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Orthonormal bases for spaces of continuous
and continuously differentiable functions
defined on a subset of 7,

Ann VERDOODT

Abstract

Let K be a non-archimedean valued field which contains g,
and suppose that K is complete for the valuation | - |, which ex-
tends the p-adic valuation. Vj is the closure of the set {a¢"|n =
0,1,2,...} where a and ¢ are two units of Z,, q not a root of unity.
C (Vg — K) (resp. C'(V; — K)) is the Banach space of continu-
ous functions (resp. continuously differentiable functions) from Vj,
to K. Our aim is to find orthonormal bases for C(V, — K) and
cY(V, - K).

1 Introduction

The main aim of this paper is-to find orthonormal bases for the spaces
C(V4 — K) of continuous and C1(V; — K) of continuously differentiable
functions. Therefore we start by recalling some definitions and some
previous results. Let F be a non-archimedean Banach space over a
non-archimedean valued field L, E equipped with the norm || - ||.Let
f1, fo, ... be a finite or infinite sequence of elements of E. We say that
this sequence is orthogonal if ||a1f1+ ... + axfi|| = mazi<i<k{||a:ifil|}
for all k in IV (or for all k that do not exceed the length of the sequence)
and for all ay,...,af in L. An orthogonal sequence fi, fo,... is called
orthonormal if ||f;|| = 1 for all i. A sequence fi, fo,. .. of elements of E
is an orthonormal base of E if the sequence is orthonormal and also a
base. If M is a non-empty compact subset of L whithout isolated points,
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then C(M — L) is the Banach space of continuous functions from M
to L equipped with the supremum norm || - ||. Let f be a function
from M to L. The first difference quotient ¢;1f of the function f is
the function of two variables given by ¢1f(z,y) = ﬂ%ﬂ defined on
M x M\ A where A = {(z,z)|z € M}.We say that f is continuously
differentiable at a point b € M (f is C! at b) if lim g ) b,0)91f (2, y)
exists. The function f is called continuously differentiable ( f is a C*!
function ) if f is continuously differentiable at b for all b in M. If f
is a function from M to L then f is continuously differentiable if and
only if the function ¢;f can (uniquely) be extended to a continuous
function on M x M. The set of all C; -functions from M to L is denoted
by CY{(M — L), and C}Y(M - L) Cc C(M = L). For f : M — L we
set ||flli = sup{||f|locs l|#1f|lcc}- The function || - ||; is a norm on
Cl(M — L) making it into an L -Banach algebra. Since M is compact,
lIf]l1 < oo if f is an element of C*(M — L) (these results concerning
continuously differentiable functions can be found in [2] or [5], chapter
27).

Let Z, be the ring of p-adic integers, @, the field of p-adic num-
bers, and K is a non-archimedean valued field, K containing @),, and
we suppose that K is complete for the valuation | - |, which extends
the p-adic valuation. IV denotes the set of natural numbers, and INg
is the set of natural numbers without zero. Let a and ¢ be two units
of Z,, ¢ not a root of unity. We define Vj to be the closure of the set
{ag"|n = 0,1,2,...}. For a description of the set V,; we refer to (7],
section 2 or to [8], section 3. In section 3 our aim is to find orthonor-
mal bases for the Banach space C(Vy; — K). The results in section 3
can be seen as a sequel to the results in [9] and [8], sections 4,5 and
6. In section 4 we give necessary and sufficient conditions for a func-
tion f in C(Vy — K) to be continuously differentiable, and we find an
orthonormal base for the Banach space C!(V, — K).
Acknowledgement : I want to thank professor Van Hamme for the
advice he gave me during the preparation of this paper.

2 Preliminaries

‘Let, us introduce the following :
[n]! = [n]ln — 1]...[1] and [0]! = 1, where [n] = L5 if n > L
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7= il ifn 2k [ =0ifn<k

{f}= (aq,ﬂfa‘)‘gg;“z‘)n (?;Ik 12 Ty ife>1, {§} =1

The sequence ({%}) forms an orthonormal base for C(V, — K) ({8},
corollary to lemma 8), analogous to Mahler’s base for C(Z, — K) ([4]).

We also have [] = {{} ifz = aq" If z is an element of @), with Henselde-
+00 n-—1

velopment z = Z a;p’, we then put z, = Z a;p’ (W € N). We

j=—o0 J=—00
write m < z, if m is one of the numbers xg, T1,... and we say that "m

is an initial part of x” or ”x starts with m” (see [5], section 62). I n
s—1

belongs to Ny, n = Zaﬂﬂ where a; # 0, then we put n_ = Za,p’
=0 7=0
We remark that n_ <1 n. Let us now define the sequence of functions

(ex(z)) in the following way : write k¥ € IV in the form k = i + mj,
0<i<m(ij € IN). Then e is defined by

ex(z) = eirmj(z) = 1 if z = ag™(¢™)*= where iz = i,j 9 az, ex(z) =0
otherwise.

The functions (ex(z)) form an orthonormal base for C(Vy — K) ([9]),
analogous to van der Put’s base for C(Z, — K) (see (3] or [5], section 62).
We remark that {an} = e;(ag?) = 0if j < i and that {aq } = ei(ag®) = 1.
We shall use this frequently in the sequel.

We shall construct new orthonormal bases for C(V, — K) using the
bases ({£}) and (ex(x)). Therefore we introduce the following : For each
n € IN, let I, be a subset of the set {0,1,...,n} (I, can also be empty

‘or can be equal to {0,1,...,n}). Let p(z) be a continuous function
of the following type p(z) = Z ai{i} + Z aie;(x) where each
i€ly i€{0,1,.nN\In
a; € K. For example, if I, = {0,1,...,n}, then p(z) is a polynomial. If
I, is the subset of {0,1,...,n} consisting of all the even numbers, and
if a; = 1 for all i, then p(z) = Z {1+ E ei(z)
i€{0,1,...,n},i even i€{0,1,...,n},iodd

and one can think of several other examples. For functions of this type
we can prove the following lemmas

Lemma 1. Let p(z) be a continuous function of the type
p(z) = Z ai{i}+ Z aiei(z) (a;i € K). Then the following
i€ly i€{0,1,..n}\In

are equivalent :
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1) |p(ag™)| =1 and |p(ag®)| < 1 if0 < k < n.
2) lan| =1 and |ax| < 1 if0 < k < n.

Proof.

1) = 2) will be shown by induction. If |p(a)] < 1 then lag| <
1. Now suppose that jag] < 1 if 0 < k¥ < n — 1 Then

D DY s TR aiei(ag™)| = |p(ag**)] <

i€l {01, k+1} {0l kN
1 and by the induction hypothesis it follows that |axii] < 1
and we can conclude |a;] < 1 for all 0 < ¢ < n. Since

1> affY+ Y aiei(ag™)] = Ip(ag™)| = 1 we have |an| = L.
icly, i€{0,1,...n\In
2) = 1) is obvious.

Lemma 2. Let p(z) be a continuous function of the type

p(z) = Zai{f} + Z aiei(z) (a; € K). Then the following
' icly i€{0,1,...n\ I,

are equivalent :

1) llplloo < 1.

2) lag| £ 1 for allk with0 <k < n.

Proof.
1) = 2) can be shown analogous as 1) = 2) of the previous lemma.
2) = 1) is obvious.

Let m be the smallest integer such that ¢™ = 1 (mod p) (1 <m < p-—1).
There exists a ko such that ¢™ = 1 (mod p*0), ¢™ # 1 (mod p**1). If
(p, ko) = (2,1), i.e. ¢ =3 (mod 4), then there exists a natural number
Nsuchthat q=14+2+2%, e =eg+e12+e22+...,e0=€1=...=
eN—1 = 1, ey = 0. Then we have

Lemma 3.

1) Let q™ =1 (mod p*), ¢™ # 1 (mod p*o+1) with (p, ko) # (2, 1).
Ifz,y € Vq, |z —y|] < p~ ko1t then en(z) = enly) if 0 < n < mp’.

2) Let q =3 (mod 4), ¢ = 14+2+2%, ¢ = g0 + 12 + €222 +
gg=¢€1=...=¢e6nN_1=1, ey = 0. If:cyEVq,|:c—y|<p(N+2+t)
then en(z) = en(y) f0<n< 2 (t>1).

Pro6f. This follows immediately from [8], lemmas 2 and 3.



Orthonormal bases for spaces of continuous. . . 299

Lemma 4. Suppose p(z) is a continuous function with ||p|lc < 1 of the
following type : p(z) = Z ai{i} + Z aiei(z) (a; € K).

i€l, i€{0,1,...n\ I,
1) Let ¢™ = 1 (mod p*), g™ # 1 (mod p**1) with (p, ko) # (2,1). I
T,y € Vg, |z —y| < p~kott) then if j € IN, 0 < n < mp* : |p(z)? —
p(wy| < 1/p and Jo7 —y7| < 1/p.
2) Let ¢ = 3(mod4/,q—1+2+22€ e =¢e0+e12+ €22+ ..
go=¢€1=...=eN-1=1,en=0. Ifz,y € Vg, |z—y| < p—(N+2+‘) then
ifj €N, 0 S n<?2 (t>1): |p(z) —p(y)| < 1/2 and |27 -y < 1/2.

Proof. It is clear that |as| < 1if0 < s < n (lemma 2). Suppose that z,y
and n are as in 1) (resp. 2)). Then |p(z) — p(y)| < mazsecr,{|as|{5} —

{1} < 1/p (resp. < 1/2) by lemma 3 and (8], lemmas 11 and 12.
~1

If j > 1 then |p(z)’ — p(y)’| = Ip(=) — p(y) HZP(:c ply) 70 < 1/p
8=0

(resp. < 1/2). So the lemma holds for j € IV (the case j = 0 is
j-1

trivial). Further, if j > 1 then |7 — 7| < |z — y|| Zx"y"l_sl <1/p
=0

(resp. <1/2) so |27 —y?| < 1/p (resp. < 1/2) forall j € IN.

Let for each n € IN J,, be a subset of the set {0,1,...,n}. Then we can
prove

Lemma 5. Let p(z) and q(z) be continuous functions with blloo < 1
and ||¢|lcc £ 1 of the form

p) =D awffl+ D> aiei), (ai € K)

i€l i€{0,1,...n\ I
q(x) = Z bi{i} + E biei(x), (b; € K).
i€Jn ze{O 1,.. ,n}\Jn

1) Let ¢™ = 1 (mod p*), g™ #1 (mod pkotl) with (p,ko) # (2 1). I
z,y € Vg, lz—y| < p~ ko) then ifi,j € N, 0 < n < mpt: |q(z) p(m)
a(y)'p()| < 1/p and |z*p(z)! — y'p(z)’| < 1/p.

2) Let ¢ = 3 (mod 4), q 1+2+2€,€=€0+€12+8222+
ego=¢€1=...=en_1=1,en=0. Ifz,y € Vg, |z —y| < p"(N"'z"'t)
then ifi,j € N, 0 < n < 2' (t > 1) : |g(z)’p(z) — a(v)'P(¥)] < 1/2
and lz'p(z) — y'p()’| < 1/2.

Proof. Let z,y,n,i and j be as in 1) (resp. 2)) then
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la(=)’p(z)’ — a(¥)'p(y)’| < maz{lg(z)’p(z)’ — q(=)’p(¥)’], la(=)'p(v) —
a()’p(v)’1} _ , _ _ .

< maz{lg(z)*||lp(z) — p(v)’|, (W)’ |la(z)* — q(v)*|}

< 1/p (resp. < 1/2) by lemma 5 and analogous

lz°p(z)’ — ¥'p(y)?| < maz{|z’p(z)? — 2°p(y)’], |2*p(¥)’ — ¥'P(¥)’[}

< maz{|z*|[p(z)? — ply)’|, [p(v)’||=* — ¥*|}

< 1/p (resp. < 1/2) by lemma 5

We shall need lemmas 6 and 7 for the construction of an orthonormal
base for C1(V; — K):

Lemmanﬁ.
[H] = Y Bl llg o))
=0
Proof. This follows immediately from [8], lemma 10 by putting first
s =n — k and then interchanging 7 and j.

Definition. We define the sequence (pn) as follows :
pn=(¢") " —1lifn=im+j,0<j<mandi>0 p,=1if n < m.

Lemma 7.
lon| = minice<n{le® — 1{}. (n € INg).

Proof. This follows immediately from [8], lemmas 2 and 3.

3 Orthonormal bases for C(V, — K)

Using the lemmas 1-5 in section 2, we can make orthonormal bases for
C(Vq — K) with the aid of the following theorem :

Theorem 1. Let (pn(z)) and (gn(z)) be sequences of continuous func-
. tions of the following form :

for each n pp(x) is of the form pu(z) = Z ana1{i} +
icly,
Z aniei(z) with |lann] = 1 and with |ang < 1

i€{0,1,n)\In
f 0 < i < n (an; € Qp), and for each n we have

(@)=Y bai{f}+ D bnsei(z) with |ga(aq™)| = 1 and
i€Jn i€{0,1,.nN\Jn
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lbpil < 1if0 < i < n (bn; € Q). If (jn) is a sequence in IN and
if (kn) is a sequence in INg, then the sequences (gn(z)pn(z)*") and
(zInpn(z)") form orthonormal bases for C(Vq — K).

Proof. This proof is analogous to the proof of [8], theorem 5. We remark
that for all n we have ||pn]loo < 1 and ||gn|lcoc < 1 (lemma 2), and that
pn(z) and gn(z) are elements of C(Vy — @,). By [1], 3.4.1 or [6], p.
123-133 it suffices to prove that (gn(z)¥pn(z)*") and (z7"pp(z)*") form
orthonormal bases for C(V4 — @,) and by [1] proposition 3.1.5'p. 82 it
suffices to prove that (gn(z)irpp(x)*») and (zinpp(zx)kn) form vectorial
bases for C(V, — F,) (where f(z) stands for the canonical projection
on C(V, — Fp), if f is in C(Vg — @) with ||f||e < 1). We distinguish
two cases.

1) Let ¢™ = 1 (mod p*0), g™ # 1 (mod p*ot1) with (p, ko) # (2, 1), define
C; the space of the functions from Vy toFp, constant on balls of the type
{z€Z :lz—al < p~kot)} o € V. Since C(V, — Fp) = Ut<oCt ([8],
lemma 4 and its proof) it suffices to prove that (gn(z)#pp(z)*=|n < mp?)
and (znpy(z)*n|n < mp') form bases for Cy. By the proof of [8], lemma
4, we can write V; as the union of m pt disjoint balls with radius p~(kott)
and with centers ag"(¢™)", 0<r<m-1,0<n< pt. Let x; be the
characteristic function of the ball with center ag®. Using lemma 5, we
have

mpt—1

in()inpa(z)fr = D xi(z)an(ag’)mpn(agi)en
=0
mpt—1

= Y xi(z)an(ag?)?pn(ag’)*

i=n

since |gn(ag’)?"pn(ag’)*r| < 1ifi < n (lemma 1) and hence the transition
matrix from (xnln < mp?) to (gn(z)pn(z)*=|n_< mp') is triangular
since |gn(aq™)pn(ag™)**| = 1 (lemma 1), so (gn(z)?»pn(z)*n|n < mp?)
forms a base for C;. The proof for (zinpy(x)*) is analogous.

2) Let ¢™ =3 (mod 4), g=1+2+2%, e =ep+ 12+ €222 +..., €0 =
€1 =...=eN_1 = 1, ey = 0, define C; te space of the functions from
V, to Fo constant on balls of the type {z € Z: |z —a| < 2_(N+2+t)},
a € Vg Since C(Vqg — F2) = Up1Cy ([8], lemma 5 and its proof) it
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suffices to prove that (gn(z)inpp(z)kn|n < 2¢) and (xinpp(z)k=|n < 2%)
form bases for C;. By the proof of [8], lemma 5, we can write Vj as the
union of 2¢ disjoint balls with radius 2~ (V+2+%) and with centers ag®,
0 < n < 2. From now on the proof is analogous to the proof of 1).

Some examples.

1) If (pn(z)) is a sequence of polynomials with coefficients in @, such
that for all n we have that the degree of p, is n, |pp(ag™)| = 1 and
Ipn(ag?)| < 1if0 < i < n, and if (ky,) is a sequence in IV, then (pn(x)*")
forms an orthonormal base for C(V; — K). This follows immediately
from lemma 1 and theorem 1, by putting j, = 0 and I, = {0,1,...n}
and this for all n. The case k, = 1 for all n can also be found in [8],
theorem 4. - '

2) If (k) is a sequence in Ny, then ({Z}**) forms an orthonormal base
for C(Vy — K). Put therefore pp(x) = {£} in 1). If f is an element
of C(V4 — K), and if s is a natural number different from zero, there

(oo}
exists a uniformly convergent expansion f(z) = Z B {2} and we are
n=0

able to give an expression for the coeffiecients ,37(),8). This can be found

in [8], proposition 1.

3) If (pn(z)) is a sequence in C(V; — @) such that for all n we have
n

pn(z) = Zan,iei(z) with |pn(ag™)| = 1 and |pp(ag®)] < 1if 0 < i < n,
i=0

and if (kn) is a sequence in INo, then (pn(z)**) forms an orthonormal

base for C(V; — K). This follows immediately from lemma 1 and theo-

rem 1, by putting j, = 0 and by putting I, equal to the empty set. The

case k, = 1 for all n can also be found in [9], theorem 2.

Remark. We can make an analogous result for the space C(Zp — K) :
if we replace the polynomials ({¥}) by ((¥)) ( Mahler’s base ) and the
functions (e;(z)) by van der Put’s base, then we can prove the following
(we shall denote van der Put’s base by (gi(z)) :

Let (pn(z)) and (gn(z)) be sequences of continuous functions on
Z, of the following form: for each n pnp(z) is of the form
pn(z) = zan,i(f) + Z anigi(z) with |ann| = 1 and with

i€l ~i€{0,1,..m\]n
langl < 1 0 < i < n (an; € @), and for each n we have
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(@)=Y bni®)+ Y bnugi(x) with |ga(n)| = 1 and [bn| <
i€ i€ 0,1, \Jn

1if0<i<n (bns € @). If (jn) is a sequence in IV and if (kn) is a se-

quence in IN g, then the sequence (g,(z)/"p,(z)*") forms an orthonormal

base for C(Z, — K).

4 Continuously differentiable functions on V,

In this section we give necessary and sufficient conditions for a contin-
uous function defined on Vg to be continuously differentiable, and we
find an orthonormal base for the space C}(V, — K). The result we'll
find is analogous to the result for continuously differentiable functions
on %, (5], theorem 53.5) where we replace Mahler’s base by the base
({%}). We remark that there is a one-to-one correspondence between
(u,v) € Vg x V, and (2=, z) with (z,y) € V, x V, (see [7], section 2).
We shall use this several times in this section. Let p, be as defined in
section 2, then we can prove the following :

Proposition 1. Let f be an element of C(Vq — K) with uniformly
convergent expansion f(z) = Zan{n} If limpoolan(pn) "} = 0, then
f is an element of C1(V, — K).

Proof. Let f be in C(V; — K) with uniformly convergent ex-
pansion f(z) = f:an{fl}. Analogous to [5], theorems 53.4 and

53.5, we want to find an expression for ¢1f(u,v) for special val-
ues for u and v. Therefore, let z,y be in {ag"|n = 0,1,2,...},
z = aq®, y = ag¢’ and suppose y # a (ie i # 0). Then

BI(E2) = $1f(z 1) = [0 Zaq,(q, () - 1)
= 2 (Z[’-sn Jg~"=H9) _ [1]) (by lemma 6)

‘"1'(‘1’ =

— 7] 11 _—(n—8)(—i+s)
Z—aq,(q, Z{ _dEle

since ""—1[n—s] = I;Ts_lln—S—l]’ we find, by putting n = s+ k + 1, that
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‘ s(k+

yz Ok+-54+19

I (2, 2) = 355 ket Ty ey
a k=03=0 (q )

and replacing y by yq this gives us for all z,y in {ag"|n =0,1,2,...}

11" ) zz“::;;;,‘:; )k{ HY} (%)

k=0s=0
Now supiisti=n|gfHE}| = lanlmazick<nl 5| = lan(pn) '] (lemma
7), so if lzmn_,oolan(rn) 1| = 0, then lzmk+3_,oo|—k—;*_1—"'—1| 0 and it

is clear that (*) can be extended to a continuous functlon (5], exercise
23.B). So we conclude : if limp_,0lan(rn) 1| = 0, then f € C1(V, — K).
This finishes the proof.

Remark. It is easy to prove that the functions (*{Z}{}}) are orthonor-
mal in C(Vy x Vg — K).

Let A be the subset of C (Vg — K) defined as follows : if f is an element
00

of C(Vq — K) with uniformly convergent expansion f(z) = Zan{’fl},
n=0
then f is an element of A if and only if limy_,c0|an{pn) | = 0.

Proposition 2. The set A satisﬁes the following properties :
1) A is o subset of C1(V; — K) containing the polynomials 2) A is
closed for || - ||1 3) A is a subalgebra of C1(Vy — K)

Proof.

1) From proposition 1 it follows that A is a subset of C*(V, — K). It is

clear that A contains the polynomials.

2) Suppose f = limn—oofn for the norm || - ||1 where f, € A for all n.

Then f is clearly continuous. So there exists the following uniformly
(o o]

oo
convergent expansions : f(z) = Zak{“,'c’}, In(z) = E ank{%}, with
k=0 =
limgooo I ak |= 0, limp 00 I an.k |= 0 for all n, limg 0o | an,k(pk)
0 for all n. Suppose that limg_,o0]ar(pr) 1| # 0. This will lead to a con-
tradiction. Since limy_,oo | ax(px) ™' |# O there exists an € > 0 such that
for all n € IN, there exists an n > 7 such that |an(pn) | > €. Let I be
the set defined as follows : I = {k € IN¢ : |ax(px) | > €}. Then I is infi-
nite. Let € be as above. Then there exists a J € IV, such that foralln >
J we have ||f — fn|l1 < €. In particular, supz¢y{|(f fJ)(z) U103 <
e, -and from the calculations in proposition 1 it fg)llows that

-1 |:
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a 8 —a 8 (
107 = 2 2 = 35 o 1okl ey <
=0 s=0

e for all z,y in {ag"|n = 0,1,2,...}. From this it is easy to see that
|a—k+—¢i—_—?—ffiﬂ| < € for all k£ and s, so supg s{lli‘%i;—afl'ﬁ'—"—f—l” < € and
thus supn{|(an—aJn)(pn) 1|} < e Then, if n € I wehave |ajn(pn) | =
[(asn— an)(pn) "1+ an(pn) | > ¢, and from this it follows that limg_oo
| ask(pk)* |# O since I is infinite. This is impossible and we conclude
that A is closed.

3)If f,g € A, k,j € K, then we xmmedxately have that kf + jg € A,
and if » and u are polynomlals (€ A) then ru is a polynomial and also
an element of A. From the Weierstrass-theorem for C!-functions ([2],
theorem 1.4) it follows that for each f,g € A we have fg € A since A is
closed.

Theorem 2. Let f be an element of C(Vq — K) with uniformly conver-
o
gent ezpansion f(z) = Z an{Z}. Then f is an element of C1(Vy — K)

if and only if limn.,oo|a,_l(pn)_1| =0.
If f is an element of C1(Vqg — K) then ||f|l1 = mazn>0{lan(pn)" [}
and the functions (pn{Z}) form an orthonormal base for C*(Vy — K).

Proof. From proposition 2 and the Weierstrass-Stone theorem for C-
functions ([2], theorem 2.10) it follows that A = C}(V, — K). So f is
an element of A = C}(V, — K) if and only if

limy_colan(pn) ~!| = 0. Let us first remark the following : since
limpoolan(pn) ™| = 0, we have supp>1{lan(pn)™}|} =

maxn21{|an(pn)_1|} and since squ,SZO{Ef‘H{%l} = supnzl{lan(pn)‘ll}
with k + s + 1 = n, we have

mazk,s>0{| gL [} = supk,sx0{| 151} = maznz1{lan(pn) '} From
(*) it follows that for all z,y in {ag"|In =0,1,2,...}
s(k+1)
x a e
61 f (qy Z Z :ﬁaz S z*{Z}{¥} and by continuity it then
k=0 s=0
follows that for all z,y in Vg Wlth y different from agq
wz akrsy1g T Y
¢1f( ICZ%Z k+1( k+1 _ ) { }{k}
0 5=0
Then we immediately have |¢; f (2= . z)| < mazk,,zo{ﬁk"—ﬁ’—'ﬁﬂ} for all

1 we have
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z,y in Vg with y # ag™! and so we have ||¢1 f||oo < mawk,szo{lgﬁf{—ﬂ}.
If mazk,s>o{| BHEL(} = 0it is clear that [[¢1 f]|oo = mazg,sxof| FHE(}-
If maxk,320{|§,c’%‘-§|} > 0, then put I = {(i,j) € N x IN :
Igjﬁ'—iiﬁ = mawkyszo{lffﬁf—;l}}. Now let S = min{i € IN: there
exists a j € IN such that (i,j) € I} and T = min{t € N :
(S,t) € I} then it is easy to see that |¢1f(ZagSaq”,aq”)|

ll

Ig’fvﬁs—fﬂ = max,},,szo{lgﬁ?—?ﬂ} and so we conclude ||¢1fllcc =
mawk,szo{lfﬁ’i’—il} = mazn31{lan(pn) '} Since ||f[l1 =
maz{||fllcos [|#1fllc} = maz{maznz0{lan|}, mazn>1{lan(pn)|}}

and “since |(pn)”!| > 1 for all n we conclude that ||f|l; =

mazn>0{|an(pn) !|}. From this it follows that ||{Z}||, = I(on) Y| so
o0 o o}

len{Z}ll1 = 1. Purthermore, f(z) = 3 an{Z} = ZZ—",;,,{:;} with
n=0 n=0 "

Ifth = mazn>o{lan(on) !} = mazn20{||22pn{7}Il1} so the functions

(pn{7}) form an orthonormal base for C1(V, — K). This finishes the

proof.
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