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Separable quotients of Banach spaces.

Jorge MUJICA

Abstract

In this survey we show that the separable quotient problem
for Banach spaces in equivalent to several other problems from
Banach space theory. We give also several partial solutions to the
problem.

1 Introduction

The problem of whether every infinite dimensional Banach space has a
separable infinite dimensional quotient seems to have been considered
since the thirties, though the earliest explicit reference I know of is a
paper of Rosenthal [30] of 1969.

In this survey we show that the separable quotient problem, as it
is known, is equivalent to several other problems from Banach space
theory. We give also several partial solutions to the problem.

In Section 1 we introduce the notion of Schauder basis of a Banach
space. After stating the elementary properties of Schauder bases, we
show that the separable quotient problem is equivalent to the problem of
whether every infinite dimensional Banach space has an infinite dimen-
sional quotient with a Schauder basis. The main results in this section
are due to Bessaga and Pelczynski [3], and Johnson and Rosenthal [14].

In Section 2 we introduce the notion of quasi-complemented subspace
of a Banach space. We show that every closed subspace of a separable
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Banach space is quasi-complemented. We prove also that the separable
quotient problem is equivalent to the problem of whether every infinite
dimensional Banach space has a separable, infinite dimensional, quasi-

complemented subspace. The main results in this section are due to
Mackey [21] and Rosenthal [30].

In Section 3 we introduce the notion of barrelled space. We show that
the separable quotient problem is equivalent to the problem of whether
every infinite dimensional Banach space has a dense, nonbarrelled sub-
space. The main result in this section is due to Saxon and Wilansky
[32].

Finally in Section 4 we show that a real Banach space has a separa-
ble, infinite dimensional quotient if its dual has an infinite dimensional
subspace which is either reflexive or isomorphic to cp or ¢!. Thus the
separable quotient problem is closely connected with the problem of
whether every infinite dimensional Banach space has an infinite dimen-
sional subspace which is either reflexive or isomorphic to cg or 2. The
last mentioned problem remained open for a long time and was recently
solved in the negative by Gowers [10]. The main result in this section is
due to Hagler and Johnson [11].

This survey is based on the notes of a three-lecture minicourse de-
livered at the 43rd Brazilian Analysis Seminar, held at the University
of Sao Paulo during May 23-25, 1996. I am indebted to the organizers
for their kind invitation. I am also indebted to the referee for several
suggestions which have helped to improve the presentation.

0 Notation and Terminology

Unless stated otherwise, the letters E and F always represent Banach
spaces over JK, where IK is IR or @. E* denotes the algebraic dual
of E, whereas E' denotes the topological dual of E. L(E;F) denotes
the Banach space of all continuous, linear operators from E into F. If
T € L(E;F), then T' € L(F';E') denotes the dual operator. Bg de-
notes the closed, unit ball of E, whereas Sg denotes the unit sphere of
E. For a set A C E, span A denotes the vector subspace of E spanned
by A, whereas [A] denotes the closure of span A in E.
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1 Schauder Bases of Banach Spaces

A sequence (e,) in a Banach space E is said to be a Schauder basis
if for each £ € E there is a unique sequence of scalars (\,) such that
T = Y 321 Anén, where the series converges in norm. The coordinate
functionals

o0
e;:Zz\jejGE—»)\nEK

Jj=1
and the projections
oo n
Sn: Z'\jej €EE— Z)\jej €EE
=1 =

are evidently linear, and the following result of Banach [2, p. 113] (see
also [6, pp. 32-33] or [20, pp. 1-2]) shows that they are continuous.

1.1. Proposition. Let (e,) be a Schauder basis of E. Then there is a
constant ¢ > 1 such that ||Spz|| < cllz|] and |e;,(z)] < 2¢||z||/||enl| for
everyz € E andn € IN.

A sequence (ey;) in E is said to be a basic sequence if it is a Schauder
basis of the closed subspace that it generates in E.

Every complete orthonormal sequence in a separable Hilbert space
is a Schauder basis. If e, is the scalar sequence that consists of zeros
except for a one in position n, then the sequence (e,,) is a Schauder basis
in each of the spaces cq or £P, where 1 < p < oo. All this is easy to prove.

It is much harder to find Schauder bases in spaces like LP{0,1] or
C|0, 1]. Schauder [33][34], who introduced the notion of Schauder basis,
proved that the Haar system (hy,) is a Schauder basis of LP[0, 1] whenever
1 < p < 00, whereas the Schauder system is a Schauder basis of C[0, 1].
The Haar system (hy,) is defined by hy = X[g 1}, ho = Xfo,31 = X(L 1> hg =
Xj0,4] — X(1,1)» hy = X(%,_l_] = X2 135 etc., whereas the Schauder system

4 4’2 4 4

T
(sn) is defined by s; = X[g1) and sn(z) = / hn—1(t)dt for every n > 2.
0

Schauder’s results can be proved with the aid of the following useful
criterion, which can be found in a paper of James [12] (see also [6, pp.
36-37] or [20, p. 2]). A nice, direct proof that the Schauder system is a
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Schauder basis of C|[0, 1] can be found in another article of James [13].

1.2. Proposition. A sequence (en) of nonzero vectors in E is a basic
sequence if and only if there i3 a constant ¢ > 1 such that

m n
1D Ajesll < ell D el
j=1 j=1

forall A,...,\pin K andm <n in IN.

1.3. Corollary. (a) If (en) is a Schauder basis of a Banach space E,
then (e!)) is a basic sequence in E'.

(b) If (en) is a Schauder basis of a reflexive Banach space E, then
(el,) is a Schauder basis of E'.

Clearly every Banach space with a Schauder basis is necessarily sep-
arable, and the problem of whether every separable Banach space has a
Schauder basis was posed by Banach |2, p. 111]. This problem, known
as the basis problem, remained open for a long time, and was finally
solved in the negative by Enflo [8]. We have however the following pos-
itive result. :

1.4. Theorem. Every infinite dimensional Banach space has a closed,
infinite dimensional subspace with a Schauder basis.

Theorem 1.4 was stated without proof by Banach {2, p. 238], and
no proofs had been published before 1958, at which time several proofs
appeared; see [3], [4] and [9]. A proof of Theorem 1.4, based on ideas of
Mazur, made public by Pelczynski [27], can be found in [6, pp. 38-39]
or 20, p. 4]. That proof rests on the following lemma, and will be the
model for other proofs later on.

1.5. Lemma. Let M be a finite dimensional subspace of an infinite di-
mensional Banach space E, and let 0 < € < 1. Then there existsy € Sg
such that ||z + My|| > (1 — €)l|z|| for everyz € M and X € IK.

1.6. Corollary. If E' has a reflezive, infinite dimensional subspace,
then E has a reflezive, infinite dimensional quotient with a Schauder
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basis.

Proof. By Theorem 1.4 E’ has a reflexive, infinite dimensional sub-
space N with a Schauder basis. By Corollary 1.3 N’ has a Schauder
basis as well. Let S : N — E’ be the inclusion mapping, let J : E — E”
be the natural embedding, and let T = S’ o J : E — N'. Then one can
readily verify that T/ = S. Thus T’ has a continuous inverse, and T is
therefore surjective, by (36, p. 234, Th. 4.7-C].

In the case of a reflexive Banach space E, Corollary 1.6 is due to
Pelczynski [28]. Corollary 1.6 provides a partial, positive solution to the
following problem, posed by Pelczynski [28], and which seems to remain
open.

1.7. Problem. Does every inﬁm’te. dimensional Banach space have an
infinite dimensional quotient with a Schauder basis?

The following two theorems also provide partial, positive solutions
to Problem 1.7.

1.8. Theorem. If E' has a subspace isomorphic to co, then E has a
complemented subspace isomorphic to 2.

1.9. Theorem. FEvery separable, infinite dimensional Banach space
has an infinite dimensional quotient with a Schauder basis.

Theorem 1.8 is due to Bessaga and Pelczynski (3], whereas Theorem
1.9 is due to Johnson and Rosenthal [14]. We follow the proof of Johnson
and Rosenthal [14] to prove both theorems. We first prove Theorem 1.8
in detail, and then indicate the necessary modifications to prove Theo-
rem 1.9.

Proof of Theorem 1.8. Let R : co < E' be an isomorphic embedding,
and let (en) be the canonical Schauder basis of co. Then there are
constants b > a > 0 such that

oo
a-sup |An| < |1 Y AnReql| < b-sup |An]

n=1
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for every (A\n) € cg. If we set ¢, = Ren/||Ren|| for every n, then

a b b
— SuP Al < | S Antnll < —-5up [An] (1.1)

n=1

for every (An) € co. Since 322, |¢(en)] < 0o for every ¢ € £, it follows
that

i [¥n(z)] < 00 for every =z € E. (1.2)
n=1

Let €3 > 0 and consider the quotient mapping
Qi: E — E/*[1].

Since the closed unit ball of E/*[;] = [¥1]’ is compact, there is a finite
set A; C Bg such that for each u € [;])’ with |[u|| < 1 there is z € A,
such that

lu() — ()| < %uwu for every ¢ € [v1)-

Then by (1.2) we can find p2 > 1 such that
€1
3

Now let (en) be a sequence such that 0 < e, < 1 and Y o2 en < 0.
Then proceeding inductively we can find a strictly increasing sequence
(pn) in IN, and an increasing sequence of finite sets A, C B such that

(i) For each u € [¢p,, ..., ¥p,] with |Ju}| < 1 there is z € Ay, such
that

[p,(z)| < for every z € A;. .

Ju(w) - (@) < il for every ¥ € [Yp,- - Y-

. €
(ii) [¥pasa(z)] < = for every z € An. -
To simplify notation we set ¢, = 1p, for every n.

We next claim that

lle + Apnall 2 (T —en)llell forall ¢ €fp1,...,on], X € K. (13)

It suffices to prove (1.3) when ||| = 1. Since ||gn+1|l = 1, (1.3) is
obvious when [A\| > 2, so we assume |\| < 2. Given ¢ € [p1,...,¢n]
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with ||p|| = 1, there is u € [p1,...,¢n]’ such that u(p) = |jul| = 1. By
(i) there is z € A, C Bg such that |u(p) — ¢(x)| < en/3. By using this
and (ii) we get that

> (¢ + Apnt1)(@)] 2 |e(2)] = Pent1()]
> |u(p)| = lu(p) — ()| — IApni1(z)]

En En
> — —— —_—= — .
> 1 3 2 3 1—¢,

e + Aenall

We now use (1.3) to prove that (pp) is a basic sequence in E’ in
the same way Lemma 1.5 is used to prove Theorem 1.4. Indeed for
A, -.-, A in I and m < n in IN we have that

IIZAJ%II 2 H(1°€k HZMP:II 2 H(I—Ek)llz%wll

j=1 k=m

Thus (py) is a basic sequence in E’, by Proposition 1.2. Let (p}) denote
the sequence of coordinate functlonals and let (S;) denote the sequence
of canonical projections. Thus

m .
Smp =Y ¢j(p)p; for every ¢ € [oj]

and ||Sm|| € [Im(1 — ex)~ L. In particular lim ||Sm|| = 1.
Now let T : E — [p;|' be defined by T'z(p) = ¢(x) for every z € E

and ¢ € [pj]-
We claim that T(E) C [¢}]. Indeedifz € E and<p Y R1e(p)es €

[‘Pj] , then

Tz(p) = o(z) = Ew,(so j(@)-

But since Y 22|pj(z)| < oo, by (1.2), we conclude that Tz =
YR 19i(2)¢; € [#5], as asserted.

We next show that [¢;] C T(E). In certainly suffices to show that
given u € span(cpj) with ||u|| £ 1, and given € > 0, we can find = € Bg
such that ||Tx — u|| < 2¢. Indeed given u and &, choose n € IN such
that u € [}, ..., ¢nl, 1IS;jll £2 for every j > n and 3°32 ,¢; < e. Then

5l <115 — Sj-1ll <4 for every j2>n.

305



306 Jorge Mujica

By (i) there is « € A, C BEg such that
€
lu(¢) = ()] < Fllell forevery ¢ € o1, nl.

Let o = 3222,05(z)p;j € lpjl, with ||p|| <1, and let
n
¥ =Snp =) ilp)e;
j=1

Observe that ||¥|| < 2. Since u € [p],..., k], We see that u(p) =
u(Sny) = u(y). Thus

l(w—Tz)(@)l = lu(e) = o(z)| = u(y) - E%(w)w(x)l

J_.

< Iu(w)—Zso;(w)w(z)Hl Z 0i(e)ei(z)|
i=1 j=n+1
= Ju(@) —v@I+ Y leje)l lei=)l

Jj=n+1

4

< - — < .

< ||¢||+§ 43_3en 38_26
J=n+1

Thus we have shown that T(E) = [¢}]. Now it follows readily from
(1.1) that

a [0 o] o o] b o0
e ZP\:‘I < IIE}’W&II <— lekjl

for every (A;) € £!, and therefore [¢}] is isomorphic to ¢'. Thus we
have found a surjective operator V € L(E;£!). By the open mapping
theorem there is a bounded sequence (z,,) in E such that Vz, = ey for
every n. If we define U € L(¢}; E) by Uen = z, for every n, then V o U
is the identity, and the proof is complete.

Proof of Theorem 1.9. Let E be a.separable, ‘infinite dimensional
Banach space. Then there is a sequence (My) of finite dimensional
subspaces of E such that MngMnH for every n and M = | J;o; My, is
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dense in E. By the Hahn-Banach theorem there is a sequence (¥y,) in
E' such that ||¢n]| = 1 and ¢, = 0 on My, for every n. Whence

Z |¥n(x)] < 00 for every z € M.

n=1

Let (¢n) be a sequence such that 0 < e, < 1 and } 72 en < 00. Since
M is dense in E, the proof of Theorem 1.8 yields a strictly increasing se-
quence (pp) in IN and an increasing sequence of finite sets A, C BENM
which verify conditions (i) and (ii) there. If we set ¢ = tp, for every
n, then it follows as before that (py) is a basic sequence in E'. If (¢},) is
the corresponding sequence of coordinate functionals, and T : E — [pg]’
is defined by Tz(p) = ¢(z) for every = € E and ¢ € [pg], then it follows
as before that T maps E onto [p]].

Theorem 1.9 shows that Problem 1.7 is equivalent to the following
problem.

1.10. Problem. Does every infinite dimensional Banach space have a
separable, infinite dimensional quotient?

Problem 1.10 was mentioned by Rosenthal [30] in 1969, but the prob-
lem is probably much older. Actually a variant of Problem 1.10 was
mentioned by Banach in (2, p. 244].

2 Quasi-Complemented Subspacés of Banach
Spaces

Let M be a closed subspace of a Banach space E. Recall that M is said
to be complemented in E if there is a closed subspace N of E such that
M NN = {0} and M + N = E. By using the closed graph theorem one
can readily prove that M is complemented in E if and only if there is a
continuous projection P from E onto M. ‘

Following Murray [22] we will say that M is quasi-complemented in
E if there is a closed subspace N of E such that MNN = {0} and M + N
is dense in E. One can readily prove that M is quasi-complemented in
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E if and only if there is a closed, densely defined projection P with range
M.

Murray [22] posed the problem of whether every closed subspace of
a Banach space is quasi-complemented, and he himself gave a partial,
positive solution in [23], where he proved that every closed subspace of
o separable and reflerive Banach space is quasi-complemented. Shortly
afterwards Mackey [21] improved that result as follows.

2.1. Theorem. Every closed subspace of a separable Banach space is
quasi-complemented.

Before proving Theorem 2.1 we need two auxiliary lemmas.

2.2. Lemma. Let E be a vector space, and let F be a subspace of
E* which separates the points of E. Suppose that E and F are at most
countable dimensional. Then there are a Hamel basis (z,,) of E and a
Hamel basis (¢n) of F such that om(xs) = bmn for all m,n.

Proof. (a) First assume F finite dimensional. It is well know that if
®1,---,¥n, ¥ are linear functionals on E such that N2 ; Kerp; C Kery,
then 1 is a linear combination of @1, ..., pn. Now let (p1,...,¢n) be any
Hamel basis of F. By the preceding remark we can find zy,...,z, € E
such that ¢i(z;) = 6; for i,j = 1,...,n. Whence it follows that
z—3 i 1pi(x)zj € LF for every z € E. But since F separates the points
of E, we see that 1F = {0}. Whence (z1,---,zn) and (p1,---,pn) are
Hamel bases of F and F with the required property.

(b) Next assume F infinite dimensional. Let (y5) and (¥n,) be Hamel
bases of E and F, respectively. Let mi = 1 and z; = yp,,. Let n; be
the first integer such that ¥, (z1) # 0 and let @1 = ¥, /¥, (z1). Next
let ng be the first integer such that ¢,, & span{p;}, and let

P2 = Pny — hny(x1)e1
Let m2 be the first integer such that po(ym,) # 0, and let

Ymo — Q1 (ymz )wl
v2(ymy)

9 =
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Next let m3 be the first integer such that ymg & span{z1,z2}, and let

T3 = Ymy — €1(Ums)T1 — 02(Yms)T2.

Let n3 be the first integer such that ¢pn,(z3) # 0, and let

¢n3 - tl)na(xl)‘Pl - ¢n3(32)¢2
1[1n3(13) )

We continue in this way, by constructing x4 before ¢4 in step k if k is
odd, and the other way around if & is even. It is clear that ¢ (zx) =
6;r for all j,k. It is also clear that {m1,...,mg} D {1,...,p} and
{n1,...,n2} DO {1,...,p}, and therefore

Y3 =

span{zy,...,zop} D span{yi,...,yp}

and
span{py, ..., o2} D span{y1,...,¥p}

for every p.

Some readers will recognize in the proof of Lemma 2.2 the proof of a
result of Markushevich (see [20, pp. 43-44]) on the existence of biorthog-
onal systems.

2.3. Lemma. Let E be a vector space, and let F be a subspace of
E* which separates the points of E. Suppose that E and F are at most
countable dimensional. Then for each o(E, F)-closed subspace M of E,
there is a o(E, F)-closed subspace N of E such that M + N = E and
M+ 4+ N+ = F. Here M+ denotes the orthogonal of M with respect to
the dual pair (E,F).

Proof. Let R : E* — M* be the restriction mapping, and let G = R(F).
By applying Lemma 2.2 to M and G we can find a Hamel basis (z,) of
M and a Hamel basis (gr) of G such that gn(xp) = 6mn for all m,n.
Since G can be identified with F/M ', the sequence (gn) C G yields a
sequence (fn) C F such that

M* + span(fn) =F , fm(xn) = dmn.-

Next let S : F* — (M1)* be the restriction mapping, and let H =
S(E). By applying Lemma 2.2 to M and H we can find a Hamel basis
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(¢n) of ML and a Hamel basis (hy) of H such that hm(ppn) = Smy for all
m,n. Since M is o(E, F)-closed, M = M 11l and H can be identified
with E/M+11 = E/M. Hence the sequence (h,) C H yields a sequence
(zn) C E such that

M + span(zn) = E ®¥m(2n) = bmn-
Next define

n n
Un=12n— 3 filzn)z; . ¥n="Fan— D falzj-1)@j-1,
j=1 j=1
where zg = 0 and @9 = 0. Keeping in mind that ¢, (z,) = 0 for all
m,n, it follows easily that ¥m(ys) = 0 for all m,n.
Let N = span(yp). Then (5) C N+ and

F = M+ span(fy) = span(pn) + span(fn)
= span(pn) + span(¢n) = MLt 4+ NE

Likewise we get that

E = M + span(zp) = span(zy) + span(zp)
= span(zn) + span(yn) = M + N.

Since F = ML + N1, it follows that M+L N N+L = {0}. Since
E=M+N = ML + N1 it follows that N = N1, Thus N is
o(E, F)-closed and the proof is complete.

Proof of Theorem 2.1. Let M be a closed subspace of a separable
Banach space E. Since FE is separable, the Hahn-Banach theorem yields
a sequence (p5) in E’ which separates the points of E. Likewise there
is a sequence (uy,) in (E/M )’ which separates the points of E/M. Since
(E/M)’ can be identified with M+, the sequence (u,) C (E/M)' yields
a sequence (1) C M~ such that

oo
M= n Keryn.
n=1
Let
F1 = span(pp) + span(in).
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Since E is separable, there are sequences (x,) C M and (yn) C E such
that span(zy,) is dense in M, whereas span(yy) is dense in E. Let

E; = span(z,) + span(yn)

and let
oo
My=MNE = [(E1N Keryn),
n=1

so that M7 is o( Eq, F1)-closed. By Lemma 2.3 there is a o(E}, F;)-closed
subspace N1 of E; such that

M+ Ny =E, , M{+Ni=F.

Let N = N{E Clearly M +N is dense in E. We claim that MNN = {0}.
Indeed let x € M N N. Since N = Ff) we see that p(z) = 0 for every
¢ € Ni-. Since we can readily verify that M = Hf, it follows that
@(x) = 0 for every ¢ € Mi. Since F; = M + Ni, it follows that
¢(z) = 0 for every ¢ € F1, and therefore z = 0, as asserted.

Later on Lindenstrauss [18] gave another partial positive solution to
Murray’s problem by proving that every closed subspace of a reflexive
Banach space is quasi-complemented. But shortly afterwards Linden-
strauss [19] ended up solving Murray’s problem in the negative by prov-
ing that if I is any uncountable set, then co(I) is not quasi-complemented
in £°(I). But the following variant of Murray’s problem, posed by
Rosenthal [30], seems to remain open.

2.4. Problem. Does every infinite dimensional Banach space have a
separable, infinite dimensional, quasi-complemented subspace?

The following result of Rosenthal [30] shows that Problem 2.4 is
equivalent to Problem 1.10.

2.5. Theorem.- Let E be a Banach space. Then E has a separable,
infinite dimensional, quasi-complemented subspace if and only if E has
a separable, infinite dimensional quotient.
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Proof. First assume that E has a separable, infinite dimensional, quasi-
complemented subspace M. Let N be a closed subspace of E such that
MNN = {0} and M + N is dense in E. Let Q : E — E/N be the
quotient mapping. Then one can readily see that Q(M) is dense in E/N
and Q|M is injective. Hence E/N is separable and infinite dimensional.

Next assume that there is a closed subspace N of E such that E/N
is separable and infinite dimensional. Let Q@ : E — E/N be the quotient
mapping, and let (b,) be a countable, dense subset of E/N. Choose
(an) C E such that Qay, = by, for every n, and let M = [ay,].

We claim that M + N is dense in E. Indeed given z € E we have that
Qz = lim by, for a suitable sequence (ng). By the open mapping theorem
there is a sequence (zx) C E such that imz; = = and Qz = by, for
every k. Thus Qzy = by, = Qan,, Ty —an, € N and zx € M+ N for
every k.

If M NN = {0}, the proof is complete, so assume M N N # {0}. By
Theorem 2.1 the subspace Ny = M N N is quasi-complemented in M.
Thus there is a closed subspace M) of M such that M; N Ny = {0} and
M; + Nj is dense in M. Hence

E=M+N=M+Ni+N=M;+N

and

MlnNZMlnMﬂN:MlnI\h:{O}.

If M; were finite dimensional, then E/N would be isomorphic to M,
and hence finite dimensional. Thus M; is infinite dimensional and the
proof is complete.

Let us remark that Rosenthal [30] proved that cg is quasi-complemented
in £°. It follows from Theorem 2.5 that £>° has a separable, infinite di-
mensional quotient. Since £*° = C(BIN), this follows also from a result
of Lacey {17], who proved that-if X is any infinite compact, Hausdorff
space, then C(X) has a separable, infinite dimensional quotient. In Sec-
tion 4 we will see that £ has a quotient isomorphic to £2.
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3 Nonbarrelled Subspaces of Banach Spaces

Every closed, convex, balanced and absorbing subset of a locally convex
space is called a barrel A locally convex space is said to be barrelled if
every barrel is a neighborhood of zero. It follows from the open map-
ping theorem that closed subspaces of Banach spaces are always bar-
relled, and the following proposition furnishes a simple procedure for
constructing nonbarrelled subspaces of Banach spaces.

3.1. Proposition. Let (My) be a sequence of closed subspaces of a
Banach space E such that Mn(;M,,H for every n. Then the subspace

M = ;2 My, with the induced topology, is not barrelled.

Proof. Assume that M, with the induced topology 79, is a barrelled
space. Let 7; denote the inductive limit topology on M, that is (M, ;)
= ind My,

We first show that (M, 70)' = (M, m1)". Certainly 79 < 71 and there-
fore (M, 7o)’ C (M, 71)". To show the reverse inclusion let ¢ € (M, n;)’
and let pn = p|Mp for every n. Thus ¢, € M, and by the Hahn-
Banach theorem there is ¢, € (M, 79)’ such that $n|M, = @y, for every
n. Since M = ;2 ; My we see that p(z) = lim @p(zx) for every z € M.
Since (M, 19) is barrelled, we conclude that ¢ € (M, 7p)’, by the Banach-
Steinhaus theorem. ’

We next show that 70 = 7;. Indeed let V be a closed, convex,
balanced neighborhood of zero in (M, 71). Since (M, 1) = (M, 1),V is
also closed, and therefore a barrel, in (M, 19). Since (M, 7g) is barrelled,
V is a neighborhood of zero in (M, 1p).

To complete the proof choose z, € Mp\Mp_; for every n. Since
(M, 19) is a normed space, the sequence (z«/||zk|}) is bounded in (M, 1) =
(M, 71). But since (M, 71) = ind My, is a strict inductive limit, the se-
quence (zx/||zk||) is contained and bounded in some M, a contradic-
tion.

The next result is due to Saxon and Wilansky [32]. See also [38, p.
255).

3.2. Theorem. A Banach space E has a separable, infinite dimen-
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sional quotient if and only if E has a dense, nonbarrelled subspace.

This theorem shows that Problem 1.10 is equivalent to the following
problem.

3.3. Problem. Does every infinite dimensional Banach space have a
dense, nonbarrelled subspace?

Proof of Theorem 3.2. We first assume that E has a separable, infi-
nite dimensional quotient space E/S. Let Q@ : E — E/S be the quotient
mapping. There is a sequence (N,) of finite dimensional subspaces of
E/S such that NngNnH for every n and ;> ; Ny, is dense in E/S. Set

My = Q@ }(Ny,) for every n. Clearly MngMn+1 for every n, and thus by

Proposition 3.1 the subspace J32; My, is not barrelled. We claim that
U2, My, is dense in E. Indeed given x € E we have that Qz = limyy,
where y; € Ny, for every k. By the open mapping theorem there is a
sequence (zx) C E such that z = lim z;, and Qzy = yj, for every k. Thus
Tk € My, for every k, as we wanted.

Conversely assume that E has a dense, nonbarrelled subspace My.
Let Bg be a barrel in My which is not a 0-neighborhood in M. Without
loss of generality we way assume that Bg is closed in E. Indeed if By
were not closed in E, then we would consider By instead of By. For By
is a barrel in span Bg, and By is not a 0-neighborhood in span By, since
Bg = -B—(;ﬂ My.

Since Mg = span By is not barrelled, Mg # E, and hence there is
z1 € SEg such that z; ¢ My. Since in particular z; ¢ 2B, the Hahn-
Banach separation theorem ylelds ¢1 € E' such that ¢;(z;) = 1 and
l1| < 1/2 on By.

Let

= Bg + {al:cl : |a1| < 1}

and let M; = span B;. Then B; is closed in E, Bj is a barrel in M; and
Bj is not a 0-neighborhood in Mj, since By = B; N M. Whence M is
not baryelled, and in particular M; # E.

We claim that Ker ¢; ¢ M;. Indeed Ker ¢3 C M; and My} # E
would imply Ker ¢; = M; and M; would be barrelled. Then choose
z2 € Sg such that zo € Ker ¢; and z2 ¢ M;. In particular zo ¢
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4B; and the Hahn-Banach separation theorem yields 2 € E’ such that
p2(z2) = 1 and |p2| < 1/4 on B;.
Let

Ba = B1 + {a2z2: |ag| £ 1} = Bo + {a1z1 + agz2 : || £ 1,|a2| < 1}

and let Mg = span Bs. As before Mg is not barrelled and therefore
Mz #£ E.

We claim that Ker o1 N Ker ¢2 ¢ Ms. Indeed if we assume
Ker o1 N Ker o3 C M2 then

Ker ¢p37 = Kzo® Ker (p2| Ker ¢1)
= IKz2® (Ker @1 N Ker p3) C Kz2 + My = My

but Ker ¢; C M2 and M2 # E would imply Ker ¢; = M2 and M>
would be barrelled. Then choose z3 € Sg such that z3 € Ker ¢1 N
Ker ¢2 and z3 ¢ M2. In particular z3 ¢ 8B2 and the Hahn-Banach
separation theorem yields @3 e E’ such that p3(z3) = 1 and |¢3| < 1/8
on Bs.

Proceeding inductively we can find sequences (z,,) C E and (p,) C
E', and a sequence of closed, convex, balanced sets B, C E such that
llznll = 1, on(zn) = 1, om(zn) = 0 whenever m < n, and |pn| < 27" on
Bp—1. Furthermore for n > 1

: n
Bp = Bp—1+ {anzn: |an] <1} = Bg+ {zaiﬂ?i :|ag] £ 1}
i=1
If My, = span By, then z, ¢ My,_1 for every n. Moreover
n
E=Kz:6...0Kzn® ] Ker ¢;
i=1

For every n € IN set

oo oo
anﬂ Ker ¢; , N:UNn
i=n n=1

We claim that given b € Bg and n € IN, there is y, € Ny, such that
[lyn — b]] < 2771 Indeed if we define an = —pn(b), then |an| < 27™
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If we next define ani1 = —@n+1(b + anzy), then |anyi| <27 "1, Thus
we may inductively define (o;)%2,, by

j-1
a; = —p;i(b+ Zaizi)
i=n

and |oj] < 277 for every j > n. If we set y, = b+ Y2, a;z; then
[lyn — b]] < 27"*1. Furthermore y,, € Ny, since for j > n we have that

-1 00
vi(yn) = @ji(b+ Zaix,- + ajzj + Z aizi) = —aj +a; + 0= 10
i=n i=j+1

Thus our claim has been proved, and whence it follows that N is dense
in My = span Bg. Thus N is dense in E.

We next show that dim (Nyn/Np—3) = 1 for every n. To show this
observe that By ¢ Ker ¢,_; since My = span By is dense in E.
Let b € Bo such that b ¢ Ker ¢n—1. Then the previous claim yields
Yn € Ny, such that ||lyp, — bf| < 27", Since yp, = b+ Yo, QT We see
that 90n~1(yn) = ‘Pn—l(b) # 0. Thus y, € Ny but y, & Nn-1, and it
follows that N, = N,,_; & Ky, as we wanted.

To complete the proof of the theorem we show that the quotient
E /N is separable. To see this write N, = Np_1 ® Ky, for every n > 2.
Let ¥ € (E/N1)' and suppose that /0 Q1(yy) = 0 for every n > 2, where
Q1: E — E/N; is the quotient mapping. Since

No=N18Ky:&...0 Ky,

every zn € Ny, can be uniquely written as

n
Zn=21+ Z)\ixi
i=2
with z; € N} and A; € IK. Whence % 0 Q1(zn) = 0. Thus ¥ 0 Q;(2) =0
for every z € N, and therefore for every z € E. By the Hahn-Banach
theorem span (Q1yn) is dense in E/Nj.

3.4. Corollary. Let T € L(E;F), and suppose that T(E) is dense in
F, but T(E) # F. Then F has a separable, infinite dimensional quo-
tient.
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Proof. If T(E) were barrelled, then T : E — T(E) would be an open
mapping. Thus T(E) would be complete, and therefore T(E) = F. We
have thus shown that T(E) is a dense, nonbarrelled subspace of F. By
Theorem 3.2 F has a separable, infinite dimensional quotient.

A Banach-space E is said to be weakly compactly generated if there
is a convex, balanced, weakly compact set K C E such that the Banach
space Ek is dense in E. Reflexive Banach spaces and separable Banach
spaces are weakly compactly generated.

3.5. Corollary. FEvery infinite dimensional, weakly compactly gener-
ated Banach space has a separable, infinite dimensional quotient space.

Proof. Let E be an infinite dimensional, weakly compactly generated
Banach space, and let K be a convex, balanced, weakly compact subset
of E such that the Banach space Ex is dense in E. By a result of Davis
et aL [5] (see also [6, pp. 227-228]) every weakly compact operator be-
tween Banach spaces factors through some reflexive Banach space. Thus
the inclusion mapping Ex — FE factors through some reflexive Banach
space F. If the mapping F — E is surjective, then E is also reflexive,
and hence has a separable, infinite dimensional quotient by Corollary
1.6. If the mapping F — E is not surjective, then it has a dense image,
and E has a separable, infinite dimensional quotient by Corollary 3.4.

Corollaries 3.4 and 3.5 can be found in the book of Wilansky (38,
p-256].

4 Other Banach Spaces with Separable
Quotients
In this section we prove the following theorems.

4.1. Theorem. If E has a subspace isomorphic to £}, then E has a
quotient isomorphic to 22,

4.2. Theorem. Let E be a real Banach space. If E' has a subspace
isomorphic to £}, then E has a quotient isomorphic to cg or £2.
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First proof of Theorem 4.1. Since E has a subspace isomorphic to £1,
it follows from a theorem of Pelczynski [29] that E’ has a subspace iso-
morphic to L[0,1]. Actually Pelczynski proved that theorem under the
additional assumption that E be separable, but an exercise in Diestel’s
book [6, pp. 211-212] allows us to drop the separability assumption.
Now L![0,1] has a subspace isomorphic to ¢2. This follows from the
Khintchine’s inequalities: If (r,) is the sequence of Rademacher func-
tions, then for each p,1 < p < 00, there are constants by > ap > 0 such
that

n 1 n n
ap(D N2 < (A |- Ajri(0)Pae) 7P < b3 IN1A)2

for all \;...\p, € K and n € IN. The Rademacher functions ry, are
defined by ry = hi,re = he,r3 = h3 + ha,74 = hs + hg + h7 + hs, etc.
where (hy) is the Haar system. See [6, pp. 105-107] or [20, p.66]. Thus
E' has a subspace isomorphic to £2, and the proof of Corollary 1.6 shows
that E has a quotient isomorphic to £2.

Second proof of Theorem 4.1. The following, more “modern” proof
of Theorem 4.1 was suggested by the referee. If 1 < p < co then an
operator T € L(E;F) is said to be absolutely p-summing if there is a
constant ¢, > 0 such that

(P IIT5{P) 77 < cpsup{(Y Ie'(2)P) /7 : o' € B}

Jj=1 j=1

n
forallzj,...,zn € E and n € IN. By a result of Banach and Mazur (see
[6, pp. 73-74] or [20, p. 108]) there is a surjective operator T € L% %),
By a result of Grothendieck (see 20, pp. 69-70]) the operator T is
absolutely 1-summing, and therefore absolutely 2-summing. By a result
of Pietsch (see[20, pp. 64-65]) there is a probability measure p and
there are operators U € L(£%;L®(p)) and V € L(L%*(u);£?) such that
the following diagram commutes.

e I g

Ul 1v
L) L*(p)
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Now let § € L(¢}; E) be an isomorphic embedding. By a result of Nach-
bin [24] the space L>°(u) has the Hahn-Banach extension property. Thus
there is an operator U € L(E;L*(u)) such that U o § = U. Since the
operator T € L(£!;£2) is surjective, the operator V oI o U € L(E;£2) is
surjective as well.

Since £ has a subspace isomorphic to £! (this follows easily from
Proposition 4.5 below), Theorem 4.1 shows that £>° has a quotient iso-
morphic to £2.

Let (en) and (fn) be Schauder bases of E and F, respectively. (ey)
and (fy) are said to be equivalent if there is a topological isomorphism
T : E — F such that Te, = f, for every n. One can readily see that
a sequence (xy,) in E 1is a basic sequence equivalent to the canonical
Schauder basis of €' if and only if there are constants b > a > 0 such

that
n n n
a ) Iyl <D Azl <) Il
J=1 j=1 j=1

for all \{...\, € IK and n € IN. Likewise one can readily see that
a sequence (zn) in E i3 a basic sequence equivalent to the canonical
Schauder basis of cg if and only if there are constants b > a > 0 such
that

n

asup [\;| < || Y Ajzjll < bsup |l

i=1

foralldhi...\p €K andn € IN.

Theorem 4.2 follows from the following two more precise theorems.

4.3. Theorem. Suppose that E' contains a normalized basic sequence
(¥n) such that

(i) (¥n) is equivalent to the canonical Schauder basis of £*.

(#) im ¢ (z) = O for every z € E.
Then E has a quotient isomorphic to cg.

4.4. Theorem. Let E be a real Banach space such that

(i) E' has a subspace isomorphic to £'.

(i) Whenever (15,) is a basic sequence in E' which is equivalent to
the canonical Schauder basis of €1, then (yn(z)) does not converge to
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zero for some x € E.

Then:
(a) E has a subspace isomorphic to €.
(b) E has a quotient isomorphic to £2.

Theorem 4.3 is due to Johnson and Rosenthal [14], whereas Theorem
4.4 is due to Hagler and Johnson [11]. See also [6, pp. 219-222].

Proof of Theorem 4.3. We can find sequences (p,) and (45) as in
the proof of Theorem 1.8, since there we did not use the full fact that
3% In(z)l < oo for every z € E, but only the weaker fact that
lim ¢ (x) = 0 for every z € E. If we set ¢, = 9y, for every n,, then
it follows as before that (p,) is a basic sequence in E’. Since () is
equivalent to the canonical Schauder basis of £!, there are constants
b > a > 0 such that

n n n
a Y xS 1D w5l <) [Agl
j=1 j=1 J=1

for all \;...An € K and n € IN, and clearly the subsequence (pn) =
(4,) satisfies the same inequalities. If (¢},) is the corresponding se-
quence of coordinate functionals, then one can readily see that

1 hid 1
7 SuP Al < ”ZM‘P}” < ;Sup|'\j|
=1

for all A\1...A\p € K and n € IN. Thus the basic sequence (¢,) is
equivalent to the canonical Schauder basis of co. As beforelet T : E —
[¢n]’ be defined by Tz(p) = ¢(z) for every = € E and ¢ € [pal.

We claim that T(E) C [p)]. Indeed if x € E and ¢ =

Yoo 1 Pn(@)on € [pn], then
Tz(p) = ¢(x) = an«p on(z)

Thus Tz = Y22 ; ()@l € [ph], since (pn(z)) € co. ,
Finally the proof of Theorem 1.8 show that {p}] C T(E), and the
“proof is complete.
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The proof of Theorem 4.4 is more involved and will be given after
some preliminaries. I do not know if Theorem 4.4 is true in the case of
complex Banach spaces.

A sequence (Xp,,) of nonvoid subsets of a set X is said to be a tree if
for every n € IN, X9,, and Xon; are disjoint subset of X,,. The notion
of tree and the next result are due to Pelczynski [29]. See also [6, pp.
204-205].

4.5. Proposition. Let (Xk)3>, be a tree of subsets of a set X. Let
(fr)32 be a bounded sequence in real £°(X). Suppose there is § > 0
such that

(—l)kfn(x) > 6 whenever z € X,2" <k < 2™ n>0. (4.1)
Then (fy) i3 a basic sequence equivalente to the canonical Schauder basis

of £1.

Proof. Let \g..., A, € R. Then certainly
n n
1255l < sup [1£11S 1A -
3=0 =0
To complete the proof we will show that
n n
I Z;Ajfjll > 5.20'*1" : (42)
j= j=

Since || 370 Aif5ll = Xj=o(—A5)fjll, we may assume that Ao < 0. By
(4.1) '
Xofo = |rolé on Xi.

By (4.1) again, A1 f; > |A1|6 on one of the sets X5 or X3. Hence on that
set we have that
Aofo+ Arfr 2 (xol + |A])s.

Similarly we see that on one of the sets X4, X5, X¢ or X7 we have that
Xofo+ Arfi+ Aafz > ([Aol + |[Ma] + |Ae])s.”

Proceeding inductively we get (4.2) for every n.
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Let (¢r) be a bounded sequence in E’. A sequence (1/:,,) in E' is said
to be a block of (py,) if for every n € IN

Yn = Z ;P ;
J€An

where (A,) is a sequence of finite subsets of IN such that A, < Apyq
and Y ica. |Aj| = 1 for every n. For A,B C IN, A < B means that
p < q for all p € A and q € B. If we define

6(¢n) = sup limsup |pn(z)|
flzll=1 n—oo

then
6(yn) = sup hmsup l Z ajp;(z)]
|lzlf=1 n—o0 j€An
< sup limsup sup lpj()]
llzll=1 n—o0  jeAn

< sup limsup |g;(z)|= 6(pn)
flzl|=1 n—oo

Thus we have shown that 6(¥n) < 6(prn) whenever () is a block of
(n)-

4.6. Lemma. Every bounded sequence (@) in E' has a block (vp) with
the property that §(0,) = 6(1n) for every block (0,) of (¥n)-

Proof. Define
e(pn) = inf{6(¢¥n) : (¥n) is a block of (pn)}.

for each bounded sequence (p,) in E’. Since the block relation is re-
flexive and transitive, it is plain that e(ppn) < 6(pn) for every (pn) and
e(pn) < e(¥p) whenever (¥5,) is a block of (¢n).

To prove the lemma, if suffices to find a block (¥p) of (¢r) such that

e(¥n) = 6(1n). Now let (1/;,(,1)) be a block of () such that
6(¢1(m1)) S e(pn) + L.

Next let (¥$2) be a block of (%) such that

5D) < c@P) + 3.

N
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In general let (1,b$,k)) be a block of (d;s.k_l)) such that

s6®) < e + 1.

let (¥n) be the diagonal sequence (1,0,(,")). Since the block relation is

transitive, we see that ()5~ is a block of (wak))ff__k for every k, and
(¥n)32, is a block of (¢n)s>;. Thus

(W) S8(YY)  and  e(w) <e(wn)
for every k and by our selection of the blocks (w,(;k)), we have that

limsup §(¥{) < limsup e(x®).

k—o00 — 00

Thus

6(n) < limsup §(¥{M) <limsup e(WP) < e(¥n) < 6(wn)
k—o00 k—o0

and 6(¢n) = e(¥n).

Proof of Theorem 4.4. By Theorem 4.1 it suffices to prove (a). By (i)
there is a basic sequence (¢y) in E’ which is equivalent to the canonical
Schauder basis of £1. Thus there are b > a > 0 such that

n n n
a > LS Y Al <8 1Al (4.3)

for all A1,...,An € R and n € IN. Without loss of generality we may
assume that b = 1. By Lemma 4.6 there is a block (¥p) of (¢n) with
the property that 6(6,) = (1) for every block () of (¥n). Observe
that every block of (¢r), and in particular (¥n), verifies (4.3). Moreover
it follows from (ii) that 6(6,) > O for each sequence (6,) in E’ which
verifies (4.3). _

Now let 6§ = 8(p) > 0; and let 0 < € < 6. By definition of
5(n), there are o € Sg and an infinite set Ny C IN such that

[¥n(xo)] < 6—¢€ forall n € Nj.
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Without loss of generality we may assume that
Ya(zo) < —6+¢ for all n € Ny.

Let 0 < ¢’ < g/3. Write Ny = AUB, where A = (m;) and B = (n;),
with m; < nj < mji for every j € IN. Since the sequence (5(¥m; —
¥n;)) is a block of (1), it follows that 6(%(1/),,,1. — ¥n;)) = 6(¥n) = 6.
Hence there are x; € Sg and an infinite set J C IN such that

|2 (¥m; — ¥n;)(z1)| 2 6—€' for jeJ
Without loss of generality we may assume that
L (¥m; — ¥n;) (1) 26— ¢' for j€J.

Since (¥m;) and (¥n;) also are blocks of (yn), it follows that §(¥m;) =
6(‘#”1&_,-) = §(¢n) = 6. Hence HmsupI¢Mj (z1)| £ é and limsupl"/’nj(wl)l <
j—ro0 j—oo

5. Hence there is jo € IN such that

[¥m;(z1)] < 6+€" for j 2> jo,
lton;(z1)| S 6+€' for j > jo.

We claim that

Ym;(z1) 26 -3¢’ for j€J, j2=jo,
¥n;(z1) < —643¢' for j€J, j=jo

Indeed

'l/’mj (331) = ("r/’m, - '¢n,-)($1) + w'nj (:El)
2> (¢mj - ¢'ﬂj)(zl) - I'/’n,-(xl)l
> 206-e)—(6+€)=6~-3¢

and the second inequality is proved similarly. We have thus found two
disjoint, infinite subsets No and N3 of N; such that

Yu(zr1) 28— for n € Ny,
Yn(z1) < —6+e for n€Na.
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Next let 0 < ¢’ < /7. Then No D PUQ and N3 D RU S, where
P = (pk), Q@ = (qk), R = (r) and S = (sk), with px < g < rx < s <
pr+1 for every k € IN. Then the sequence (%(w,,,c — Yg + Ur — ¥s,)) is
a block of (¥,) and proceeding as before we can find z2 € Sg and an
infinite set K C IN such that

%("ppk—'p% +¢Tk"¢sk) 25—6’ for kE€K.

Then as before we can find kg € IN such that

Vpi(x2) > 6 — 7€' for ke€K,k> ko,
Vg (z2) < =6+ 7€' for k€K,k>ko,
Vp (T2) > 6 — 7€' for k€K,k> ko
P, (x2) < —6+ 7€' for ke€K,k>ko.

We have thus found disjoint infinite subsets N4 and N5 of N2 and Ng
and N7 of N3 such that

Yn(zg) > 6—¢ for =n € N4U Ng,
Yn(z2) < -6 +¢ for n € NsUN7.

Proceeding inductively we can find a tree (Np);2, of subsets of IV
such that

(=1)P¥n(zm) = 6 — e whenever n € Np,2™ <p < 2™t m > 0.

Set W, = {n : n € Np} for every p € IN. Then (¥p)p2, is a tree of
subsets of B such that

(—=1)P%(zm) = 6 — ¢ whenever v € ¥, 2™ <p <.2m+l,m > 0.

By Proposition 4.5 (z,,) is a basic sequence equivalent to the canonical
Schauder basis of £1. .
4.7. Corollary. Let E be a real Banach space which has a subspace
isomorphic to cg. Then:

(a) E' has a complemented subspace isomorphic to L.

(b) E has a quotient isomorphic to co or £2.

4.8. Corollary. Let E be an infinite dimensional Banach space. Then
there is a sequence (pn) in E' such that ||pn|| = 1 for every n € IN and
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lim pp(z) = 0 for everyz € E.

Proof. First consider the case of a real Banach space E. There are two
possibilities:

(a) First assume that E’ has a subspace isomorphic to £!. Then
by Theorem 4.2 E has an infinite dimensional quotient E/M with a
Schauder basis (fn). Let (f;,) C (E/M)' be the sequence of coordinate
functionals, and let Q : E — E/M be the quotient mapping. Then
Qz = Y 021 fn 0 Q(z)fn for every z € E, and we may assume that
||fr]] = 1 for every n. Since ||fn|| = 1 we can find e, € E such that
Qen = fn oud [lenl] < 2. Since f}0Q(en) = f4(fn) = L [Ifh0 QI > §
for every n. Thus it suffices to take pn, = f 0 Q/||f. o Q|| for every n.

(b) Next assume that E’ has no subspace isomorphic to £!. Then
by a result of Rosenthal [31] (see [6, pp. 201-211] or [20, pp. 99-101]),
every bounded sequence in E’ has a weakly Cauchy subsequence. Now
by Riesz’ lemma there is a sequence (z},) in E’ such that ||z}]| = 1 for
every n, and ||z}, — z,,]| > 3 whenever m # n. By Rosenthal’s theorem
we may assume that (z}) is weakly Cauchy. Whence it follows that
nlig;:z:”(:ci,“ — z},) = 0 for each z” € E". Let yp = xh 1 — z, for every
n. Then ||y,]| > % for every n, and nli,f{.lo-"”(yk) = 0 for every =" € E".
Thus it suffices to normalize each y,. This completes the proof in the
case of a real Banach space.

If E is a complex Banach space, then there is a sequence (¢n) of real
linear functionals on E such that ||¢yn|| = 1 for every n and lim p,(z) = 0
for every z € E. If we define () C E’ by ¢n(z) = ¢n(z) — ipn(iz),
then lim ¢n(z) = 0 for every z € E, and ||¢n|| > 1 for every n. Thus it
suffices to normalize each vy, to complete the proof.

4.9. Corollary. Let E be a complez, infinite dimensional Banach space.
Then for each r > 0 there is a holomorphic function f : E — & which
i3 unbounded on the ball B(0;r).

Proof. Let 0 < p < r. By Corollary 4.8 there is a sequence (pp) in
E’ such that ||pn|| = 1/p for every n and limy_,oc pn(z) = 0 for every
z € E. By a result of Dineen (7], the function f : E — & defined by
f(z) = X532 1(pn(z))™ is holomorphic on E and is unbounded on the
ball B(0; p + €) for every € > 0.
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A set B D E is said to be bounding if every holomorphic function
f: E — @ is bounded on B. A set L C E is said to be limited
if limp o0 SUP,ey, |on(z)] = O for every sequence (p,,) in E’ such that
limp 00 @n(z) = 0 for every z € E. Let D(E) denote the family of all
holomorphic functions f : E — @ of the form f(z) = Y02, (pn(z))?,
where (pn) C E’ and limp—,00 pn(z) = 0 for every z € E. Then one
can prove that a set L C E is limited if and only if every f € D(E)
s bounded on L. Whence every bounding set is limited, and Josefson
[16] and Schlumprecht [35] have given examples of limited sets which
are not bounding. Moreover the proof of Corollary 4.9 readily yields the
following corollary.

4.10. Corollary. Let E be a complez, infinite dimensional Banach
space. Then bounding sets and limited sets in E are nowhere dense.

Corollary 4.8 is due independently to Josefson [15] and Nissenzweig
[26] (see also [11] or [6, pp. 219-223]), and answered a question raised
by Thorp and Whitley [37]. Corollary 4.8 was also the missing link in
Dineen’s method of proof [7] of Corollaries 4.9 and 4.10, which answered
questions raised by Nachbin [25] and Alexander [1].

It follows from Corollary 1.6 and Theorems 1.8 and 4.2 that a real
Banach spaces E has an infinite dimensional quotient with a Schauder
basis if its dual E' has an infinite dimensional subspace which is either
reflezive or isomorphic to co or £'. Thus Problem 1.7 is closely connected
with the problem of whether every infinite dimensional Banach space has
an infinite dimensional subspace which is either reflexive or isomorphic
to cg or £!. This problem, mentioned in [20, p.104], remained open for
a long time, and was recently solved in the negative by Gowers [10].
Actually Gowers [10] constructed an infinite dimensional Banach space
E such that neither E nor E’ contain any infinite dimensional subspace
which is reflexive or isomorphic to ¢y or £1.
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