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Abstract

For a prime number ¢ and for a finite Galois ¢-extension of
function fields L/K over an algebraically closed field of charac-
teristic p # ¢, it is obtained the Galois module structure of the
generalized Jacobian associated to L, £ and the ramified prime di-
visors. In the cyclic case an implicit integral representation of the
Jacobian is obtained and this representation is compared with the
explicit representation.

1 Introduction

Let k be an algebraically closed field of characteristic p >0. Let £ be a
prime different from p. Let L/k be a function field of one variable, G
be a finite ¢-group of k-automorphisms of L and K be the fixed field.
Then L/K is a finite Galois £-extension with Galois group G. The group
G acts naturally on several Zg-modules defined on L, Z, denoting the
ring of £-adic integers. Let J; be the Jacobian variety associated with
L/k. Then G acts on Jy, and, by restriction, on ¢»Jy, the points of Jj,
of order dividing ¢" . Let Jr(¢) = lim ¢nJr. Then Jr(€) is naturally

G-isomorphic to Cor(£), the £-Sylow subgroup of the class group Cor, of
divisors of degree 0 in L. It is well known that as groups, Cor (€)= R29L,
where g; denotes the genus of L, R = @/Z, , and @, denotes the field
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of the £-adic numbers. The dual of Jz(¢) is the Tate module associated
with L and ¢, Ty(L) = lEn enJp .

In this paper we are interested in the Galois module structure of
the generalized Jacobian Ja(¢)= Coa(£), where N is a modulus in L
induced by a modulus M in K, M containing all the primes in K
ramified in L.

Section 2 is devoted to the calculation of the cohomology of
¢CoL, Con(£) and ¢Con which will be used in the last section. In Sec-
tion 3 we consider the integral representation of the generalized Jaco-
bian (Theorem 6). Our main tool is a theorem of Valentini [5] about
the number of regular representations appearing in an F|[G]-module, F
a field of characteristic ¢, G a finite ¢-group. From the integral repre-
sentation of the generalized Jacobian, we are able, in the cyclic case, to
obtain an implicit integral representation of the usual Jacobian via the
dual of Heller’s loop operator. This is Theorem 9. Finally, we compare
the implicit integral representation of the Tate module with the explicit
one obtained in [2] deriving an expresion for the dual of Heller’s loop
operator (Corollary 10).

In this paper, for a natural number m, Cp, will denote a cyclic group
of order m. For a finite Galois ¢-extension L/K of function fields of one
variable over k, r will denote the number of primes in K ramified in
L,r>0; Gy, ,Gr, will denote the ramification groups. Finally, if the
ramification indexes of these r ramified primes are ™, ..., ¢", then we
will asume ny > no > ... > n,.

2 Cohomology of Jacobians

In what follows Dy will denote the divisors of the field L, Dg; the
divisors of degree 0, Py, the principal divisors and Cf, the class group of
L.

We consider the exact sequences of Z,[G]-modules:

l1-k*>L*> P, -1 (
l1-P,—-D—-CL—1 (2
1—>CoL—->CL—4->Z—->0 (

1 —¢ Cop, — Cor 5 Cop — 1 (4
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Here d denotes the degree map and ¢ is exponentiation by L.
For any G-module A, the Tate i-th cohomology group H YG,A),
i € Z will be denoted by H*(A) and its cardinality by h*(4). We also

denote AC = {a €Alga=aforallge G}, N the norm (trace) map,

thatis N z = Z g z, and y A will denote the kernel of N acting on A.
g€eG
We also denote Ig=<g~1|g€ G > C Z[G] C ZG].
In [2] we proved:
Proposition 1. Let L/K be a cyclic extension of degree {™. Then the
cohomology groups of Cor, and C are given by:
i) If L/ K 1is unramified,

H%(Cor) = {0}; HO(CL) = {0};
HY(CoL) = Cen @Cn; HY(CL) X Cpn;
1) If L/ K 1is ramified,
H(CoL) = P (Cem); HO(CL) 2= @ (Cens);

=3 1=2
HY(CoL) & Cpn—ny ® Cpn—ny; HY(CL) X Cpnny .

Proposition 2. If L/K is a cyclic extension of degree €™, then:

IN (¢Cor)| = 29x~2  if L/K is not totally ramified
e = £29x if L/K is totally ramified.

Proof. We consider first the case when L/K is unramified. From 4)
we obtain:

Cen & Con = H'(Cor) 5 HY(Cor) — H(¢Cor) — H(Cor) = {0},

so that
«C§; H'(Cor)
N(gCOL) ZHI(COL)
Since the extension L/K is unramified, the conorm map ¥ satisfies
V(Dg) = Dg, ¥(Dok) = D(?L and ¥(Cpg) C COGL. From

2 H(¢Cor) = > .

1— Py — Dor — CoL — 1,
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we have S
D, = Dok — C§, —» H'(PL) = {0},

and we obtain that \II(COK)=C'&. Since Cox is divisible, we have
Cox = gC’OGL. Therefore we have

IN (eC67)| = 69k
We also obtain
1%(¢CoL) = [tc'gz. : N (eC'OL)] = [lCOK !N (lCOL)] = ¢

Thus,
| N (¢Cor) | = (2952,

When L/K is ramified, we obtain from (4) that
— HY(Cor) & HO(eCoz) 3 H(Cor) 4 HO(Cor) — H'(¢Cor) —
~ H'(Cor) % H'(Co) 5 H°(0z).

Hence, im o« = ker ¢ = C’;‘Z ( since (H%(Cor) = é}(c,u,.)) and
im 8 = kero. =
Now, ker 8= im [ ¢: H(Cor) — H'(Cor) ] and since
H'(CoL) & Cpn-my ® Cpnny,
we have

_ Ceﬂ—nl—l e C[n—nl—l if n:l <n
ke’ﬂ‘{ {0} ifrg=n -

From hl(Cor) = £2("=™) = |im B |ker 8| it follows that

. 22 ifni<n
|ker a| = |im 8| = { 2(h-n1) — 1

ifni=n '
Then

. £ ifni<n
h%(eCo) = |im | |ker B| = { -2 if ni =n
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Therefore

0 tC& C; if L/K is not totally ramified
HY%(CoL) & —— &

N(¢CoL) C;~2  if L/K is totally ramified.

When L/K is totally ramified, we will prove that N : ;Cor — ¢Cox
is surjective. In order to show this, it suffices to prove it for n = 1. So
we assume L/K cyclic of order ¢, N : Cor, — Cok is surjective, and if
z € ¢Cok, then z is a norm from Cgz. Now by (4),

HY(Cor) 5 H(Cor) = {0} D HO(eCor) & HO(Cor) & HO(Cor)
and £ is the 0-map in this case, so
ker £ = im o = H%(Coy).
Therefore

S csL _
N(¢CoL) N(Cor)

In the ramified case the conorm map is injective. Thus z € Cox C
C§} so that the class of z in H%(Coqy) is 0, then the class of z is 0 in
HO%(;Cor) and consequently z € N (¢,Cor). Therefore N : ;Cor, = ¢Cok
is surjective as claimed.

Hence, when L/K is totally ramified,

= H%,Co) 2 H(CoL) &

c§ «C&
(eCor) N(eCorL) ¢Cok Ce

and
I 8, | = (29T,

Now if L/K is not totally ramified, let T be the maximal
unramified extension of K in L. We have N (,Cor) = Np/k(eCoL) =
Nt/k (NL/T(£COL)) = Nr/k(eCor) and since T/K is not ramified,

[tCOK : NT/K(eCOT)] = ¢2. Hence,

G -
| tCOGL I = hO(ZCOL) lN(lCOL) I =f. Iie_gl(_)_l_ = 29k =241
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In any case, IeC& I = (29x =247 and

IZC& | _ { £29x~2 if L/K is not totally ramified

| N(Cor) | = RO(¢,CoL) (¥9x  if L/K is totally ramified.

Now we consider L/ K a Galois £-extension with Galois group G, |G| =
" Let p1, p2, ..., Pr, Pr+l, -- -, Pr+u be 7 + u > 0 different primes

in K where pj, p2,-- -, pr are all the primes ramified in L. Let M be
r+u

the modulus in K given by M = H pi and let | M| denote the number
i=1
r +u. Let N be the modulus in L defined by N = H P,1<i<r+u.
Ple:
If ¢™,... €™ are the ramlﬁ;:natlon indexes of pi,p2,...,pr, we have
that p; = (’P(') ’Pg,)_,,) , 1 <4< r+u (of course n; = 0 for
r+1<i<r+4+u ) and since the ramification is tame, the different is

given by
r [ Alaiit mi
Dk =[] ( I1 7 )

i=1

The Genus Formula gives us:

29, — 2= |G| (29, - 2) + deg (Dr/x) =

,.
=G| (2 g5 —2)+ I _£P7H(L™ - 1).
=1
We will use the following notation:
D = Divisors in L relatively prime to N C Dy,
Doy = Dy N Dor,
Py={(a) |a €L* a=1 modN},
Cn = Dy/Pn,
Con = Don/Pw,
Ly ={a € L* | (a) is relatively prime to N'},
Lyn={a€Ly |a=1 mod N},
Tx = {(a) | (a) is relatively prime to N},
and a similar one for M. The generalized Jacobian is Jyr & Cop.
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Proposition 3. Let L/K be any finite Galois £-extension and M a
modulus in K containing all the ramified primes. Then |N (¢Con)| =
029 ~1HMI=d ypere d is the minimum number of generators of G.

Proof. We have the G-exact sequences:

1> k¥*NLpyn —» Lyn — Py —1 (5)
1 — Py — Doy = Coxv — 1 (6)
1->Py—Dy—Cxy—1 )
1> Cow—Cn32-0 (8)

We have k*N Ly = {1}. So Lyr = Pyr. The natural maps 7:Dy —
Cp, and 7o : Doy — Cor are surjective and kernr = ker 79 = T so that
CL & Dn/Tn and Cor = Don/Tn . Therefore we obtain the exact
sequences of G-modules:

1> Ty/Py—>Cn—CL—1

1— Tn/Py — Conv — CoL — 1 ®)

We also have that as Z,[G]-module

®ric/cie RG]
(T /) () = =

b
R e*

,
where R e* denotes the diagonal copy of R in @R [G/Gi] ® R[G]" (see

(3], [6] and [7]).
.Therefore we have the G-exact sequence:

=1

éR [¢/Gi) ® R[G]*
0— =L = — Con(€) = Cor(8) — 1 (10)

Note that as groups, Con(€) & R™ where Ay = 2 g, + |N| — L.

By Hilbert’s Theorem 90, H! (Ly1) = {0}. We also have P =
Py and N Py = Pag so HO(Py) = {0}. Therefore Pyr and Lyn are
cohomologically trivial. Also H?(Dy) = H! (Dy) = {0}. Therefore,
from (7), Cr is cohomologically trivial.
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From (8) H'(Z) = H™!(Cqy). Therefore H®(Con) = H1(Z)
= {0}, H' (Cov) = H°(Z) = Z/|G|Z and H™} (Cov) = H2(2) =
G/G'. ’

Now we consider the G-exact sequence

1—>(CQN—>CQN—€>CON—>1 (11)
From (11),
-1 £ -1 0 — g0 —
H™(Con) = H™(Can) — H (¢(Cov) = H(Cav) = {0}.

Therefore H%(;Coy) & l’{{—‘f% ~ G/G'G' = G/¥(G) = CF, where
®(G) is the Frattini subgroup of G and d is the minimum number of
generators of G.

Now the conorm map ¢ : Copg — CO?N is surjective (see [6, pag 266,
Proposition 9]). Therefore

IzCﬁ/I =M= £29K_1‘+LM|'

Since HO(¢;Cop) 2 ﬁ% > ¢, it follows that

IV (cCaw)| = (o= 1HMI~4

3 Integral Representations

First we recall a theorem of Valentini [5]. He states this result when
F is an algebraically closed field, but it is valid for a general field F' of
characteristic £.

Proposition 4. Let F be a field of characteristic £, G be a finite £-group
and M be a finitely generated F|G]-module. Let N be the norm map and
n =dimpN(M). Then M = F|G]" & P, where F|C] is not a component
of P.
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Let M be a Z¢[G]—module, G a finite £-group such that M is Z4-
injective and as a group, M = R®, s < co. Let ¢M be the kernel of mul-
tiplication by £ on M. Then (M is a finitely generated Fy[G]—module.
The proof of the following proposition is given in [2]:

Proposition 5. Let M and G be as above. If yM = Fy[G]* & U, with
Fy[G] not a component of U and M = R[G]' & V, with R[G] not a
component of V, then u = v.

From Propositions 3, 4 and 5 we will obtain the structure of the gen-
eralized Jacobian for a general ¢-group G and also the implicit structure
of the usual Jacobian in the cyclic ramified case.

Let p1, 92, - - -, ©r, Pr+1, - - -, Pr+u be a set of primes of K, the first
r being the ramified primes in the finite Galois ¢-extension L/K, r > 0
and r + u > 0. Let G = Gal(L/K). Let M be the modulus in K given

r4+u T+u ,
by M =H pi; and let N = H P be the modulus induced by M in L.
i=1 Pl pi

By Proposition 3, dimp, (N (¢Con)) = 2 g5 + |M| = 1 - d, where
d is the minimum number of generators of G. By Proposition
4, ;Con = Fg[G]ngHMI_l_d @® U, with Fp [G] not a component of U.
Finally, by Proposition 5, we have that Jy(£) & R[G]®x+MI-1-d g g
with R[G] not a component of S.

Theorem 6. With the notation as above, the Z4[G]—module structure
of the generalized Jacobian is given by Jy(£) = R[G)¥xtMI-1-d g g
with S an indecomposable Z4[G]-module such that, as groups, S & R*,
where s=|G|(d - 1) + 1.

Proof. On the one hand, Ay = |G| (295 + M| —1~d) +s. On the
other, if £™ ¢"2 ... £™ are the ramification indexes of p1, p2,..., pr,
since Ay = 2g, + |N| — 1, we obtain from the Genus Formula:

AN=2g9,+N|-1=
.
=Gl (295 —2) + 2+ (" - 1)+ V|- 1=

=1

T 1 T '
= |G| (29 —2)+2+|G|Z(1— ——_) +Y O+ |Glu -1 =
=1

.
i=1 £
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=161 (20 —2+7+u) +1=1G| (205 2+ M) +1.

Hence s = [G|(d — 1) + 1.

Now, if S were decomposable, say S = A & B, we would have
Hi(Con) & HY(S) = H(A) ® HY(B). We have HY (Con) 2 H™1(Z) =
{0}, therefore H°(A) = HO(B) = {0} and H!(Coy) = HY(Z) =
Z/|G|Z = H'(A)® H'(B), hence H'(A) = {0} or H!(B) = {0}. There-
fore A or B would be cohomologically trivial and Z s-divisible so it would
have R[G] as a component, contrary to our assumptions.

Corollary 7. If G is cyclic, then Con(£) & R[G)®x~4Mig R,
Proof. In this case, d = 1.
]

We finish by analysing the cyclic ramified case. Let L/K, M, N as
before, G cyclic of order £*. We assume r > 0, u = 0. Again we denote
by G, ..., Gy the ramification groups.

For any subgroup H of G, if we let G/H denote the left cosets, we
call Ig g the indecomposable module

g€eG geG

{ZaggGZg[G’] Zag=0for all o EG/H}.

The proof of the following theorem is given in [2]:

Theorem 8. For any cyclic extension L/K of degree {™ with Galois
group G, we have that

r
TyL) = ZJG1 ¥« 2@ T,,, ® ( @IG@)
=3

as Zy[G]|-modules, where ™ is the degree of the mazimal unramified
extension of K in L, and Ty is an indecomposable module of Z,
rank €™t — ™ 4 1.
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Theorem 9. Let L/ K be a finite cyclic ramified £-extension with Galois
group G, p1,..., pr be the primes in K ramified in L and let G,,...,Gy
be the corresponding decomposition subgroups. If p is given as below,
then the Z¢[G)-module structure of the Jacobian JL(€) of L is given by
JL(£) = R[G]® & Q¥# (ker p) with R[G] not a component of Q¥ (ker p),
) 294, —2 if L/K is not totally ramified
T 294 if L/ K is totally ramified
Heller’s loop operator.

a

, and Q¥ the dual of

Proof. In this case (10) becomes

,
Drlc/Gi
0 Eeg— 5 Con (0) 5 Co () — 1 (12)
and by Corollary 7, (12) reduces to
r
Brlc/ci]
0— "=—1-§e—*—-— LRGP @R L Cor () 1 (13)

Let f: R[G] — R be given by f Zagg =Za§.
g€eG geG
Then we have a Z; [G]-epimorphism

Thus p=m7o6:R [G]ng"HT — Cor(£) is a Z; [G]-epinmiorphism.
T

Pric/ai
Let R = =1 = and P = R[G)*x %", Then we have the
commutative diagram

0> R 5 Con(®) 5 CoL(t) —0
oT

0 — kerp—J;r P

By the dual of Schanuel’s Lemma ([6], [7]), this diagram characterizes
Cor(¢) as Z;[G]-module.
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Now ker p is the pull back of i and 8 ([l]) and hence
ker p = {(a,b) € R ®Pli(a) = 0(b)}.
By Propositions 2, 4 and 5, we obtain that Cor(¢) = R [G]°® M

2 g, —2 if L/K is not totally ramified

2 g4 if L/K is totally ramified and R [G]

with a = {

is not a component of M.
Using the dual of Heller’s loop operator Q¥ ([6]) we obtain that

Cor(¢) = R [G]* ® O (ker)

R[G]
R[G/Gi]
if Sm+¢¢ denotes the dual of Tm4t,t, comparing Theorems 8 and 9 we
obtain:

We have that the dual of I g, is isomorphic to Therefore,

Corollary 10. Under the conditions of Theorem 9 we have

r

R[G] : . .
2
Sintt,t® (6_9 R[G) Gi]) if L/K is not totally ramified
O# (ker p) = \ =3

@ k6] : if L/K is totally ramified.
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