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A note on a theorem of Horikawa.
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Abstract
In this paper we classify the algebraic surfaces on C
with K :‘g’ = 4, pg = 3 and canonical map of degree d = 3. By
our result and the previous one of Horikawa [10] we obtain the
complete determination of surfaces with K2 = 4 and pg=3.

Introduction

The aim of this paper is to classify minimal surfaces S on € with K% = 4,
pg = 3 and canonical map of degree d = 3. The existence of such surfaces
is claimed without proof in [10] [Section 2, p. 110]. In the same paper
Horikawa showed that surfaces with K g =4 and pg = 3 haved = 2,3,4
and he classified the cases d = 2 and d = 4. We have already considered
surfaces with K2 = 4, pg = 3 and d = 3 in [14], but in this article we
adopt a different point of view. We will explicitely construct a birational
model X C IP3 of § where X is a quintic with only a singular point
which is an elliptic Gorenstein singularity of type Eg (cf. [12] and the
first section below).

Main theorem

Let Ag = {(io,i1,42) € Z3|ig + i1 + iz = 5 — s, 3ip + 24y + iz > 6} and
let A be the sublinear system of the quintics X C IP3 with the following
equation:

3
DX ={zeP) > az’ =0}

s=0J€cA,
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where z! = xf)oxilx?a:g, aj € C and (zo, 1,2, x3) is a projective system
of coordinates on IP3. Then there ezists an open set A' ¢ A such that
the minimal desingularization of a quintic X € A’ is a minimal surface
S with K % = 4, pg = 3 and canonical map of degree three. Reciprocally
any minimal surface S with K g = 4, pg = 3 and canonical map of degree
three is obtained in this way. Moreoverlet ¢ : X — — IP? be the rational
map induced by the projection from (0,0,0,1) € IP3, and letv : S — X
be the desingularization map, then ¢\ = ¢ov.

Our theorem implies that the locus of surfaces with pg=3, K g =4 and
deg|kg) = d = 3 is irreducible, unirational and of dimension 29 (see 2.16).
Moreover, together with [10] [Theorem 2.1 and 2.2], it gives a complete
classification of surfaces with p, = 3 and K% = 4. We also think that
our point of view of considering the canonical map via a projection from
elliptic points in some nice birational model X of S will shed some new
light on this subject. In fact we hope to apply this technique to irregular
surfaces with d > 3; a subject quite unknown: see section 2 of [3] for an
interesting survey and [11] for some new results.

In section 1 we recall some results on elliptic singularities and we will
prove that the minimal desingularization of a general quintic X € A is
a surface with pg = 3, ng = 4 and d = 3. In section 2 we will study the
canonical linear system of S and we will explicitely construct a birational
morphism S — X where X € A'. I wish to thank the referee for helpufl
comments, which led to an improvement in the arrangement of this

paper.

1 Quintics with a singular point of type Eg

In this section we show that the minimal desingularization S of a general
X € A (see the statement of the main theorem in the introduction)
has pg = 3, K% = 4 and d = 3. We begin with a general result on
elliptic singularities. It is well known (cf. [12], p. 288) that if X is a
normal Gorenstein surface and v : § — X is the minimal resolution of an
isolated singularity o € X then there exists an effective divisor Gg on S
supported on »~!(zo) such that wg = v*(wx) ®Os(Go) and K3 = K% +
G3. Moreover the spectral sequence HP(X, RWw,0g) = HP'(X,Ox)
implies x(Ox) — pg(zo) = x(Os) where py(z¢) = h%(X, R'1.0s). In
the same paper we find that G is an elliptic curve with G = —1; then
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Vi(ws) = Mgowx where My, is the ideal of zo in X. This singularity
is called simple elliptic singularity of type Es.

Let A be the sublinear system given by the quintics with equation
1).
From now on X will be a general element of .A. Suppose that (0,0,0,1) €
X is the unique singular point and also that it is an Eg- singular point.
Then x(Os) = 4 and K% = 4. We will show that deg(|ks) =d=3. In
fact, since vy(ws) = Mayowx, we easily see that H(S, Os(Ks)) & v*V
where V ¢ H9(IP3, O ps(1)) is the sublinear system of the hyperplanes
containing xo. In particular ¢,k is induced by the projection from the
point (0,0,0,1); it is also easy to see that for the general X € A the
general straight line ! containing z¢ intersects X in other three distinct
points. We are led to the following result:

Lemma 1.1. If Pp = (0,0,0,1) € X is the only singular point of a
general X € A and if it is of type Eg then the minimal desingulariza-
tion v : S — X has the following invariants: p, = 3 and K:;'v = 4,
Furthermore the canonical map ¢|k| has degree 3.

Proof. By the previous analysis we know that x(Og) =4, K g =4 and
d = 3. Thus we only need to show that ¢(S) = 0; but this is the content
of [5][prop.5.1}.

It remains to prove that the general X € A satisfies the conditions
of 1.1. The proof falls naturally in two parts which correspond to the
two hypotheses of 1.1.

Lemma 1.2. Let Sing(X) be the singular locus of X. If X is a general
element of A then Sing(X) = {(0,0,0,1)}.

Proof. It is rather obvious that {(0,0,0,1)} € Sing(X). Since other
singularities impose closed conditions on .A we need to show that there
exists an element X € A which satisfies the clalm Consider the quintic
with the following equation:

-2 2 1
F = gfbg + -93? + 125 + '2‘5039:3 — 2323 + zfz} = 0.

Obviously Sing(X) = {F = 3——, =0,i=0,1,2,3} and an easy compu-
tation shows that (0,0, 0, 1) is the unique solution. [ |
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We recall now the following description of the points of type Eg:

Lemma 1.3. The point Py € X i3 an Es-point if and only if near to Py
the normal Gorenstein surface X is biregular to the surface of (D?z’y’z)
given by the following equation:

2) m2+y3+g(y,z)=0

where g is a nonzero linear combination of monomials y2® with a > 4
and 2% with a > 6.

Proof. See [12] [prop. 2.9].
|

Remark 1.4. Let (0,0,0) = P € €}, ., Op, 3 =det O, and z° +° +
yz* + 28h(z,y,2) = f € O where h € O and h(0,0,0,) # 0. It is easy
to check that P is a point of type Eg for the germ given by f.

We can now prove the final lemma of this section:

Lemma 1.5. Let X be a general element of A. Then the point Py =
(0,0,0,1) € X is an Eg singularity .

The problem is local. We set Op ¢3 = O. Let X = {F = 0} as in the
statement of the main theorem. We consider affine coordinates z = 22,
y = ;:;-, z = ;’3, and we put fo(z,y,2) = F(z,y,2,1). The basic idea
of the proof is to take successive "reduction” of fo € O to obtain the
feOof 1.4

We wish to arrange the monomials of fy according to the occurrence
of zy?, z%, 3, yz* in it. First we group all monomials which are divisible
by zy2, then, among the remaining ones, those divisible by z?, and so

on by 33, y%22, zyz and finally by zz3. In other words we can write:
fo(z,y, 2) = mozy® + poz® + qoy® + roy®2® + soxyz + toz2® + uoyz?

where ug, o, 50, 70, 90, P0, M0 € C[z y,2] and they do not vanish at

(0,0, 0). We consider & : OO0 given by z; = z+ 72 2p0y +2poyz+23p’3z3,

y1 = y and 23 = z. We denote ll(:cl,yl,zl) =& Lio(z, y, 2) for every

—~ m2
' € Clle, 2], Iwepat: A= UMy G = g Py - gy,

Ul =u; — f = ——L then we obtain:

2p1 )

&1 Yfo=f1= P1$1 + (ﬁy1 +7:1y121 + UAlylz% + t’izf
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We apply this argument again. We consider the automorphism: &g :

O — Oglven by: zo = z1, yo = y1+—lrz,z2— z1. We define
31 1

Io(x2,y2, 22) = &7 li(21,91,21) fof every l1 € C[[z‘lyyha]] We set
p=£"p1, =65 QI»u“u2—‘32;,t—-t2+2—2-y sz then

Ez_lfl = fo= ng + qy% + uy2z§1 + tzg.

We recall that we are working on an open set of A where we can take
a fourth root of u; then through &3 : O — 0 T3 = p2m2, y3 = q3y2,
z3 = q12u4z2 we obtain:

& ' fa=f =23+ 9§ + a2} + a(z3,y3, 23) 25
where a € O and a(0, 0, 0) # 0 which, by 1.4, is the desired conclusion.

2 Minimal surfaces with K? = 4, py, = 3 and
= 3 as minimal models of quintics with a
unique singular point

From now on S will be a minimal surface with pg = 3, K 2—4andd=3.

Moreover by [5]{prop. 5.1] we have that ¢(S) = 0. In this section we will
prove that there exists a birational morphism ¢ gs1q, : S — X C Pp3
which contracts Go where Gy is an elliptic curve with Gi=—-land X
is a quintic in .A. We start with a lemma on the canonical map P\ k| of
S.

Lemma 2.1. The canonical linear system | Kg | i3 without fized part
and it has a unique base point P.

Proof. Let | Ks |= Z+ | M | where Z and M are respectively the
fixed part and the mobile part of | Kg |. Let o : S — S be a minimal
resolution of the base points of ¢k = #jps and let L be the mobile
part of | o*M |. We first show that Z = 0. In fact since d = 3 and
pg = 3 then M?%> L% =3. Since S is of general type then KgZ > 0 and
since M is mobile then M Z > 0. By

4=Ki=M*+(M +Ks)Z >3+ (M +Ks)Z >3
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we have (M + Kg)Z < 1. We need to consider: (M + Ks)Z = 1 or
(M +Kg)Z = 0.

If (M + Kg)Z = 1then KgZ =1and MZ = 0 or KgZ = 0 and
MZ =1 IfKsZ = 1and MZ = 0 then Z2 = 1 and it is impossible,
since Z2K? < (ZK)? by the Hodge index theorem. If KgZ = 0 and
M Z = 1 then Kg is not a 2-connected divisor contrary to [2] [lemma 1].

If (M +Kg)Z = 0then MZ = 0 and KgZ = 0 and by [2] [lemma 1]
we have Z = 0. Since Z = 0 then Kg = M. In particular M? = 4 and
the argument of [8][p. 45-46] yields the claim.

We have shown in 2.1 that | Kg | has a simple base point P. Let
o : S — S be the blowing up of P, E = ¢~ }(P) and L the mobile part
of | 7*Kg |. In particular 0*Kg = L+ F and since K5 =| 0*Kg | +E we
have| Kz |=| L | +2E. Moreover | L | defines a morphism ¢ : S — P2
such that ¢|;| = ¢|kg|© 0. In the next lemma (see also [14]) we will find
onSa pencil | F | of non-hyperelliptic curves of genus 3 and an effective
divisor G such that Kg = G + F where G = 0+«G and F = o, F. The
task will be to understand the structure of G (see 2.15).

Lemma 2.2. There ezists a point x of IP? such that the divisors Ly of
the sublinear system A C| L | induced by the lines containing = have the
following form: L
L. =G+ F,
where G is the fized part of A, ¢|L,(é’) =z and | F | 25 a pencil of
curves of genus 3 with a simple base point Q. Furthermore Q g E and
the following numerical identities hold: 3
() LG=0,LF =3, FG=2,F?=1and G*= -2.
" (i) GE=1, FE=0.
Proof. We first show that:
Remark 2.3. LE =1 and ¢)1/(E) is a line in P2,

Proof. Since 0*(Ks)E = 0, 0*Ks = L + E and E? = —1 we obtain
0= (L + E)E = LE + (-1), that is LE = 1. On the other hand since
| L' | is base point free if ¢|1;(E) is a point then LE = 0. Moreover
OILis - E — o1 (E) has degree 1. In particular ¢|7(E) is a line.
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We will apply the following claim to the special point z € IP? whose
existence is asserted in 2.2.
Claim. Lety be a point of P2, Let A be the sublinear system induced
on S by the lines containing y and let F G be respectwely the mobile
part and the fixed part. If G # 0 then LG = 0 and LF = 3. In particular
EKGC.

Proof of the claim

We recall that on S there is not an infinite family of rational curves since
S is of general type. In particular since ¢jy, (F) is a line then LF >2and
the general element of the pencil | F | is irreducible. On the other hand
3=L2= LF + LG thus 2 < LF < 3, since LD > 0 for every effective
divisor D on 5. We can exclude the case LF = 2. In fact by the theorem
of Bertini the general L is irreducible thus if LF=2then LG=1. Let z
be a general point of IP2. Since deg(¢||) = 3 then ¢|Ll(z) {z1, 22, 23}
where z; # z; | ifi # j. Let I, be the line containing y and z. Obviously
there exists F €| F | such that ¢‘ LI ly. = = G + F, and ¢ induces

a double cover Fz — 1y, Since ¢ s = = supp G+ Fz there exist
Y, |L|“¥s

i € {1,2,3} such that 2; € G: a contradiction since z is a general point
of IP2. Hence LF = 3 and LG = 0. Moreover since LE = 1 then E K G
and this proves our claim.

We turn to the proof of 2.2. Assume for a while that we can prove
the existence of an irreducible reduced effective divisor C of S such that
¢,1)(C) = z is a peint and CE > 0. In this case the lemma is a conse-
quence of Hodge index theorem and some easy numerical conditions. In
fact if A is the sublinear system of | L | induced by the lines containing
z then by our assumption the fixed part G of A is a non-zero effective
divisor and C < G. Hence by the claim LG = 0 and LF = 3 where F
is the mobile part of A. Furthermore since E K G and EC > 0 then
EG > 0. On the other hand since the general element of | F | is irre-
ducible then FE > 0. By 2.3 we have 1 = LE = GE+FE>FE>0
then EG = 1 and EF = 0. We recall that Kg=L+ 2E. By the genus
formula 2po(F) —2 = F2 4+ K¢ F F2 4+ LF = F2 43, then F? is odd.
We collect all these results in the following system:

G2+ FG=LG=0
GF+F2=LF=3
FG>0,F2=2+1, EG=1, EF=0.
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If FG = 0 then F2? = 3, G2 = 0 and by Hodge index theorem G is
numerically equivalent to 0: a contradiction since EG=1 IfFG>1
thus 1 < F? < 2. Hence k = 0 and it is easy to see that F?2= 1, GF =2
and G? = —2. In particular | F | is a pencil of curves of genus 3 with
a simple base point Q. Since the general element of | F | is irreducible
then it is also smooth and by the genus formula, F is of genus 3. Finally
F is non-hyperelliptic. In fact Kz = (Kg+ F)pand | Kg g | cuts on Fa

g3 which is a sublinear system of the canonical system | K z |.

To complete the proof of 2.2 it remains to show that there exists
an irreducible reduced effective divisor C of S such that oL(C) ==z is
a point and CE > 0. We will use some cohomological results that we
collect in the following remark.

Remark 2.4. i) h%(S.05(2L)) = 6 and h'(S,05(2L)) = 1.
ii) h%(S,04(2L + E)) = 7 and h(8,03(2L + E)) = 0.
iii) h%(S,05(3L)) = 10.

Proof of the remark

i). Notice that h0(S, ©5(2L)) > hO(IP%, Op2(2)) = 6.

We now prove that hO(S',Og(ZL)) < 6. By [[10] p.109] the general L is
a non-hyperelliptic curve of genus 5. From 2.3 the general L intersects
E in one point: P, = LN E.

By adjunction wy=(2L+2E);=2L1+2P;, and therefore
h(L,Or(wp—2PL) = 3. Our assertion follows now by the 0-cohomology
of the sequence 0 — O5(L) — O4(2L) — Op(wr — 2PL) — 0. Finally
by Serre duality h%(S,05(2L)) = 0 since (K5 — 2L)L = —1. Then by
Riemann-Roch theorem it follows that h1(S, ©5(2L)) = 1.

ii). By Ramanujam vanishing theorem h!(S,0s(2K5s)) = 0 and by
Riemann-Roch formula we have A%(S, Os(2Kg)) = 8. Since 6*2Kg =
2L+2E then h9(S, 0Oz(2L+E)) = 7 if and only if the bicanonical system
| 2K 5 | is base point free and this is a known result [4][Theor. 4.1]. It is
now easy to see that h!(S, O5(2L + E)) = 0.

iii) From 2.3 we know that ¢|7(E) is a line, then there exists an
effective divisor Cq such that (¢7)*(¢|Lj(E)) = E+Co= Lo €| L |. We
need to study Cp. Since 1 = LE = (E+Cp)E = —1+CoFE then CoFE = 2
and from 3 = L2 = (E+ Co)L = 1+ CoL = 14 CoE + C¢ = 3 + C?
we obtain C¢ = 0. Since | K5 | is 2-connected then Cj is a 1-connected
effective divisor. Moreover by the genus formula p,(Cp) = 4.
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We notice now that 3Lig, = (L +2E +2C) |, = we, + Coyg, Where
wcy is the dualizing sheaf of C. Consider the two sequences:

0 — 0z(2L) — 0z(3L) - OL(3L) = 0

and
0 — O3(2L + E) — 03(3L) — we, + Cog, — 0.

By the proof of i) we know that g(L) = 5 then h%(L,0L(3L)) = 5.
Hence by ¢) and the cohomology of the first sequence we obtain 10 <
ro(S, 04(3L)) < 11. Now we argue by contradiction. Suppose that
rO(S, 0O5(3L)) = 11. Then by ii) and the second sequence we ob-
tain h%(Co, (O¢,(wc, + Co)) = 4. Then by Riemann-Roch theorem
it follows h1(Co, (Oc,(we, + Co)) = 1. By Serre duality we obtain
R1(Co, (Ocy(we, + Co)) = h%(Co, (Ocy(—Co)) = 1. 1t is also easy to see
that deg(Oc, (—Cg)) = 0 for each component C; < Co. Hence by [1] 12.2
we have Coic, = Oco- On the other hand q(S~') =0, h%(Co, Oc,) = 1 then
by the 0-cohomology of the sequence 0 — Og — Og(Co) — Ocy(Co) —
0 it would be 29(S, 035(Co)) = 2: a contradiction. This proves 2.4.

We continue discussing 2.2 and we mantain the notations introduced
in the proof of 2.4 iii). We argue by contradiction. Let us suppose that
there exists no irreducible reduced effective divisor C of § such that
¢1/(C) = z is a point and CE > 0.

Since ECy = 2, we can take a point z € E N H. Then we take
an irreducible reduced component H of Cy containing z, which, from
our assumption, verifies ¢|1(E) = ¢|1|(H). We set H = Co\ H. Let
A be the sublinear system induced on S by the lines in /P? contain-
ing ¢|1/(z) = T. We consider ¢ € HO(S‘,OS.(E)), h € H(S,04(H)),
n' € HO(S, Og(H')); then hh' = cg where div(cg) = Co. Let {zo,z1, z2)
be a basis of HO(IP2, O p2(1)), where z = {xg = x; = 0} and oL(E) =
{zo = 0}. We set X; = ¢TL{(zi) = z; 0 ¢1), then (Xo, X1) is a ba-
sis of A, Xo(z) = X1(2) = 0 and Xo = ¢hh'. By 2.4 i) we have
HO(8,05(2L)) = ¢t H(IP?,0p2(2))). By 2.4 ii) and by the inclu-

sion HO(S, 0(2L)) ] H0(§,0§(2L + E)) there exists ¢ such that
H%(S,05(2L + E)) = ¢(H(S,05(2L))) ® ¢C. We consider now
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the inclusion HO(S, 0Os(2L + E)) EiLy HO(S, 0Os(3L)). By 24
iii) it follows H°(§,05(3L)) = q)‘*LIHO(Pz, Op2(3))). In particu-
lar (X(’;X{Xéc |i4j+k = 3) is a basis of HY(S,04(3L)) and since
hh'yp € HY(S, O3(3L)) there is a linear combination with coefficients in
C

a) hh'y = XX X5

where i + j + k = 3. We recall that Xo = ¢hh'. Obviously h does not
divide neither X; nor Xg. Moreover by definition X;(z) = h(z) = 0 and
X2(z) # 0. We evaluate a) in z and we see that 2003X3(2) = 0 that is
ago3 = 0. Then h | ¥~ agjxX? ' X% where j +k = 3. Evaluating again in
z we obtain agj2 = 0 and h | a030X1 + @021 X2. We repeat once more the
argument and it yelds ag21 = @30 = 0. This implies that Xo | hh'tp; but
Xo = Chh' then ¢ | ¥ or, in other words, ¥ comes from HO(S 0z(2L))
which is the desired contradiction. This proves 2.2.

We turn to our surface S and we recall that G = ¢,G and F = o,F.
We will see that | F | is a pencil of curves of genus 3 with a simple
base point P’ # P, G is reducible and it has a component Gg contained
in a fibre Fy €| F | such that P, P'supp(Go) and pa(Go) = 1, these
conditions will imply the theorem. We need some lemmas.

Lemma 2.5. We use the notation of 2.2. We denote G = a*(é),
F=0,(F). Then Ks=G + F and

(j) F2=1,G?= -1, FG =2, and P € supp(G);

G3) | F | zs a genus-3 pencil with a simple base point P’ = a(Q).
Moreover P’ #+ P;

(777) G i3 a 1-connected effective divisor with KsG =1 and ra(G) = 1.

Proof. (j). From 2.2 ii) we see that o*(F) = F and o*(G) = G + E
Then by 2.2 i) we have F2 = F2=1,G? = (a*(G) (G+E)2 G?+
2GE+E?=-242-1=-1,FG=F(G+E)=FG+FE=2+0=2.
By 2.2 ii) GE = 1 and since E = 6~ 1(P) we see that P € supp(G).

(jj). From 2.2 we know that | F | is a pencil of non-hyperelliptic
curves of genus 3 with a simple base point Q € E. Then P' = o(Q) #
P = o(E).

(jij)- Let G = G+ G; be a decomposition of G into two effective
non-zero divisor such that GoG; = 0 and FGg = 2 — i, FG1 = 7 where
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0<i<1 Weset Ag=F +Gg and A; = G;. Thus Kg= Ag+ A; and
ApA; = 1; a contradiction since Kg is 2-connected. Moreover KgG =
FG 4 G?=2-1=1 and by the genus formula we have p,(G) = 1.

Corollary 2.6. (a) RO(S,08(F)) = 2, RhY(S,0s(F)) = 0 and
1*(S, Os(F)) =1
(b) RO(S,05(2F)) = 3 and R1(S, O5(2F)) = h%(S, 0s(2F)) =0

Proof. a). From 2.5 we have Kg = F + G and by Serre duality
h%(S,0s(F)) = h9(S,05(G)) = 1. It is now easy to see that a) fol-
lows from 2.5 jj) and Riemann-Roch theorem.

b). We recall that the general element F of | F | is a non-hyperelliptic
curve of genus 3 and Fip = P'. In particular RO(F, (’)p(2P')) = 1 for the
general F. It is easy to see that h%(S, Os(2F)) > 3. On the other hand
by a) and the cohomology of 0 — Og(F) — Og(2F) — Op(2P') — 0
we obtain (S, O5(2F)) < 3. Thus rO(S, O5(2F)) = 3.

Corollary 2.7. i) H(S,05(G)) = 0, ii) H(S,0s(F — G)) = 0,
HY(S,0s(F — G)) = 0 and #ii) H(S, 05(2G)) = 0.

Proof. i). By Serre duality and 2.6 (a) it follows i) while iii) is a
consequence of Serre duality and the second equality of ii).

ii). By contradiction. If H%(S,Os(F — G)) > 0 then there exists
Fo €| F | such that G < Fo. We set D = Fyp — G. Then by 2.5 j) we
have 1= F2= F(G + D) > FG =2.

||
We will use the next lemma to show that P’ € supp(G). This will
play a central role to show that S is birational to a quintic X C P

Lemma 2.8. With the notation of 2.5, h%(S,Os(Ks + G)) = 4 and
r(S,05(Ks+ G)) =0 ‘

Proof. We consider the cohomology of the adjunction sequence for G:
0 — Og(Kgs) — Og(Ks+G) = wg — 0. By 2.5 jjj) h%G,wc) = 1 and
since pg(S) = 3, ¢(S) = 0 then h%(S,0s(Ks+ G)) =3+1=4 u
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A non intuitive fact is that P’ € supp(G). This result will give us the
structure of the divisor G which will indicate how to prove the theorem.
We need some preliminaries. Let 7 : S’ — S be the blowing up in the
point P’. Since P’ is the simple base point of | F | then 7*(F) = F' + E'
where E' = 771(P') and | F' | is a pencil without base point. In
particular | F' | induces a relatively minimal fibration f : S — P! with
fiber F'. We recall that the dualizing sheaf wgpr = wg' ® (Frwpr)™?!

of f is the line bundle with associated divisor K g + 2F'.
Lemma 2.9. h%(S,Os(Ks + 2F)) = 10.

Proof. Obviously | Kg + 2F | does not have a fixed part. We need
to show that P’ is not a base point of | Kg + 2F |. It is sufficient to
prove that P’ is not a base point of | Kg+ F |. If P' were a base point
of | Kg+ F |, since P' is a base point of | F | and ¢(S) = 0, it would
also be a base point of | Ks + F ||p=| KF | for a general F, which is
a contradiction. Then P’ is not a base point of neither | Kg + F | nor
| Ks +2F |. We notice now that r*(K s+ 2F) = 7*(Kg) + 2F +2E =
Kg + 2F' + E'. Then by the cohomology of

0 Og(Kg +2F) = Og(Kg +2F +E') = Op — 0

we see that hO(S', Og(K g + 2F + E')) = 1+ h%(S', O g (K g + 2F")).
Thus we need to show only that hO(S',wS: | p1) = 9. The proof of this
fact is a standard application of the relative duality and of the Leray
spectral sequence for the morphism f : Ry 23

By [6][Prop.2.7] we know that fawg p1 is a locally free sheaf of
rank 3 and by [6][Prop.1.2] every invertible sheaf £ which is a homo-
morphic image of frwg pr is of degree > 0. It is well known that

every locally free sheaf on /P! is decomposable. From these facts we
see that fuiwgp1 = Opi(a1) ® Op1(az) & Opi(a3) where 0 < a3 <
a; < as. Then hl(Pl,f*wS:‘Pl) = 0 and by the Leray spectral se-
quence hl(S',wS/'Pl) = hO(Pl,le*wsllpl). From the relative du-
ality it follows immediately h°(/P1, R! fawgtp1) = RO(PPL, f,O4) =
RO(IP,0Op1) = 1. Thus hl(S’,wS:!PI) = 1. From Serre du-
ality hz(Sl,wSIIPI) = hO(S’,OS/ (=2F")) = 0 then by Riemann-Roch
theorem we obtain hO(S’,wSzlpl) =0, ]
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Corollary 2.10. r(S,05(3F + G)) = 10
Proof. Obvious since Kg + 2F = 3F + G.

Now we will compare the canonical linear system Kp of a general
F and the induced linear system (Ks + G)r. Then we will show that

P’ € supp(G). We prove first that | 3F |#£ 3 | F |.
Remark 2.11. h%(S,05(3F)) = 5.

Proof. We will use the following Claim: h%(G,Og(3F + G)) = 5. In
fact by 2.5 jjj) we see that G is 1-connected and degwe = 0. Moreover
by 2.5 j) degOc(3F + G) = 5 and degO¢(—2F + G) < 0. By Serre
duality we have h}(G,0¢(3F + G)) = h°(G,0c(Ks+ G~ (3F + G)) =
h%(G, OG(—2F + G)) = 0. Hence by Riemann-Roch theorem for curves
r%(G,Oc(3F + G)) = 5 and this proves the Claim.

We show now that h9(S,0g(3F)) = 5 Since F has genus 3 then
1 < hO(F,0p(P')) < 2. Now the cohomology of 0 — Os(2F) —
Os(3F) — Op(3P") — 0 and 2.6 b) show that h%(S,Og(3F)) < 5.
On the other hand the cohomology of 0 — Og(3F) — Os(3F + G) —
Oc(3F + G) — 0, 2.10 and the claim imply 2%(S, Og(3F)) > 5.

It is useful to remark this easy consequence of 2.11.

Corollary 2.12. Let F be a general element of | F | then there exists a
point Pp € F such that Pp+ 3P = Kp.

Proof. By 2.11 and the first exact sequence in the proof of 2.11 we
see that hO(F,Op(3P')) = 2 then we have RY(F,Op(3P')) =
hO(F,Op(KF — 3P")) = 1. In other words there exists Pz € F which
satisfies the statement.

Now we can prove
Lemma 2.13. P’ € supp(G)

Proof. Let F be a general element of | F | and we set (Ks+G)|p = Dp.
Since Ks + G = F + 2G then Dp = P’ + 2G|p. On the other hand
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(Ks+F)r=Gp+ 2P' = Kr. We now consider F as a smooth quartic
in P2. Then | KF | is the linear system induced on F by the lines of
P2, By 2.12 we have 3P’ < Kp, then the tangent ! at P’ of F has
contact order 3 in P’ that is lp= 3P’ + Pp. Since Kp = 2F+G)p =
2P +GFp=lr= 3P’ + Pp then P' < G|p; in particular P e supp(G).

We remark the following easy consequence of 2.12 and 2.13:

Remark 2.14. Let F be a general element of | F | and Pr as in 2.12.
Then Pr+ P' = G\p-

We now make clear the structure of the elliptic cycle G. For the reader’s
benefit we include in the next proposition some results which we have
just proved. In this way we can collect all the results we will use to show
our theorem.

Proposition 2.15. (The structure of G). Let S be a minimal surface
over C with K g. =4, pg = 3 and d = 3. Then the canonical system is
without fized part, it has only a simple base point P and there exists a
2-dimensional sublinear system A such that the divisors K of A have the
following form:

K=G+F

where G and F are respectively the fired part and the mobile part of A.
The linear system | F | is a pencil of non-hyperelliptic curves of genus
3 with a simple base point P # P. The divisor G is a 1l-connected
reducible divisor and

G=Go+ Gy

where pa(Go) = 1, P,P' € supp(Gy), there exists an Fo €| F | such
that Go < Fo and G1 18 a chain of —2-rational curves. The following
numerical identities hold: G = —1,G} = ~2, GyG, = 1, FGy =
FGy = 1. Moreover the map ¢|x51Go : S — IP3 induces a birational
morphism on the image ¢|k;1Go|(S) = X and X is a quintic.

Proof. We have shown the first part of the proposition in 2.1 and in
2.5. It remains to study G. In our discussion we will distinguish two
cases: (i) G is irreducible and (i¢) G is reducible. We want to exclude
the case (i). If G is irreducible then, by 2.5 jjj) it is also reduced. From
2.7 ii) we see that G is not contained in any element F €| F | and by 2.5
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j) we know that P € G. We consider the sequence: 0 — Og(F — G) —
Os(F) — Og(F) — 0. By 2.7 ii we obtain that the restriction map
HO(S,05(F)) = H%(G,O¢(F)) is an isomorphism. Then by 2.6 (a) and
by 2.13 the pencil | F | cuts on G a complete linear system of degree two
with one base point P'. We show now that P’ is a smooth point of G.
Otherwise let 7 : X — S be the blowing up of P', D = n*(F) — E and
C = n*(G)—2E where E = x~}(P'). We remark that since FG = 2 then
P’ has multiplicity 2 on G. Since DC = 0 then there exists Do €| D |
such that C < D. In particular n,Dg = Fy is an element of | F | such
that G < Fg. But 1 = F2 = FFo = F(G+(F-G)) 2 FG =2: a
contradiction. The same argument shows that Fi¢ = Pr + P' where
Pp # P' for the generic F. By | Pr | we can construct a birational
morphism G — P!, Then 2.5 jjj) shows that G is a rational curve
with a singular point Q of multiplicity 2. In particular @ # P’ and then
Q # Pr for every F €| F |; but this is impossible.
ii). G is reducible
We first show the following

Claim. | Kg+ G | has a fixed part.

By contradiction we suppose that | Ks + G | is without a fixed compo-
nent. From this assumption it follows that it is also without base points.
In fact by 2.5 j), jjj) we see that (Kg+ G)G = 0. On the other hand
by 2.8 h%(S,05(Ks + G)) = 4 and since py(S) = 3 then there exists
H €| Ks+ G | such that H N supp(G) = 0. Then | Kg+ G | is without
base points.

Consider now 0 — 0g5(2G) — Os(Ks+ G) — Op(Ks + G) — 0.
By 2.7 iii) we see that H(S,Os(Ks + G)) — HYF,Op(Ks + G)) is
surjective. On the other hand by 2.13 and 2.14 we have K < (Ks+G)F.
We recall that | Kp | is a g2, while | Ks+G)p | is a g2. Then Os(Ks+G)
induces a complete linear system on F with a base point. This is true
for the general F, hence | Kg + G | has a fixed part. This proves the
claim.

Let G; be the fixed component. Since | Kg | has only a base point
then G; < G. We can split G = G; + (G — G;) and we denote Gg =
G — G;. We show now that | Ks + Gg | is without base points. It is
obvious that FGg > 0 and 0 < KgGg < 1. Moreover since G is 1-
connected then G1Go > 1. Thus by 0 < KgGo = FGy -I-G% +G1Go L1
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we obtain G% < 0. In fact if G2 =0 then G1Gg=1and KsGo=1. In
particular G remains 1-connected but by adjunction we obtain G +#0.

By definition | Kg + Gg | does not have any fixed component then
KsGo > —G% > 0. It is now easy to prove that KgGg = 1, G% = —1,
KsG1 = 0 and (Ks + Gg)Go = 0. In particular by 2.5 j) it follows
that P € supp(Gg) since KgG; = 0. Moreover KgG1 = 0 implies that
supp(G1) is an union of —2-rational curves.

The same argument used in the proof of the last claim shows that
there exists H €| K g+Gj | such that HNsupp(Go) = 0. Then | Ks+Gq |
does not have any base point. In fact if P; is a base point then P; € H
and P; ¢ supp(Go). Then P; € supp(Kg) for each Kg €| Kg |; that
is Py = P, thus P; € supp(Gyp); a contradiction. We have shown that
b|Ks+Gol is a morphism. We set n = dego|ks1co| 80d X = G|k s+Go|(S)-
Notice that since (Ks + Gg)?2 = 5 we have 5 = ndeg(X) then n = 5
and deg(X) = 1 or n = 1 and deg(X) = 5. The first case is clearly
impossible since ¢|x¢1q,| is induced by a complete linear system of
dimension 4. Thus X is a quintic in IP? birational to S. We give now
the desired decomposition of G. Since G:=-1land Kg= F+Gg+Gy,
by KsGo = 1 and KgG; = 0 we obtain:

FGo+G1Go=2
FGy+ GoG1+ G =0.

By the first equation we obtain 0 < FGy < 1. We exclude the
case FGg = 0. In fact if FGo = 0 then (Ks + Go)p = Kgp- In
particular ¢|k,+c,|(F) is a line and the image X = @|x1G,|(S) has a
one parameter family of rational curves. A contradiction since S is of
general type and X is birational to S.

If FGg=1then FG; = 1 since FG = 2 and G = G+ Gg. Moreover
by the first equation we have G1Gg = 1 and by the second equation
G? = —2. We have shown above that P € Go. We prove now that
P' € Gy. Let F be a general element of | F |. Since FGy = 1 it
is sufficient to show that (Go)r = P'. By contradiction we suppose
that (Go)r = Qr # P'. Thus (Ks+ Go)r = (Ks)r + QF and since
(Ks + F)r = (Ks)r + P’ then h(F,Op(Ks + Go)) = 2 otherwise
1 = h}(F,0p(Ks + Go)) = hO(F, Op(P' = QF)) that is Qr = P'. On
the other hand by 2.8 and by the 0-cohomology of
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0 — O0g(G + Go) — Os(Ks+ Gp) — Op(Ks + Go) — 0

it follows that h9(S, Os(G + Go)) > 2: a contradiction. Incidentally we
have proved that (Go)r = P’ and this implies (Ks+ Go)r = Kp. To
finish the proof of the proposition we will show that h0(S, Og(F —Gyg)) =
1. By Serre duality this is equivalent to prove that h%(S, Os(G + Go)) =
1. This will follow by the cohomology of the above exact sequence. In
fact by 2.8 h1(S, Os(K s+ Go)) = 0 and h*(S, Os(K s+ Go)) = 0. Then
HY(F,0p(Ks+ Gg)) — H%(S,05(G + Gy)) is surjective. On the other
hand (Ks + Go)r = K. In particular h*(F,Op(Ks + Go)) =1

Proof of the main theorem

We need to show only that the quintic X obtained in the proof of
2.15 belongs to A. Let B ¢ HYS,05(5(Ks + Go))) be the sublin-
ear system given by the sections which vanish on Gy with order six,
that is B ~ H(S,0g(5Ks — Gg)). Since Kg = Go + G1 + F then
5Ksg—Go = 4K s+ F +G1. We want to compute the dimension of B. The
cohomology of 0 — Og(4Kg+F) — Os(4Ks+ F+G1) — Og,(~1) — 0
yields h0(S, Os(5K s — Go)) = h%(S,0s(4K s + F)). The Ramanujam
vanishing theorem gives h!(S,Os(4Ks)) = 0. Thus the cohomology of
0 — Os(4Ks) — Os(4Kg + F) — Op(4Ks + F) — 0 and the the-
orem of Riemann-Roch imply that h0(S, Og(4Ks + F)) = 39; that is
dimgB = 39. We study now ¢|x.1c,- By the proof of 2.15 we see
that there exist g; € H(S,0s(G;)) with i = 0,1 such that gog1 = g €
HOY(S,05(G)) and a basis (tg, t;) of HO(S, Os(F)) such that g | to.
Thus by 2.5 we have the following basis of H2(S, Og(K)): (tog, t1g, 22)
where div(z9) is irreducible reduced and P' ¢ div(z). In the proof of
2.15 we have constructed an effective divisor H = Kg + Gy such that
supp(H ) Nsupp(Gg) = @. Thus by the inclusion ®@go : H(S, Os(Ks)) —
HO(S,05(Kg + Gy)) we see that there exists v € H(S;0s(Ks + Go))
such that go does not divide v and (toggo, t1990, 2290, v) is a basis. We
set jks+Go| = ¥- We can chose a system (xo, 21, z2, 23) of coordinates
on IP3 such that v*zg = togog, ¥*r1 = tigog, ¥*x2 = goze and Y*r3 = v.
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Let oy the cardinality of A;. It is obvious that a3 + as + a1 + a9 =
1+ 6+ 13 +20 = 40. On the other hand if z/ € HO(IP? Ops(5))
as in the statement of the theorem then ordg,(div(y*z’)) > 6 since
ordg, (div(v*zi)) = 3—14,i=0,1,2,3. The forty sections Y*z! are in B
for I € A;, s=0,1,2,3. Then there exists a non trivial relation on S:
Y2 0% 4, ery*z! = 0. It is now obvious that this relation gives the
equation of X and then X € A. This proves the main theorem.

We conclude our paper with the following easy consequence of the
theorem:

Corollary 2.16. Let X§4 be the locus of surfaces with K % =4, p,=3
and canonical map of degree three. Then X??,:i 18 irreducible, unirational
and it has dimension 29.

Proof. By the main theorem there exists an open set A’ in the linear
system A and a rational dominant map « : A - X§4. IS e X§4
then it is easy to see that 7=1(S) is the orbit by the action on A’ of the
subgroup G of PG L(5, C) given by the transformations of the following
form: zg9 — aoxo, 1 — a1z0 + b1z1, T2 + agxg + boxy + cox2 and
z3 = a3zo + bary + cazg + daz3, where a;, bj, cx,d3 € €, i = 0,1,2,3,
i =123, k= 2,3 Since dim(G) = 9 and the projective dimension of
A is 38 then dimX73, = 29.
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