” IZkH' (k,f)

k=1

Consequently, under assumptions of Theorem 1 (with o > 1) we h.},ve

|Luf(z) - f(2)] <2(IIf|Is+If(z)l)(au+7u)+cu(0)zk’ 2 z(k,f)

where c,(0) = 2°7(o + 1)B,65 + 07(0)e,. In the case when o = 1,2
or 3, a direct calculation shows that the term 2°~! in ¢ (o) may be
omitted.

Let us note that Theorem 1 remains valid for functions f of class
SP with p > 1, because S C S§. Nevertheless, in this case, the argu-
mentation similar to that of the proof of Theorem 1 leads to

Theorem 2. Let f € S? (p > 1) and let ||,||, < 0o forallu € E,
where ¢ = p/(p— 1). Suppose, moreover, that conditions (2) and (3) are
satisfied. Then, for every z € R,
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|Luf(z) = f(@) <2l fllse + £ (@) (@n + Yug)

1
+ ﬂp,q6}/”w,(6,‘; e +oay / t™%wg(t; f)pdt,
b, ’

where 0 < §, < 1,

Buai= 7 O > 71I¢u(t)l"dt)l/q-
0 = k

The corresponding result for almost periodic functions integrable in
the Denjoy-Perron sense can be stated as follows.

Theorem 3. Let ||$ullcc < 00, Val_ooctcooWu(t) < 00 for all
p € E and let condition (2) be satisfied. Assume, moreover, that 1, are

absolutely continuous on (0,1] and that

[, (t)] < ajt™” for a.e. t € (0,1] and all p € E, (5)
p;a, being some positive numbers. If f € §* and if w}(1; f) < oo then
* 1 * *
ILuf(2z) = f(2)] <2(liflls~ + [F())7; + 5ﬂp6;2;wa:(6ﬂ;f)

1
+ap [ f,
bu

where
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B = ess sup [P, (1), vj = 29, + Vanicrcoo¥u(t),
0<t<4

=y

6, and vy, have the same meaning as in Theorem 1.

Proof. In view of (1) and (2),

L,f(z)- f(z)= (/1+ 700) eo(t)pu(t)dt = Jy + J2, say.
0 1

Applying the known inequalities for the Denjoy-Perron integral ([5] p.
45, or [8] p. 187) we obtain

oo ki1

S [ eatomatoa

k=1 %

|J2] =

£

[ e=tvat
k

M8

<

su t)| + var 4 max
(, 2, 0l +varecicnsn®) s

x
1l

1

< z(m ; vang@w(t))(nﬂu. L@,

Further, putting

¢
®.(t) := /gox(u)du
0
and integrating by parts ([5] p. 42) we get
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|J1] =

1
8.(1)u(1) - [ &, (0e4
0

< @(Dllpu(1)] + (.7+j)tw;(t;f)l¢L(t)ldt-
o 4,

Hence, assumption (5) and the obvious inequalities

[%u(D] £ Yas |22(1)] < 2(I51s= + 1£(=)])

give

1

191 < 211flls + 1)) + 3583036 1) + o [P+t £
bu

Collecting the results we get the desired assertion.

Remark 2. In the same way as in Remark 1, the estimate given
in Theorem 3 can be stated in the form

ILuf(z) = f(2)] < 2(||flls- + 1f @)1 +€h(p) D k”'aw;(%;f),
k=1

where m = [1/4,], €}(p) = 2°73(p+1)B,64 + o, max{1,2°~3}, provided
that p > 2.

Now, denoting by Y the space B, S? .(p > 1) or §*, let us define
the modulus of smoothness of f € Y with respect to the norm of Y by
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wa(h; fly :== sup |If(-+8)+ f(-—8)-2fC)lly  (h20).
0<t<h

Clearly, if f € B then, for all z € R and h > 0,

wz(h; f) < wa(h; f)B.
In case f € S? we have

vl 1/p
sup ( / (wz(h; f))”da:) < wa(h; fs» (h > 0),

—oo<v<0o0
v

by the generalized Minkowski inequality. These estimates and Theorem
1 together with Remark 1 lead to the following

Corollary. Let f € Y, where Y = B or S (p > 1), and let
conditions (2), (3) with o > 1 be satisfied. Then, forall p € E,

12 = flly < 4+ 1 flly +eulo) Y- B o (¢

k=1

i)y s

where m,a,,7,,c,(0) have the same meaning as in Theorem 1 and
Remark 1.

For almost periodic functions integrable in the Denjoy-Perron sense
a direct calculation gives

Theorem 4. Suppose that f € S* and that conditions (2) and (5)
with p > 2 are satisfied. Then, for all u € E,

* * = - 1
|Luf = flls= < 47;lIflls + (o) D K wa (23 f) s

k=1
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where m,v; and c;;(p) have the same meaning as in Theorem 3 and
Remark 2.

3. EXAMPLES

I. Let 0 < A = M) < pfor p € E = (0,00) and let ¥, , be the
continuous functions defined for ¢ # 0 by the formula

n sin L
\I'A,,,(t) _ (4si 4(.“”(:)0/\)%3 s(n+ A)t‘

Denote by L, , the operators (1) with 9, = ¥, ,. As in known ([3]
p. 256), condition (2) is satisfied. Introducing the auxiliary function
gz(t) := (sinzt)/t for t # 0, g,(0) = z, with a positive parameter z, we
can write

- -A +A
Uyu(t) = —a "4 (t)au(t) with a = B p=E22
Since
\
1 2t cos 2t — sin 2t 2z
lgz(t)l < ?1 Ig;(t)l = 72 < T fort>0
and
' 2 5
lg:(t)| < z, 1g.(t)| < 37 tfort>0,
we have
16 2u
I‘I’A,u(t)l = ( )2t3’ l A.p( )I = W fort>0
and

+

+ 3
05,0001 < 222 ,IW',p(t)|<(“ Mt fort > 0.
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These inequalities ensure that for every f € §P (p > 1) or f € §* the
functions L) ,f are uniformly almost periodic. Moreover, under the
assumption g — A > 1, Theorems 1, 3, 4 apply with 0 = 3, p = 3,

1 16 pX o 16(3)

= = < e W2
PE xS e S T SOy

. 32u (B +A° . 3201+ p)(3)

T oy ARl ) LR Py

Assuming additionally that 2 < @ < 1 for all g > 0, we easily
verify that the right-hand sides of the estimates given in Theorems 1 -
3 and Remarks 1, 2 converge to zero as u — oo, for almost every z. In
particular, setting A(u) = & we get for f € § the result of 3] (Th. 5).
Moreover, from Corollary it follows the estimate of ||Lx .f — fl|s» in
terms of the modulus of smoothness of f € §P. Namely,

21(1 + ¢(3))

(“_,\)2 ||f||S’+

1Lauf = fllse <

1+46 1 < 1
+2(155+8) oo 2 k(i f) 5o

where m = [u — A] (clearly, the right-hand side of this inequality con-
verges to zero as p — o0). Taking into account the integral modulus of
continuity

wi(h; f)se := sup ||f(-+) = f()lls»
0<t<h

and applying its basic properties, we easily verify that for f € S? with
w1(1; f)s» # 0 there holds the relation

1
st = flls = 0(n (2557) ).
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which is equivalent to Theorem 1 of [3]. Note, that the corresponding
estimates for f € $* follow from Theorem 4.

II. The Bernstein integral operators @, = L, are defined by (1),

in which ¢ € E = (0,00), ¥, = G, are continuous functions on R with
values

Gu(t) = I;E_—T_)l(%sin '2‘—:)2 o(r) i= (2r)¥ -1/ 7 (“%) T

for t # 0, and r is a fixed positive integer (see [4]). It is easy to verify
that Theorems 1, 3, 4 are true for g > 1 with

by =1/p, 0 =p=2r,

o) o er) L))

u2r 2r—1) 'B"‘ - (27)21" B = 'u21'—1 ’ —

a, =

o 20(r) o de(mp® o 4e(r)((2r)
%= uSW’h— T

For almost every z, the right-hand side of the estimate corresponding to
Theorem 1 converges to zero as p — 0o, provided that » > 1. The same
relation for the estimate following from Theorem 3 needs the assumption
r > 2.

Note, that for some classes of functions the above results cannot be
essentially improved. To see this, let us fix a point  and let us consider
the class 2, of all functions f € § such that wy(h; f) <hfor0 < h < 1.
In view of Theorem 1, for every f € €2, and every u > 1,

1Quf(z) - f(=)]

< c(r){2(1 + C(2T))(||f||s +f@)D+ @) + 2,22 2}%
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whenever r > 2. On the other hand, the function 7, of period 2, defined
by nz(t) := |t — z| if |t — z| < 1, belongs to Q, and, for p > =r,

1

Que(2) = 1e(@)] = [ (1l +0) + 1ale ~ )Gu(0)dt > 2 [ 16,01
0 0

wr/u xrfp

2r 2r
> 226(r)1 / 2+l sin”—t dt > 2dr) / g2+l a2 dt
ur- 2w ﬂ2r—l rr

1/u 1/u

= %(7{2?2 - l)l.

IIL. Let us suppose that the Fourier series of a function f € S is s of
the form

=) T
f(:c) ~ Z AkeiAkI with Ag = T]me %/f(t)e"')"“dt,
0

k=—o00
0< M < A1 if k€ N:={1,2,...}, klim Ak = 00, A_g = —Apg,

|Ax| 4+ ]A~k| > 0, and let us consider its partial sums

Saf(z)i= ), Axe™®  (neN).
Ak iI<An

As is known ([6] p. 83 and [2] Lemma 2), S, f can be represented in the
form (1), in which y =n € N and ¥, = D,,, where

2

1 1
O et r——— —2 1 — — 1 —
D,(t) := O = )\,,)t sin 2(An+1 An)tsin 2(An+1 + An)t
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for t # 0. If Apy1 — A > d > 0, where d is independent of n, then
Theorem 1 gives the estimate

1501(e) = @) <2( 5 + 2 )1l + 2))én

1 ®)
1 . 4
+ = Ot + W)t (6ai )+ 260 [ 47202005 1)t
5n

with 6, = d(Angp1 — An)~ 1.

Assume that the Fourier series of f € S is a lacunary series, i.e.
there exists a positive number 8 < 1 such that

An
An+l
Then inequality (6) holds with d = A;(1 — 6). Letting in this inequaﬁ;y
n — oo and observing that §, — 0 we easily state that S, f(z) — f(z)

at every Lebesgue point z of the function f. Thus, from (6) it follows
Theorem 2(1°) of [2], in a sharpened form.

<0 forallneN.

If the Fourier exponents of f € S satisfy the conditions

Ant1 — Ap — 00 and —1lasn— oo,

An+1

then estimate (6) ensures that S, f(z) — f(z) at a Lebesgue point z of
f, provided that the additional assumption

lim 'wx(—l—-——;f) (1 _ D )_1 =0
n—0o An+1 - An A'rL+1
is satisfied (cf. Th. 2(2°) in [2]).
Finally, let us note that at the point = of continuity of f,

we(h; f) < 2w(z; h; f), where w(z;h; f):= sup |f(z+1t) - f(z)|
: 0<t<h
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In this case it is convenient to estimate the term I; in the proof of
Theorem 1 as follows: ’

I <2w(z;6,; f)9,, where 9, := /|¢,‘(t)|dt.
0

Hence, inequalities (4) and (6) remain valid with wz(h; f) replaced by
w(z; h; f); the term B,6, in (4) and the corresponding term 5=(An41 +
An)bn in (6) may be replaced by 29, and by

o0
4 2 /\n+1 + /\n
2 n < =+ —log—————,
/|D (t)|dt < - + 1rlog)‘n+1 .
0

respectively. So, inequality (6) in this form contains also Theorem 2(2°)
of [2].
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