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Bessel potentials in Orlicz spaces.

N. AISSAOUI

Abstract

It is shown that Bessel potentials have a representation in term
of measure when the underlying space is Orlicz. A comparison
between capacities and Lebesgue measure is given and geometric
properties of Bessel capacities in this space are studied. Moreover
it is shown that if the capacity of a set is null, then the variation
of all signed measures of this set is null when these measures are
in the dual of an Orlicz-Sobolev space.

Introduction

In [4,6,7] a theory of capacity and potential in Orlicz spaces was exten-
sively studied and applications to Bessel kernels were announced. Here
we begin these applications.

We give a representation of Bessel potentials in terms of measure.
Estimations at two sides for Bessel capacities of a ball are obtained in
term of radii. This uses a representation of Orlicz-Sobolev spaces in term
of Orlicz spaces and Bessel kernels; namely: W™L 4(R™) = gy * Lo(R™)
when A and A* satisfy the A2 condition.

We study also the relation between Bessel capacities and Hausdorff
measure and give a condition in term of Hausdorff measure for a Bessel
capacity of a set to be null.

For attaining this goal, we are combining the theory of capaci-
ties in Orlicz spaces and the methods of the nonlinear potential theory,
developed by N. G. Meyers [17] and L. 1. Hedberg [13]. (See also D. R.

1980 Mathematics Subject Classification: 46E35, 31B15
Servicio Publicaciones Univ. Complutense. Madrid, 1997.



56 N. Aissaoui

Adams and L. 1. Hedberg [1] and W. P. Ziemer [20] for good and com-
prehensive survey of this theory).

On the other hand we show that if the capacity of a set is null,
then the variation of all signed measures of this set is null when these
measures are in the dual of an Orlicz-Sobolev space. This generalizes
the corresponding result in Sobolev spaces by M. Grun-Rehomme [12].

1 Preliminaries

Let A : R — RT be an N—function, i.e.A is continuous, convex, with

t
A(t)>0fort>0,%in(1)A§)~0 lim @:—I—ooandAiseven.

t—»oo

It
Equivalently, A admits the representation: A(t) = / a(z)dz, where
0
a: Rt — R is non-decreasing, right continuous, with a(0) = 0,a(¢) > 0
for t > 0 and t]i£1_1 a(t) = 4+00. The N—function A* conjugate to
100
it
A is defined by A*(t) = / a*(z)dz, where a* is given by
0

a*(s) = sup{t: a(t) < s}.

Let A be an N —function and let 2 be an open set in R". We note
L4(2) the set, called an Orlicz class, of measurable functions f, on §,
such that p(f, 4,Q) — / A(f (2))ds < oo

9]

- Let A and A* be two conjugate N —functions and let f be a mea-
surable function defined almost everywhere in 2. The Orlicz norm of
£ Fllagq or || f |la if there is no confusion, is defined by -

I £ lla= sup { [ 11@(@) 1 dz g € £4-(@) and p(a, 4%, < 1}

The set L4(f2) of measurable functions f, such that || f [|a< oo is
called an Orlicz space.

When 2 = R™, we set L4 in place of Ls(R"™).

The Luxemburg norm ||| f [|[ 4,0, or ||| f ||| 4 if there is no confusion,
is defined in L 4(€2) by:

|||f|||,4—mf{s>0/ [f(“”)]d <1}
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Let A be an N—function. We say that A verifies the Ao condition if
there exists a constant C > 0 such that A(2t) < CA(t) for all ¢t > 0.

We recall the following results. Let A be an N—function and a its
derivative. Then

1) A verifies the A condition if and only if one of the following holds
1) Vr> 1,3k =k(r) : (Vt > 0,A(rt) < kA(t));
) Ja>1:(Vt>0,ta(t) < aAd(t));

iii) 38 > 1: (Vt > 0,ta*(t) > BA*(t));

iv) 3d > 0: (Vt > 0, (A*(t)/t) > da*(t)/t).

n

Moreover « in ii) and S in iii) can be chosen such that
oty l=1.
We note a(A) the smallest o such that ii) holds.
2) If A verifies the A2 condition, then

i) Ve > 1, A(t) < A(1)t* and Vt < 1, A(t) > A(1)t*
i) V&> 1, A*(t) > A*(1)tP and Vt < 1, A*(t) < A*(1)¢P.

See for instance [10, 15, 18].

Let A be an N—function such that A and A* satisfy the Ay condition.
We note a(A) = a and a(A4*) = a*. Then we have from 2) below

Vit >0, a*A*(t) > ta*(t) > BA*(2).

Hence 8 < a*.

If 8 = a*, then Vt > 0, a*A*(t) = ta*(t).

This implies that there exists a constant C, such that: V¢ > 0, A*(t) =
ct*.

This means that we are in the case of Lebesgue classes L?, which is
treated in the literature.

Hence we suppose in the sequel that § < o*.

Let A be an N-—function. We put A an N-—function equal
to A in a neighbourhood of infinity and such that (see[3, lemma 4.4]):

1 .
A [A-1(t) /8" dt < oo
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+00 -~
If f [A~L1(t)/t'7/"]dt = 00, we define a new N—function A; by
1
the formula

A = [0/

and we let A; to be an N—function equal to A in neighbourhood of
0 and to A; in a neighbourhood of mﬁmty (see[3, lemma 4.5] for the

constructin of such N—function). If [A L)/t /"dt = oo, we

start again the same construction and we put A2 = (41)1,--
Let j = J(A, n) be the smallest integer such that

+00 -+00
/ [A71(@) /41 Mat < 00, I / [A71 )/t ™dt < 00, we put
1 0

J(A,n)=0.

Observe that J(A,n) < n because there exists a constant C, such
that A71(t) < Ct, Vvt > 1.

Let m be a positive integer. The Orlicz-Sobolev space W™L 4(12) is
the space of real functions f, such that f and its distributional deriva-
tives up to the order m, are in L 4(f2).

W™L 4(Q) is a Banach space equipped with the norm:

WS llma= 3 1 D*fllla f € WTLA()

lij<m

Let W™™L 4. () denote the space of distributions on 2, which can
be written as sums of derivatives up to order m of functions in L 4+(2).
It is a Banach space under the usual quotient norm.

Recall that if A and A* satisfy the Ag condition, the dual of
W™L 4(R™) coincides with W ~™L 4:(R"™).

For more details, one can cosult the classical references [2, 14, 15,
16, 18]. ' ‘

We define a capacity- as a positive set function C given on
a o—additive class of sets 7, which contains compact sets and has the
properties:

() c(@) = |
(ii) If X and Y are in 7 and X C Y, then C(X) < C(Y).
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(iif) If X4, =1,2,-- are in 7, then C (U X,-) <Y o(xa).

i>1 i>1

Let k be a positive and measurable function in R™ and let A be an
N —function. For X C R™, we define

Cra(X)=inf{A(|l| flllg): f€Lat and kxf > 1 0n X}

Cra(X) =imf{|l[ flll4: f € La* and kx f > 1 on X}

where k * f is the usual convolution. The sign + deals with positive
elements in the considered space. Then C} , is a capacity and Cyy is
called A—capacity.

If a statement holds except on a set X where Cia(X) = 0, then
we say that the statement holds Ci4—quasi everywhere (abbreviated
Cra—q.e or (k, A)—q.e is there is no confusion).

We call a function f in Lg " such that k*x f > 1 on X, a test
function for Cy 4(X ). Moreover, a test function, say f, for C}, 4(X) such
that Cy4(X) = ||| f ||| o is called a C} ,—capacitary distribution of X
and k * f a C} 4—capacitary potential of X.

For the properties of C}, 4 and Cy 4, see [6], and for the existence and
uniqueness of a C;, ,—capacitary distribution of a set, see [7].

M will be the vector space of all Radon measures. The cone of
positive elements of M will be denoted by M *.

M;(R™) will be the Banach space of measures equipped with the
norm || u [|=total variation of x < oo.

Recall that if X is a measurable set in R", then || u || (X) =
supz | & | (X:), the sup being taken over all decompositions (X;); of

i>1
X.

Recall also that if 4 € M1(R™), then p* = (|| p || +p) and p~ =
1
3l w | —p).

Bessel kernel is of principal interest in this paper. As classical refer-
ences, see 8, 9, 19).

For m > 0, the Bessel kernel, g,,, is most easily defined through its
Fourier transform F(gy,) as :

[Fgm))(=) = (27) 2(1+ | = %)™,
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where

[F(f))(z) = (2m)™/2 / F@)e™Vdy for f € L.

gm is positive, in L; and verifies the equality

9r+s = gr * gs.

We put
Bma = Cy,,p a0d B g = Cy_ 4.

2 Representation of potentials and compari-
son with Lebesgue measure

Theorem 1. Let A be an N—function such that A and A* satisfy the
Ag condition. Let m be a positive integer and X a set in R™ such that
0 < B} 4(X) < o0.

Let f be the B:n,A" capacitary distribution of X. Then there ezists a
positive measure px such that:

1) gm*f = B} 4(X)-gm*[a"1 0 (gm * ux)], where a is the derivative
of A.

2) supppux C X.

. If in addition we suppose that X is compact, then

3) gm*xf <1 onsuppux.

Proof. We follow Hedberg’s method in [13].

1) From [7], for all g € L 4 such that g,,, * g > 0 on X, we have:

Jwo G575 - gaz 20

On the other hand, from [10] there exists T € W ~™L 4.(R") such
that

ao(f/II1f1lla) = gm=T.

Hence
Vg € LA"',/(gm*T) - gdx > 0.
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Thus T is a positive measure which we note px.

We have the representation f = ||| f |||4[a™! o (gm * px)], and 1)
follows by convolution with g,,.

2) Let S(R™) be the Schwartz space of C* functions of rapidly de-
crease. Since A verifies the Ag condition, S(R"™) is dense in L 4.
Let g € S(R™) be such that supp gm * g C °X. Then

ViER, gm*(f+1tg)>1onX.
By a similar calculus than the one in [7, Théoréme 1], we obtain
<T,gm*g >=< px, gm*g >=0.

Hence
supppux C X

3) We remark that the set O = {z : (gm * f)(z) > 1} is an open. This
implies that for ¢ € S(R"™) such that g, * ¢ C O, we have

gm*(f+tg) > 1 on X for all ¢ such that |t | is sufficiently small .

Again, by the same argument than the one in 2) we find that
<px,gm*g >=0.

And thus supppux C °0 = {z : (gm * f)(z) < 1}.
This completes the proof.

Remark 1. Let A be an N —function. If X is a compact set, then

Boa(X) =sup{p(X)/llgm*plll4*:p>0,suppp C X}. (*)

It is a consequence of [6, Théoréme 11].
An application of 3) in theorem 1 gives also (*), but with the condi-
tion that A and A* satisfy the Ay condition.

Theorem 2. Let A be an N —function such that A and A* satisfy the
Ag codition. Let m be a positive integer. Then
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1) If m < J(A,n) there ezists a constant C = C(A,n,m) > 0 such
that
Bpna(X) 2 ClAm 1 (1/m* (X))
Jor all set X such that m*(X) # 0. (Here m is the Lebesgue
measure on R™ and m* is the outer measure associated to m).

2) If m > J(A,n), there ezists a constant C = C(A,n,m) > 0 such
that
Bpa(X)2C

for all set X such that X # @.

Proof.
1) It is enough to prove 1) when X is a non-empty, bounded and open
set. This implies that B,, ,(X) < oo.

Let m < J(A,n). Then from [3] (see also [11] for the case of
a bounded and open set) the space W™L 4(R™) is embedded in
L pAm. Thus there exists a constant C which depends only on A, n
and m, such that: Yo € W™LA(R™), |||k ||l gm < C LI 2 Il s

We put: gm * LA(R™) = {gm *u:u € La}.
From [10] we have
W™LA(R™) = gm*La(R™) and ||| gm*u |||,nq = lllu]ll4 Yu € La.
Hence
VF€La, lllgm* flllam < CT U £llla-

Let f be a test function for B/, 4,(X). Then Holder inequality in
Orlicz spaces gives

m(X) < [ (om* £)dz <l xx Neam *llom+ S llam-

Here (Am)* is the conjugate to A, and xx is the

characteristic function of X. From the equality || xx [l(am) * =

m(X)Am ~1(1/m(X)), we deduce that ‘
C < Am M (U/m(X)) -l £ lla-

Whence
B A(X) 2 ClAp 1 (1/m(X))] 1.
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2) if m > J(A,n), then from [3] the space W™L 4(R"™) is imbedded in
C(R™) N L°°(R™). Then there exists a constant C which depends
only on A, n and m, such that

Vf € La,Vz € R™, (gm* f)() <C7H | Flll4-

Thus if f is a test function for B,, ,(X) with X # @, then C <
{Ipaliye

This implies B}, 4(X) > C.

The theorem follows.

The following lemma is proved in [5]. For completeness we give
the proof.

Lemma 1. Let A be an N—function and 0 < 8 < 1. Let ¢ be defined
on R™ by p(z) = Bz. Then

M Ma<foellla<B7IF1ila VS € La.

Proof. We have f Al(fow)(®)/ Il fow lllJJdt < 1. Then

[As@ i foplli iz < g™ < 1.

This implies that || 11l < Il fop Il
On the other hand, let A such that / A(f(z)/AN)dz < 1.

Then / BA(f(Bz)/N\)dz < 1.
Hence /A(ﬂ"f(ﬂz)/)\)dm <L
Consequently ||| fog |||4 < B7"||| f |4 and the lemma follows.

Lemma 2. 1) Let A be an N—function and let m be such that0 < m <
n. Let S, = B(z,p) be the open ball centred at x and with radius p.
Then there ezists a constant C independent of p such that

Byoa(Sp) <Cp™ for0< p<1.
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2) Let A be an N—function satisfying the Ao condition and let m be
such that 0 < m < n. Let C(A) be the smallest constant C' such that:
A(2t) < C'A(t)Vt.

Then there exists a constant C independent of p such that: B:nA(Sp) <
C279%™ for 0 < p < 1, where q i3 the greatest positive integer such that
g < Logp™"/ Log C(A).

Proof. We follow the argument given in [17].

1) Let f be a test function for B;, 4(Ss4). Then /gm(muy)f(y)dy >1
on S4.

By a change of variable we obtain
/P—ngm[(m — 2)/plf(2/p)dz > 1 on S4,.

From the following asymptotique behaviours of g, (see for instance
8, 9, 19])

gm(z) = 275 2T|(n — m)/2)]T(m/2) 7 |2 ™7 + + o = ™77,
0<m<n,asz—o
gm(x) ~ 2-—(m+n—1)/27r—(n—1)/21-\(m/2)—1 |:t l(m—~n—1)/2 e—|a:|

as xr — o0

we deduce the existence of a constant Ci, such that

C1 7™ e < g(r) < C1r™ e T2, gm(r) = gm(r,0,---,0).

Therefore
gm(r/p) < Clp"_m m—n —r/2p < Clpn—mrm—ne—2r <
< CEp" Mgm(r), for 0 < p < 1/4.
This implies

1p"'"/_p_"gm(:c —2)f(z/p)dz > 1 on S4p, for 0 < p < 1/4.

Thus, for 0 < p < 1/4, we have

B a(S40) < C1p™™ ||| foullla
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where u(z) = z/p = ¢~ 1(2).
We put fou = g. Then lemma 1 gives |||g|ll4 < |llgovllly <
Mgl |
Thus
Il foullla < flllg <87l foulll4-

Hence
Bl a(S45) < C1o~™ [ £ llla-

This implies that
B, 4(S4p) < C1p™™ B, 4(Ss), for 0 < p < 1/4.

The desired inequality follows if we replace p by p/4.

2) In this case we evaluate ||| fou ||| 4 in term of ||| f ||| 4.

We have [ ALF(2)/1Il £l ald= < 1.

Put = = u(t). Then p~" [ A[(fou)@)/ 11l £ lJdt < 1.
Whence

[agono/ sl < e [ Ao/l e
< o7 [AlGou @/ IS llakde < 1.

A

This means that ||| fou|||4 < 279||| f il 4
Hence B}, 4(S1p) < C1p™™279B], 4(S4), for 0 < p < 1/4.

The desired inequality follows if we replace p by p/4. This com-
pletes the proof.

3 Relation between capacity and Hausdorff
measure

Lemma 3. Let u(r), 0 < r < oo, be strictly positive, decreasing and
continuous from the right. Let p € M+ such that / u(lz—y |)du(y) €

La.
Then there ezists a function u(r), 0 < r < oo, where
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1) u(r) is strictly positive, decreasing and continuous from the right,
2) [ale-vlduw) € La,

3) u(r) > u(r) and li_xf(l)ﬁ(r)u(r)_l = +00.

Proof. We follow Meyer’s idea in [17] in the case of Lebesgue classes.
Define fo@) = [ u(lz -y Ddu(y) and
{z=y}

i(z) = —y dp(y),i=1,2,--.
= [y W02 D)

Note that fo(z) = 0 for almost all z, since u({z}) > 0 for at most a
countable number of points z.

We will prove the existence of an increasing sequence (a;); of finite
real numbers such that Vi,a; > 1 and Zai fi € La.

i>1
We remark that Z fi — 0 strongly in L4 as | — oo,
>l
Therefore there exists a sequence of positive integers, (1;);,j = 1,---

such that
ST £illlg < oo

21 il
Moreover there exists an increasing sequence of real numbers (b;); such
that Vj,b; > 1 and
DobilllY filllg < oo
i1 >l

We define a; = b; for I; <'i < lj1;. Then

MY afilla<d M 30 afillla< D 85llY fillla < oo.

i1 721 1j<i<(+1)-1 721 >l
This shows that Vi,a; > 1 and

Zaifi € L.

i>1



Bessel potentials in Orlicz spaces 67

We define u by:
u(0) = +o0,
ar)=u(r) for27 <r<27i=1,2,---,
u(r) =u(r)for 1 <r.

Then u verifies properties 1), 2) and 3).

This completes the proof.

Theorem 3. Let A be an N — function such that A and A* satisfy the Aq
condition. Let m be a positive real such that om < n, where a = a(A).
Let u be a positive, decreasing function defined on R, continuous from
the right and such that

gm(r) <u(r) and }_in(x)ii(r)gm(r)—l — +oo.
IfB' = BillA’ then

LE‘})B'(SP)B&A(SH_I =0.

Proof. Since B’ is invariant under translation, the centre of S, is of no
importante and we can take it to be zero.
Let f be a test function for B}, 4(S,) such that

£ lll.a < 2Bp,a(Sp)-

Let 6 be a finite constant greater than one. Then we have

e dy + m(Z —= dy>1,z€8,.
-/{|v|<p9}g (@ = u)f (w)dy {szo}g (= - y)f(y)dy z €S,

Wepose:I=/ am(z — y) f(y)dy.
iz & VW)
Then

I <2inf{A: /{lyl> gy Alomtz =)/ My < 11117l

But if A is such that

Algm(z — y)/Ndy < 1,
-/{'IUIZP(O—I)} lom( A
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then :
: A*gm(z - Ady < 1.
/{Mm lom(z — ¥)/Ndy
Hence
ISZian:/ A¥gm(z — )/ Ndy <1} FIll 4.
i [ At )/ < 11111 L

We begin by estimate the integral

I = A* dy.
™= J 01 [gm(v)]dy

By a change of variable we have

[p(6—1),00]
On the other hand, there exists a constant Cq such that

gm(z) < Co |z |™ ™.

Hence
Jm < C1 / AME™ ™M ldE < C (T + Tpn)
[p(O—l),oo[ :
where J], = / A*(E™ )" 14t and J! = / A(E™) Ve,
™ Jie-al ) ™ ool )

We have supposed that p(6 — 1) < 1.
We must evaluate J), and J),.
First, note that t™ ™™ > 1 for p(6 — 1) < t < 1. So

At(tm—n) < A‘(l)(tm—")a‘.
Since (m — n)a* +n < (m — n)B + n < 0, we deduce that

J’ < A* 1 tm—n a‘tn—ldt
nsa@f e |
< A*(1)[(m - n)a* + n][1 ~ {p(6 — 1)}m-Me4n),
On the other hand, since A verifies the As condition, we get for ¢ > 1

A" < AT QTP
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Hence

I < A%(1) /{1 w[(tm“")ﬁt"'ldt < A*(1)(a - 1)(n — am)~L.

Then
Jm < C1A*(1)(a = 1)(n — am)"Hp(6 — D],
This shows that there exists a constant K3 > 1, such that
Jm < K1[p(8 — 1)jim—mn,

Put E(8,p) = {| y |> p(6 —1)} and remark that {p(§ — 1)}(m=")e"+n > 1,
Then
I”gm ”'A‘,E(o,p) S'Kl[p(g - 1)](m—n)a +n

Hence there exists a constant K’ such that
1< K'[p(0 = DI £l 4
From lemma 2 we get .
I < K"[p(6 —1))m—ma™+n 9=9,"m for 0 < p < 1
where ¢ is the greatest positive integer such that
q < Logp™"/LogC(A).
Put C” = Log2/ LogC(A). Then
g+ 1> Logp™"/LogC(A) implies that 277 < 2p"C".

On the other hand, we know that for all ¢ > 0, we have a/t >
a(t)/A(t).
This implies

Log A(2t)/A(t) = mi(i)da < aLog?2
7 g , A S g4
Hence A(2t) < 22A(t)- So 2% > C(A).
This gives p"C’ < pe.
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Hence

K"[p(o _ 1)](m—n)a‘+n . p—m+n/a

<
< K”(0 _ 1)(m—n)a‘+n . [p—m+n/ap(m—n)a‘+n].

Choose 8 such that

6 — 1= K"p~ Hlm=n/al/[tm—nja’+n]

K" will be precise in the sequel.
Then

p(6 — 1) = K" plm—n/el/lm—mja’+nl _, ¢ a5 5 — 0.
On the other hand we have
I< KII(KIII)(m—ﬂ)a'M.
We choose K" such that
KII( Km)(m—n)a‘+n <1/2.

Then I <1/2.
This implies that

/{ i<t gm(z —y)f(y)dy > 1/2, = € S,.
We define
[9(p)) ™! = inf{@(r)lgm(r)] ™ : 0 <~ < (6 + 1)}
Then there exists a constant D, such that
B'(S,) < Dg(p)Brna(Sp)-

This completes the proof.

Remark 2. We have proved the inequality 279 < 2p™®. This implies,
in lemma 2, that there exists a constant C' independent of p such that
Bl a(Sp) <Cp ™ for0< p< 1.
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Hence, if am < n, then

. ’ _
lim B}.o(S5) = 0

Definition. Let ¢(r) be a positive, increasing function in some interval
[0,7'[ and such that

lin%)ga(r) =0.

r—

If X is an arbitrary set, the Hausdorff p—measure of X is given by
Hy)(X) = lim S inf Y o(rs) ¢,
8—0 i>1

where the above infimum is taken over all countable coverings of X by
spheres S(zi,7i) such thatr; < s.
Note that Hyy) is a capacity which has the property

Hoy)(X) = Hp(ry(Y), ")
where Y is a G— set containing X .

Theorem 4. Let A be an N —function such that A and A* satisfy the
Az condition and let X be a subset of R™. Let m be a positive real such
that am < n, where o = a(A) and let o(r) = B}, 4(Sy). Then

Bpra(X) =0 if H‘p(,.)(X) < 00.

Proof. In view of (**) and [4, Théoréme 3], it is sufficient to consider
the case X = K, K a compact. Assume that B;, 4(K) > 0. Then from
. [4, Théoreme 4], there exists u € M+ such that

u#0,suppu C K and gy, * pu € Lgs.

__ Lemma 3 gives a kernel & with properties 1), 2) and 3). If we set
B' = Ci{ZA’ by [4, Théoréme 4], we must have

B'(K) > 0.
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Lemma 3 and theorem 3 imply that
lim B'(S,)Bla(S,) "t = 0.
0D—
Now let (Spi(x;)): be a countable covering of K by spheres. Then

B'(K) < 3" B'(Spi(zi)) = Y IB'(Spi(21)) By a(Spi(i)) ") B a(Spi(s))-
i>1 i>1
Since the ratio [B' (S4i(zi)) Bl a(Spi(zi)) "] can be made as small
as we wish while ZB:n A(Spi(x:)) remains bounded, we must have
i>1
B'(K) = 0 which gives a contradiction.
The proof is finished.

Remark 3. As we have noted in the remark 3, we consider the case 8 <
a*. For LP spaces, theorem 4 is true for ¢(r) = By, p(S), because By, p is
a capacity. (Here By p(X) = inf{|| f ||b: f € L?* and gmf > 1on X}).
In our case, unfortunately we don’t know whether B,,4 is a capacity,
so the theorem is not sharp. The open question is to characterize the
N —function A for which B,,4 is a capacity.

I am very grateful to Professor L. I. Hedberg for pointing out this
fact.

4 Capacities and measures in Orlicz-Sobolev
spaces

Lemma 4. Let F{ ,(X) = inf{|||¢|ll4: ¢ € DY(R") and k*x¢ > 1 on
X} and let Fra(X) = A(F{4(X)). Then
1) VX C R",CiA(X) < Fra(X).
2) Fra(X) =0 Cra(X)=0.

Proof. 1) It is obvious that
CkA(X) < Fra(X), VX C R™.

This gives
Fra(X) = 0= Cra(X) = 0.
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2) Suppose that Ci4(X) = 0. Then theorem 3c) in [6] gives a func-
tion f € La* such that

k* f=o00on X.

On the other hand, there exists a sequence (¢;); C D*(R™) which
converges in modular and almost everywhere to f. By Fatou’s Lemma
we obtain

lim k * ¢; = 0o on X.
12— 00
Hence
VN,3¢ : kx¢ny > N on X.

This implies that N "1¢y is a test function for F, A(X ).
Since ||| ¢~ ||| 4 is bounded, there exists a constant C, such that

C/N > N llon|ll4 = Fia(X).

Whence
Fra(X)=0.

The proof is finished.

Lemma 5. Let A be an N —function such that A and A* satisfy the A2
condition and let m be a positive integer such that m < J(A,n). Let
T € W ™L4+(R") N M;(R") and let K be a compact set such that

Bra(K)=0and T"(K)=0.

Then
I T|(K)=0.

Proof. Let ¢ > 0 and O be an open set such that
KcOand |T|(O\K)<e.
There exists a function £ € DT (R") such that
0<€¢<1,é6=1o0n K and suppé C O.

Since Bra(K) = 0, lemma 4 gives FxA(K) = 0 with
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Flu(X) = inf{|||$|ll4 : $ € D*(R") and gm*¢ > 1 on X} and
Fra(X) = A(Fia(X))-

There exists a sequence (¥;); = (gm * ¢;); in W™L4(R™) such that
(¢i)i c DY(R™), and

Vi, > 1on K,9; — 0 in W™L4(R™) and ¢; — 0 on L4.
Let the function H € C; °(R*) be defined by

H(t)=t if 0<t<1/2
H(t) =1 if t>1
H(t) <1 vt.

From [10] we have
Vi, 3f; € L4 such that ¥; = I, * f; and ||| fi|ll4 < C | %illl,ma

where I, is the Riesz kernel defined by: Ip,(z) =| X ™ ™" and C is a
constant independent of 1.

Hence |[| £/l 4 — 0.

We put for each i, ®; = Hy(Im* | fi |)-

The same calculus that those given in [10] show that there exists a
constant C’ independent of i, such that ||| ®; |||,,a < C'|I| filll o-

This implies

Il @4 [ll s — O

Moreover, on K we have
1< Im* fi <Im* | fi| .

Hence .
$; <1and ®; =1o0n K.

Now, we put p; = £®;.

Then

Heilllma < " 112 lllma

where C” is a constant independent of i.

This implies

@i — 0in W™L 4(R"™).
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Since T~ (K) = 0, we have

/ osdT = / oidT + / 0idT =|| T || (K) + /  pidT.
K O-K O-K

We remark that, for all i,; € WML 4(R™) N L™, p; is continuous
with compact support. By the approximation of unity we obtain

<T,pi>= /(p,dT.

Hence
| [t 1< 10 lma 1T llmae = 0
and
[ T AT HOK) <.
O-K

Hence for sufficiently large i, we have

T || (K) < 2.
This means

I T Il (K)=0.
The proof is finished.

Lemma 6. Let A be an N —function such that A and A* satisfy the A2
condition and let m be a positive integer such that m < J(A,n). Let
T € W™™L4+.(R") N M;(R"™) and let X be a || T || —measurable set such
that

Bia(X)=0and T~(X)=0.

Then
Tl (x)=0.

Proof. For each compact K C X, we have Bx4(K) = 0and T~ (K) = 0.
From lemma 5 we deduce that

I T | (K)=0.

The inner measure of X is defined by | T | *(X) = sup{|| T || (K) :
K C X and K compact }. \
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Hence
| T |*x(X)=0.

Since X is a || T || —measurable set, we conclude that
1T i (X) =] T | =(X)=0.

The proof is finished.

Lemma 7. Let A be an N—function such that A and A* satisfy the Aq
condition and let m be a positive integer such that m < J(A,n). Let
T € W™™L4+(R™) N M1(R™) and K a compact set such that Bra(K) =
0.

Then | T || (K)=0.

Proof. There exists two || 7 | —measurable sets, E and F, such that
T~ is concentrated on E and T* on F. Hence

T (K\E)=0.
Lemma 6 gives
I T Il (K\E) = 0.
On the other hand
TH(K\F)=0.
Lemma 6 is valid if we take 7" in place of T~
Hence
I T Il (K\F)=0.
This implies that
I (k)=0.

The proof if finished.

Remark 4. From [6, Théoréme 2] we know that Cy4 and C}, 4 are outer.
This implies the following: If X is a set, there exists a G5 set G, such
that X C G and

Cra(X) = Cka(G) and Cia(X) = Cu(G)-

-
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Theorem 5. Let A be an N—function such that A and A* satisfy the

Ag condition and let m be a positive integer such that m < J(A,n). Let

T € W—™L 4.(R™) N M1(R") and let X be a set such that Bxa(X) = 0.
Then || T || (X) =0.

Proof. For all compact subset K of X, we have Bra(K) = 0.

Lemma 7 implies | T || (K) = 0.

The inner measure of X is defined by | T | #(X) = sup{|| T || (K) :
K C X and K compact }.

The outer measure of X is defined by | T |* (X) = inf{]| T || (O) :
X C O and O open }.

Hence

| T |*(X)=0.

On the other hand, the above remark gives a G5 set G, such that
X C G and Bya(G) =0.

Hence, if K is a compact set such that K C G, we have Bxa(K) = 0.

Lemma 7 implies that

T || (K) =0, VK compact such that K C G.

From the definition of inner measure, we have | T | *(G) = 0.
Since G is a G set, it is || T | —measurable. Hence

IT |l (¢)=0.
The inclusion X C G gives
[T [*(X)<IT (@) =T || (G)=0.

This implies
[T 1" (X)=|T|+(X)=0

and X is || T || —measurable.
Hence || T || (X) = 0 and the theorem is proved.
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