On embedding l₁ as a complemented subspace of Orlicz vector valued function spaces

FERNANDO BOMBAL

ABSTRACT. Several conditions are given under which l_1 embeds as a complemented subspace of a Banach space E if it embeds as a complemented subspace of an Orlicz space of E-valued functions. Previous results in [7] and [1] are extended in this way.

INTRODUCTION AND TERMINOLOGY

Pisier proved in [7] that if a Banach space E contains no copy of l_1 , then the space $L_p(\mu,E)$ does not contain it either, for $1 . In [1] the result is extended to the case of Orlicz spaces <math>L_{\Phi}(\mu,E)$ and we study also the problem of embedding l_1 as a complemented subspace of $L_{\Phi}(\mu,E)$. A complete characterization is obtained when E is a Banach lattices, getting only partial results in the general case. The aim of this note is to give some new different conditions under which $L_{\Phi}(\mu,E)$ contains a complemented copy of l_1 if and only if so does either $L_{\Phi}(\mu)$ or E.

As for notations, E will denote a Banach space, E^* its topological dual and (Ω, Σ, μ) a finite, complete measure space. A series Σx_n in E is said to be weakly unconditionally Cauchy (w.u.c. in short) if $\Sigma |x^*(x_n)| < \infty$ for every $x^* \in E^*$. A subset B of E is called weakly conditionally compact if every sequence in B has a weakly Cauchy subsequence. Given a Young's function Φ with conjugate function Ψ (see [10], p. 77 and ff.), for every strongly measurable function $\Omega \to E$ we shall write

$$M_{\Phi}(f) = \langle \Phi(||f||) d\mu.$$

The Orlicz space $L_{\Phi}(\mu, E)$ is the vector space of all (classes of) strongly measurable functions f from Ω into E such that $M_{\Phi}(kf) < \infty$ for some k > 0 (if

Editorial de la Universidad Complutense. Madrid, 1988.

Supported in part by CAICYT grant 0338/84.

¹⁹⁸⁰ Mathematics Subject Classification (1985 revision): 46E40, 46B25.

 $\Phi(t) = t^p$, $1 \le p < \infty$, $L_{\Phi}(\mu, E)$ is the usual Lebesgue space $L_p(\mu, E)$. $L_{\Phi}(\mu, E)$ coincides with the set of all strongly measurable functions $f: \Omega \to E$ such that

$$||f||_{\Phi} = \sup\{\int ||f|| \varphi \ d\mu : \varphi \in L_{\Psi}(\mu, \mathbb{K}), \ M_{\Psi}(\varphi) \leq 1\} < \infty.$$

This expression defines a Banach space norm in $L_{\Phi}(\mu,E)$. We have

$$L_{\infty}(\mu,E) \subset L_{\Phi}(\mu,E) \subset L_{1}(\mu,E),$$

with continuous inclusions. Recall that Φ is said to verify the (Δ_2) -condition if it is everywhere finite and

$$\lim_{t\to\infty}\sup\frac{\Phi(2t)}{\Phi(t)}<\infty.$$

In this case, the simple functions are dense in $L_{\Phi}(\mu, E)$. Finally, we shall use the name $\langle l_1 \rangle$ -sequence to denote a sequence equivalent to the usual basis of l_1 . A complemented l_1 sequence will be an l_1 -sequence which spans a complemented subspace.

For notations and terminology used and not defined, we refer to [4] and [5].

THE RESULTS

Recall that a subset A of a Banach space E is called a (V^*) set ([6]) if for every w.u.c. series Σx_n^* in E^* , the following holds:

$$\lim_{n\to\infty} \sup \{|x_n^*(x)| : x \in A\} = 0$$

It is evident that every (V^*) set is bounded. Also, every weakly conditionally compact set is a (V^*) set ([2], cor. 1.3). E is said to have property weak (V^*) if, conversely, every (V^*) set is weakly conditionally compact. Spaces not containing copies of l_1 and closed subspaces of order continuous Banach lattices, have property weak (V^*) (see [2]). Property weak (V^*) appears as a weakening of the so called property (V^*) , introduced by Pelczynski in [6] and extensively studied.

To proceed any further, we shall need the following results:

Lemma A. ([2], prop. 1.1) A bounded subset of a Banach space is a (V^*) set if and only if it does not contain a complemented l_1 sequence.

Lemma B. ([2], Th. 3.2) Let $K \subset L_1(\mu,E)$ be uniformly integrable. If K is not a (V^*) set, there exists $B \in \Sigma$ with $\mu(B) > 0$, such that $\{f(\omega): f \in K\}$ is not a (V^*) set for every $\omega \in B$.

Lemma C. ([2], Cor. 1.7) Let $A \subset E$ be bounded. If for every $\varepsilon > 0$ there exists a (V^*) set $A_{\varepsilon} \subset E$ such that

$$A \subset A_{\varepsilon} + \varepsilon B(E),$$

where B(E) is the unit closed ball of E, then A is a (V^*) set.

The first result is a characterization of property weak (V^*) :

Theorem 1. A Banach space has property weak (V^*) if and only if any l_1 sequence has a complemented l_1 subsequence.

Proof. Suppose E has property weak (V^*) and let $(x_n) \subset E$ be a l_1 sequence. Then $A = \{x_n : n \in \mathbb{N}\}$ is not weakly conditionally compact and so it is not a (V^*) set. An appeal to lemma A yields a complemented l_1 subsequence of (x_n) .

Conversely, if E does not have property weak (V^*) , there exists a (V^*) set K that is not weakly conditionally compact. Rosenthal's l_1 theorem ([4], th. 2.e.5) produces a l_1 sequence (x_n) in K that, by lemma A, can not have a complemented l_1 subsequence.

EXAMPLES

- a) The James space J (see, f.i., [4], example 1.d.2) is a non reflexive separable Banach space that does not contain copies either of c_0 or l_1 . In particular, it has property weak (V^*) , but it is neither a Banach lattice nor a subspace of an order continuous Banach lattice ([5], th. 1.c.5).
- b) The space $E = J \oplus l_1$ has property weak (V^*) , as a direct sum of spaces having it. Besides, it does not contain a copy of c_0 ([8], th. 1) and it is not weakly sequentially complete (because its closed subspace J is not). Hence, it is not a Banach lattice by [5], th. 1.c.4. This proves that there are spaces with the weak (V^*) property, containing l_1 , and such that they are not Banach lattices.

The general question of wether the embedding of l_1 as a complemented subspace of $L_{\Phi}(\mu, E)$ implies necessarily that either $L_{\Phi}(\mu, K) = L_{\Phi}(\mu)$ or E contains a complemented copy of l_1 , is still open, as far as we know. The answer, is affirmative if E is a Banach lattice and μ a non-purely atomic probability measure, or $L_{\Phi}(\mu, E)$ contains an uniformly bounded complemented l_1 sequence ([1], Th 5 and 6). The result is also true when μ is purely atomic and $\Phi(t) = t^p$ (1). Next result gives also a positive answer when <math>E has property weak (V^*):

Proposition 2. Let E be a Banach space with the weak (V^*) property and Φ a Young's function satisfying the (Δ_2) -condition. Then $L_{\Phi}(\mu, E)$ contains a complemented copy of l_1 if and only if either $L_{\Phi}(\mu)$ or E contains a complemented copy of l_1 .

Proof. Suppose $L_{\Phi}(\mu)$ does not contain a complemented copy of l_1 . As $L_{\Phi}(\mu)$ is an order continuous Banach lattice, it follows from [9], th. 16 that l_1 does not embed in $L_{\Phi}(\mu)$. Theorem 4 of [1] proves then that E contains a copy of l_1 and, by theorem 1, also a complemented copy of l_1 .

The examples given after theorem 1 show that the scope of theorem 3 is different from that of proposition 2 in [1].

The following is an extension of a result of Maurey and Pisier ([7], Th. 2) for complemented l_1 sequences:

Theorem 3. Let E be a Banach space and $K = \{f_n: n \in \mathbb{N}\} \subset L_1(\mu, E)$ an uniformly integrable sequence. If for almost all ω the sequence $\{f_n(\omega): n \in \mathbb{N}\}$ does not have a complemented l_1 subsequence, then K does not contain a complemented l_1 subsequence.

Proof. Suppose on the contrary that K contains a complemented l_1 subsequence. Then, by lemma A, K is not a (V^*) set. For every $n, m \in \mathbb{N}$, let us write

$$A_{nm} = \{ \omega \in \Omega : |f_n(\omega)| \le m \}, \quad f_{nm} = f_n \chi_{A_{nm}} \quad \text{and} \quad K_m = \{ f_{nm} : n \in \mathbb{N} \}.$$

By the uniform integrability of K,

$$K \subset K_m + \varepsilon_m B(L_1(\mu, E)),$$

where $B(L_1(\mu, E))$ denotes the closed unit ball and (ε_m) is a null sequence of positive numbers. Because of lemma C, there is an $m \in \mathbb{N}$ such that K_m is not a (V^*) set. Lemma B provides a set $B \in \Sigma$ of positive measure, such that for every ω in B, $\{f_{nm}(\omega): n \in \mathbb{N}\}$ is bounded and not a (V^*) set. Lemma A assures then that it contains a complemented l_1 sequence.

In general, it is not clear that a bounded subset of $L_{\Phi}(\mu,E)$ which is not a (V^*) set, can not be a (V^*) subset of $L_1(\mu,E)$ (see [2], Prop. 1.10). This is the main reason why the above theorem is not automatically verified when K is a complemented l_1 sequence in $L_{\Phi}(\mu,E)$ (under mild conditions on Φ , this implies K uniformly integrable). In order to assure it is true, at least in some cases, let us call a subset $K \subset L_{\Phi}(\mu,E)$ equi- Φ -integrable if

$$\lim_{m \to \infty} \sup \{ || f \chi_{\{w: |f(w)| > m\}} || \phi: f \in K \} = 0.$$

With this notation, we have:

Theorem 4. Let E be a Banach space and Φ a Young's function satisfying the (Δ_2) -condition. If $K = \{f_n : n \in \mathbb{N}\}$ is a complemented equi- Φ -integrable l_1 sequence in $L^{\Phi}(E)$, then E contains a complemented copy of l_1 .

Proof. Reasoning as in theorem 3 we get an uniformly bounded subset K_m which is not a (V^*) set. Lemma A produces then a uniformly bounded complemented l_1 sequence. Theorem 5 of [1] yields the result.

References

- [1] F. BOMBAL, On l_1 subspaces of Orlicz vector valued function spaces. Mah. Proc. Cambridge Phil. Soc. (1987), 107-112.
- [2] F. BOMBAL, On (V^*) sets and Pelczynski's property (V^*) . To appear.
- [3] F. BOMBAL and C. FIERRO, Compacidad débil en espacios de Orlicz de funciones vectoriales. Rev. Acad. Ci. de Madrid, 78 (1984), 157-163.
- [4] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces, vol. I. Springer, 1977.
- [5] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach spaces, vol. II. Springer, 1979.
- [6] A. PELCZYNSKI, On Banach spaces on which every unconditionally converging operator is weakly compact. *Bull. Acad. Pol. Sci.*, 10 (1962), 641-648.
- [7] G. PISIER, Une proprieté de stabilité de la classe des espaces ne contenant pas l₁. C. R. Acad. Sci. Paris, Ser. A, 285 (1978), 747-749.
- [8] C. SAMUEL, Sur la reproducibilite des espaces l^p. Seminaire d'analyse fonctionnelle. Ecole Polytechnique, Paris (1978-1979). Exp. XXVI.
- [9] L. TZAFRIRI, Reflexivity in Banach lattices and their subspaces. J. of Funct. Analysis, 10 (1972), 1-18.
- [10] A. C. ZAANEN, Linear Analysis. North Holland, 1953.

Departamento de Análisis Matemático Facultad de Matemáticas Universidad Complutense 28040 Madrid (Spain) Recibido: 15 de abril de 1988