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Some properties of basic sequences in Banach
spaces.

Manuel VALDIVIA*

Summary

Some classes of basic sequences in Banach spaces are studied.
We show in particular that if X is a Banach space with separable
dual X* and U C V are norming closed subspaces of X*, then
there is a basic sequence (z,,) in X such that, if {z,] is the closed
linear hull of (z,,) and [z,]* is the subspace of X * orthogonal to
[za), U + [z4)t = V and the weak*—closure of U N [z,]* in X*
coincides with [z,,]*. This result, suggested by some problems in
the quasi-reflexivity of Banach spaces, allows us to obtain some
new results, as well as some already known ones, about this prop-
erty. We also give here some results concerning Schauder basis in
quotients of Banach spaces.

The linear spaces we shall be using in this paper are supposed to
be defined over the field K of real or complex numbers. If K is real,
then H is the field of rational numbers and, if K is complex, then H
is the field formed by all numbers of the form a + & with a and b
rationals. The set of positive integers will be denoted by IN. Unless
otherwise stated, all Banach spaces considered here will be assumed to
have infinite dimension. If X is a Banach space, || - || will be its norm,
X* is the Banach space conjugate of X, X** is the conjugate of X* and
X*** the conjugate of X**. We identify X, in the usual way, with a

subspace of X**. B(X) is the closed unit ball of X and 13(X ) is the
interior of B(X), i.e., the open unit ball of X. If r € X and u € X*,
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we write (z,u) instead of u(z). If (z,) is a sequence in X, by [z,] we
mean its closed linear span. Similarly, if (z;my,) is a double sequence in
X, then [zmp] is its closed linear span. If (z,) is a basic sequence, then
we put z;,, n € IN, for the linear functionals in [r,]* associated to the
Schauder basis (zp) of [z,]. If there is an integer k greater or equal to
zero such that [z}] has codimension k in [z,]*, then the basic sequence
(zn) is said to be k-shrinking; in particular, when k = 0, (zy,) is said to
be shrinking. If the basic sequence (zy) has the property that for any
given sequence (ay) in K such that

n

sup{|| Y _ajz; [l : n€ N} < oo,
=1

the series ) 72, ajz; is convergent, then (z,) is said to be boundedly
complete. If the double sequence (zmn) of X admits an ordering such
that it is a basic sequence, then z},,, m,n € IN, are the linear functionals
of [zmn]* associated to such a sequence. If Y and Z are closed subspaces,
of finite or infinite dimension, of the Banach space X, Y is said to be
an orthogonal complement of Zin Z+Y if ZNY ={0} andin Z+Y
the projection onto Z along Y is continuous and has norm one.

For a given Banach space X, the weak* topology in X* or also
o(X* X), is the topology of the pointwise convergence over X. If Y
is a subspace of X*, o(X,Y) is the topology on X of the pointwise
convergence over Y; in particular, if Y = X*, o(X,X*) is the weak
topology in X. If A is a subset of X, linA denotes the linear span of
A, A is the closure of A in X** for the weak* topology and 4} is the
subspace of X* orthogonal to A. If B is a subset of X*, then B will be
its o(X*, X )-closure and B its orthogonal subspace in X.

A Banach space X is said to be quasi-reflexive if it is of finite-
codimension in X**. In this case, if k¥ is its codimension, X is said
to be quasi-reflexive of order k. In particular, when k = 0, X is a
reflexive space.

If Z is a closed subspace of the Banach space X, the dimension of
Z being either finite or infinite, we identify in the usual manner Z*
with £*/Z~L. Similarly, (X/Z)* identifies with Z1. Let V be a closed
subspace of X*. We put, for each z of Z,

| z |:= sup{] (z,u) | : uw€ B(V)}.
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We say that V is 1-norming (norming) with respect to Z if || - || = | - |
in Z (| - | is an equivalent norm to || - || in Z). If Z = X, we shall simply
say that V is a 1-norming (norming) subspace of X*.

Let (z,,) be a basic sequence in the Banach space X. We say that (z,,)
has Property P, or that it is of the type P, if inf{|| zn || : n€ N} > 0
and sup{|| 3-7_,2; | : » € N} < oo. Then, (3]}, z;) is also a basic
sequence in X. On the other hand, (z,) is said to have Property P*, or
that it is of the type P*, if

sup{[| zn [ : n € N} < o0
and the sequence (vn) such that
V] = T, V2= T] — XY, ey Up i= Tp—] — Lpy oee

is a Schauder basis in [z,] = [vn]. For example, the natural basis of ¢
is of the type P, but it is not of the type P*. On the other hand, the
natural basis of I! is of the type P* but not of the type P.

Properties P and P* were introduced by Singer in [15]. The following
result, to be found in [15] (see also [16, p. 311]), will be needed after-
wards: a) A basic sequence (zy) in the Banach space X has property
P if and only if (z},) has property P*.

For the next lemma we assume that X is a Banach space and that
U is a finite-dimensional subspace of X. Let B be a bounded absolutely
convex subset of X * such that

|z |l = sup{| (z,u)|: ve B}, ze€U. 1)

We consider a weak* dense subset S of B.

Lemma 1. Given ¢ > 0, there is a finite subset A of S such that, if u
belongs to B(X*), then there is v in A such that

sup{| (z,u —v) |: z € B(U)} <e. (2)

Proof. Let ¢ be the canonical mapping from X* onto X*/U+. We
know after (1) that the closure M of ¢(B) in X*/U* coincides with the
closed unit ball of this space. For each w in M, let P, be the open ball
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in X*/UL centered at w with radius %e. Since M is compact, there is
' a finite set {w1,ws,...,wp} in M such that M is contained in Ug___lej.
Now, since (S) is dense in M, we may find, for each integer j, 1 < j <p,
a vector y; in S such that ¢(y;) is in Pw;. Weset A:={y;:1<j <p}.
Now, let u be a vector in B(X*). We have that ¢(u) is in M and thus
it is in Py, for some s, 1 < s < p. We write v := y5. Then

le@) —e@) | <o) —ws || + fws—e(v) ]l < €

and hence we have that (2) is satisfied. n

In the next lemma, we obtain and extend some results of [1], [14],
[10] and [17].

Lemma 2. Let (zmn) be a double sequence in the Banach space X such
that
inf{| zmn ||: n€ N} >0, m €.

Let (un) be a sequence in X * with [ugq] 1-norming with respect to [z mn).
If
ligl(:z:mn,uj) =0, m,jEN,

then there is a subsequence (Ymn)o>; of (Tmn)ar1, m € IN, such that
Y11, Y12, Y215 ---s Y1ns Y2(n—1)s ---» Y(n—-1)2: Ynl, ---

is a basic sequence in X which is a subsequence of
T11, £12, X215 s T1ns T2(n—1)s +s T(n—1)2> Tnly -

such that, if ¢ is the canonical mapping from X* onto X* /lymn)t, we
have that

e(B(fual) = @(B(luzal)) = Bl{umal)-

Proof. We may assume, with no loss of generality, that || Zmn ||= 1,
m,n € IN. Let

F:= lin{fugn : n€ N} and G:= lin{up : n € N}.
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We consider in GN B(X*) a countable dense subset {vpmp, : m,n € IV}
such that {vpon) : m,n € IN} be dense in F N B(X*). Clearly,

li71ln(zmn,qu) =0, m,p,q€ . 3)

We endow the set of all pairs mn with an order relation <* so that
pg <* mn whenever p+g<m+n,or,p+g=m+n and p < m. We
take 0 < emp < 1 so that 3, emn < 00. We define now y;; = z13,
p(1,1) := 11. Proceeding by recurrence, we suppose that, for a given
subindex pq, we have obtained from {zmyn : m,n € IN} the vectors ymn,
mn <* pq such that ypg = zy(pq). We then write

Ypq == lin{ymn : mn <* pg}

with the norm induced by that of X. Applying Lemma 1 we obtain a
finite subset Apg of {vyn(on) : m,n € IN} containing {vm(2n) : mn <* pq},
so that, given any element u of B(X*), there is an element v in Apq such
that if z belongs to B(Yp,) then

[(zu=v) | < 7 e (4)

We define
Bpg = ApqU {vmn : mn <* pg}.

Let rs be the successor of pg. We put pogo for the greatest pair m(2n)
for which vy(9q) is in Apg. It follows from (3) that there is a positive
integer ng such that pogo <* rno, p(p, g) <* rng and

1
| (Zrn, w) | < g 0 M >no, w € U Bgt. (5)
st<*pq

We now define yrs := g, p(r,s) := rng. Next we see a property of
the vector yrs. Take z in Ypq with || z [|= 1. We find a vector u in X*
such that

ful=1 (zu)=1

We determine a vector v in Ay, satisfying (4). Then

1
[ {(z,v) | 2| (z,u) | — | (z,v—u)]| 2> 1-25”
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Let X be an arbitrary element of K. If | X |> 2, then

' "Z'i—f\yr.sHZI’\l . "yrs" - "Z"> 1

and, if | X |< 2, then, having (5) in mind, it follows that

Iz Aurs | 2 1 (24 Aprssv) | 2 1 (20} | = [ ]~ ] (s v) |

1 1 1 €2,

_>_1~2€m-2'§€m=1—§€m=1—5‘m+'2;;q'
ef,q _ 1

> 1 - = :
= Pt e 1%6m

Thus, for every z in Ypq with || 2 |= 1 and every X in K, we have

1 < (I+epg)llzt+ymsll- (6)

Let’s take now an arbitrary element y of Ypq and o € K. If y # 0, we
apply (6) for z := m’f" and \ ;= ﬂ%ﬂ’ and so we obtain

y o
1 < (1+epg) | m + myrs I -
Hence

lyll < (I+epg) ly+ovrs |, vE€Yp a€kK. (7)

" Clearly, (ymn : <*) is a subsequence of (zymn : <*). We see next that
(ymn : <*) is a basic sequence in X. We take two arbitrary subindices
pq and rs so that pg <* rs. Let hk be the subindex immediately prior
to rs. We take '

{aij €K : ij <* rs}. (8)
Repeatedly making use of (7), it follows that

I {asvi : i3 <* pa} | S (Itepg)..(+enk) | D _{aiwss : i3 <* rs} |

and therefore (ymn : <*) is a basic sequence in X whose basic constant b
is less or equal than [],, ,(1+&mn). Besides, if we put Ppy to denote the
linear projections defined in [ymn] and associated to the basis (ymn : <*),
we have that

Bm{|| Pmn |: <*} = 1.
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Let ¢ stand for the canonical mapping from X* onto X*/[yma]t. We
fix the subindex pg. In [ymn]® = X*/lymnlt, ©(vpg) is the sum of the
series

> {{ymn, ©(vpq)) Ypmn : <*} 9)

for the weak* topology. For each subindex mn, let min; be its successor.
After (5) we obtain

| {yminp,w) | < €mn, w € Bma,

and therefore

Z I (Yminys ‘P('qu))y:nlm = Z Il (ym1n17"m)y:nln1 I

miny *2pg miny *2pg

< Z | (ymlnpqu) | : " y:nlnl " < 2b Z | (ymlnn”pq) l

miny *2pq miny *>pq

< 2b) emn < 00,
mmn

hence we deduce that the series (9) is absolutely convergent in the Ba-
nach space [y},,] and thus ¢(vpg) belongs to [yy,], whence we conclude
that ¢([un]) is contained in [y},,]. We take now a vector y* in [y,
with || #* ||= 1. Given € > 0, we find a positive integer ¢ such that

€ b . 1
"qu"< 1+6(1+€), 4Z{€mn-lq< mn’} < 351

€ * * % 1
e ~P - e
€1g < 6(1 +€) “ Yy 1qY " < 3 €
We apply Hahn-Banach's theorem to obtain an element w of X* that
coincides with P y* on [ymn] and

£

=Pty | <IPL=]P 1+ —.
Lol =1 Ply” I <N Pig | = | Prgll < 1+ g5

Then

I+ ) lw <1

6(1+¢)

337
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and thus we know, after (4), that there is v in A;q such that, if y belongs
to B(Y14), then we have

[ U+ ) e = 9 < e

and, consequently,

[ €

I (va'—v) lS’ <y’w_(1+6(1 +€) )—1w> I + I <y,(1+6(1 +€) )—lw—v) I
S U=t g el + e
3 3 €

<

6(11e) T6(1te) 30 +e)

Then, if we take z in B([ymn|) and having in mind that || Pyq || 7! Piqz €
B(Y1q), it follows that

| (2, Pig(@(v) — %)) |=I (2, Plg(w(v) — Pigy®)) | = | (P1gz, (v) — Pigy*) |

< N Pigl- 14l Pig ™" Prgz,v —w) |
S U grga) VP IT Prgzyo —w) |
< Urgag)saee < %
and thus 7
I Prgle(v) = o) I| = sup{] {2, Pig(e(v) —¥")) | : 2 € B(lymnl)} < g

On the other hand, if I denotes the identity map in [ymn], we have that,
for z in B(lymn]) and after (5), :

| (2, (I* = Pi)e(@)) | = | (2, ) _{{ymn, @(v))¥mn : lg <* mn}) |

‘ 1
< 320 mnrv) |- v 2 19 <" mn} < 226 3 {emn : 1g <" mn},

and hence

I (I* = Pig)e(v) | = sup{| (z,(I" = Plg)e(v)) | : 2 € B(lymnl)} <

Wi m
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Then
le@) —v* I < Ne)=Pigy" Il + || Pigg* — " |
< Piy(e(v) = v*) + (I* = Pl)e() | + || Pigy* —4* |
S Pie@) =) Il + I =PRe@) | + | Pigy*—y* < &
whence we deduce that
@(B([uzn])) = @(B([un])) = B(lymnl)-

Finally, we make use of the open mapping theorem to obtain that

@ : [uzn] — [ymal and @ : [un] — [yl

are topological homomorphisms and

#(B ([uzal)) = (B [unl) = B (twhm))
]

Proposition 1. Let X be a Banach space. Let Y be a separable
norming closed subspace of X*. Let (xmn) be a double sequence in X
such that, for every m in IN, (xmn)32, has a weak*-cluster point z, in
X*. If .

inf{l| tmn||: n€ N} >0, meN,

and
inf{| tmn—2m ||: n€ N} >0, me N,

(notice that the second condition is satisfied automatically when xm, €
X**\X ) then the following properties are satisfied:

1. There is a subsequence (ymn)32; of (Tmn)owi, m € IN, such that
Y11 — T1, Y12 — T1,Y21 — T2, ", Yin — T, Y2(n-1) — %2, 1 Y(n-1)2 ~ Tn-1,""",

Ynl — Zn, -

is a basic sequence in X** which is also a subsequence of
T11 — 21,212 — L1, 221 — X2, , Tin — T1, T2(n-1) —~ L2, ", T(n-1)2 —Tn-1,""",

ZTnl —Tn,y """
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2. If the subspace of X* orthogonal to [z,] contains Y, then (ymn)
may be chosen in such a way that

Y11, Y12, ¥21, ---» Yin, y2(n——]_)7 eeey y(n——l)2’ s Ynl, ---
be a basic sequence in X and, if p is the canonical mapping from

X* onto X*/[ymn]t, then o(Y) = [ymnl*.

Proof. We may assume, conveniently renorming X if necessary, that Y’
is 1-norming. In X**, let Z be the closed linear span of {zmp : m,n €
N}U{z;, : m € IN}. We take a countable dense subset {2, : n € N}
in Z. For each pair of positive integers m, n, we find an element um,y, in
X* such that

1
Humn ll =1, | (zn,umn) | > | 2n |l T

Clearly, [umn] is a 1-norming subspace of X*** with respect to Z. Let
{vp} be a countable dense subset of Y. For each positive integer m, we
find a subsequence (zmn)92; of (Zmn)ne; such that

and A
21152125 2215 «-+y Z1ny z2(n—1)1 weey Z(n_1)2, Znly .-

is a subsequence of

T11,Z12y T21y +++y Tlny T2(n—1)s -=+» T(n—1)2» Tnly ---

We now apply Lemma 2 to obtain a subsequence (ymn)nz; of (zmn)ae1,
m € IN, such that

Y11—T1,Y12— 21, Y21 — %2, " * ", Y1n—7Z1, y2(n—1)_1’2s 0y y(n—1)2"xn—1, cT Ty

Ynl — Tn, "

be a basic sequence of X** such that it is a subsequence of
211—%1,212— 1,221 T2, """, Z1n— 1, z2(n—1)’—x21 ) z(n—1)2"93n—1, M

Znl — Tn, -
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It is clear that limp (ymn — Tm, u) = 0, m € IN and u € {vp}, thus, if the
subspace of X* orthogonal to [z,,] contains Y, it follows that

H;Iln(ymm u) =0, meN, ue€ {vp},

and since Y = [up)] is separable and 1-norming, we may choose (Ymn)m=1,
m € IN, after Lemma 2, so that '

Y11, Y12, Y21, --->, Yin, y2(n-—1)) ceey y(n—1)2v Ynl, ---

is a basic sequence in X such that, if ¢ is the canonical mapping from
X* onto X*/[ymn]*, then ¢(Y) coincides with [yX,.]. [ |

Theorem 1. Let X be a Banach space with X* separable. Let Y be a
norming closed subspace of X*. Then there is a basic sequence (zn) in
X such that X*/Y is isometric to [za]*/[2}].

Proof. Since B(X**) is compact and metrizable for the weak* topology,
we find in B(X**) N Y~ a countable subset {z1,z2,...,Zm,...} that is
weak* dense. For each positive integer m, we choose a sequence (Zmn) e
in X that o(X**, X*)-converges to z, in such a way that

1

inf{ll zmn |: n€ N} >0, inf{||tmn—2m|: n€N}>0, m € N.

This selection is guaranteed by the fact that weak*-neighborhoods are
always infinite-dimensional and also that the closed ball centered at zero
with radius || s || /2 is weak*-closed in X**. We then apply the former
proposition to obtain a subsequence(ymn)arq of (Zmn)ori, m € IV, such
that

Y11, Y12, Y21, -+ Y1n, Y2(n—1)s «--» Y(n—1)2: Ynl, ---

be a basic sequence in X so that, if ¢ denotes the canonical mapping
from X* onto X*/[ymn] ™, then @(Y) = [yfn,]- We write such a sequence
as (2y). It then follows that [z,)' is contained in Y, from where we
easily deduce that X*/Y is isometric to [zp]*/[2]- [

Proposition 2. Let X be a Banach space. Let V be a I-norming
closed subspace of X*. If W is a separable norming subspace of X* with
W NV = {0}, then there is a closed separable subspace Y of X such that
in Y* there are a I-norming closed subspace V; and a norming subspace
Wy with Vi N W1 = {0} and W is isometric to W.
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Proof. Let r be a positive integer. For every z in X, we choose an
element u(z,r) in V such that

luer) =1 e uG ) |> ol .

We take in X a countable subset Ag and in W a countable dense subset
Bo. We proceed by recurrence and suppose that, for a non-negative
integer n, we have obtained countable subsets A, and By, in X and X*,
respectively. Let C,, and D, denote the linear spans over H of A, and
By, respectively. We define

Apt1 = CpU {z(u,7) : u € Dy,r € N},

Bpi+1:= DpU {u(z,r) : £ €Ch, r€ N}.

We put Y and F to denote the closures in X and X* of U2 A, and
U oBn, respectively. Clearly, we have that Y and F are Banach spaces.
Given u € F, v € Y1 and € > 0, we find two positive integers n, r and
w in By, such that L < ¢ and || u —w [|< . Then

1
.

lulf<le—wl + lwl< e+ |(z(wr)w)]| +

<2+ | (z(w,r)w+v) [ < 26 + | (x(w,r),w —u) |
+ | {z(w,r),u+v)|
<2+ lw-ull + lutv] <3+ utol,

and thus
full <llutolf,

from where we deduce that Y* is an orthogonal complement of F in
F+Y<.. We then have that W is contained in F and if v is the canonical
mapping from X* onto X*/YL, v : F — X*/Y+ = Y* is an into
isometry. We put Wy := (W) and V; := ¢(F NV). It clearly now
follows that W is isometric to W and V3 N W1 = {0}. On the other
hand, given xz in Y and € > 0, we find m,r € IN and 2z in A, so that
| z—zl<e % <e Then,

¥(u(z,r) €V, || ¥(u(zr) || =1
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and
|, ¥(u(z,m)) | = | {z,ulz,7)) | 2 | {zu(zr)) | — | {2 —2,u(z7)) |

1 1
2z - == l=z—zl2l=ll - = 2lz-zl 20zl -3
therefore we deduce that V; is 1-norming. B

In order to prove Lemma 3 we shall need the following result of

Kadec and Klee’s, [11] and [12] (see also [2]): b) Let X be a separable
Banach space and let Y be a separable closed subspace of X*. Then
there is an equivalent norm || - || in X such that, if (z},) is an arbitrary
sequence in X* that converges to an element z* of Y respect to the
weak* topology and such that (J| = ||) converges to || =* |||, then the
sequence (|| =}, — =* |||) converges to zero.
Lemma 3. Let X be a separable Banach space. Let Y be a closed
separable subspace of X*. Let (umn) be a double sequence in X* such
that, for each m in IN, the sequence (umn)ae; converges to the origin
for the weak* topology and

inf{ll tmnfl: n€eN} > 0.

If (umn) is in Y, then there is a subsequence (vmn)e; Of (¥mn)ory,
m € IN, satisfying the following conditions:

1.
V11, V12, V21, ---y Uln, V2(n—1) --» Y(n-1)2» Unly --- (10)

is a w*-basic sequence in X* which is a subsequence of
U11, U312, U21, ---y Uln, u2(n—»l)1 (223} u(n—1)2y Uni, ---

so that if (wy)is an arbitrary subsequence of (10), then [wy] is
o(X*, X)-closedinY.

2. [vmn] is a 1-norming subspace of (X/[vmn]1)* = [vmn]i

Proof. We apply b) to obtain an equivalent norm || - f| in X
with the property there mentioned. We write Z := (X, || - [|). Let
{z1,72,--.,Zn, ...} be a dense subset of Z. Then

H’Ell(xj,umn) =0, m,neN,
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and since Z is a 1-norming subspace of Z**, we apply Lemma 2 replacing
X by Z*, X* by Z**, ugn—1 by zp,, uon by z, n € IN, and umn by zmn,
and thus we obtain a subsequence (wmn)32; of (umn)32;, m € IN, such
that

w11, w12, W2, .-, Win, w2(n—-1)’ eeey w(n—1)27 Wnl, --- (11)

is a basic sequence in X* which is a subsequence of
U11, U312, Y21, ...y Uin, u2(n—1)v eeey u(n—1)2v Unly -

so that, if ¢ is the canonical mapping from Z** onto Z**/[wmn]*, then

o( E(Z )) = g([w,*nn]) Let % denote the canonical mapping from Z onto
Z/|wmn)1. Given an element z in Z/[wmy) 1, we find z; in Z such that
¥(z1) = z and write ®(z) := ¢(21). Then, ® is a one-to-one linear map
from Z/[wmn]1 onto [w},,]. For a given € > 0, we may choose the above
mentioned z; in such a way that || 21 ||<J] 2 ]| + ¢ and hence

20 lI=ll () i<l 2 ll <Nz Ml + =

and, consequently, [| ® || < 1. On the other hand, given y in [w},,] and

e > 0, we deduce from <p(§(Z)) = §([w,‘,m]) that there is a y; in Z such
that

o) =v, Hull<liyll +e

and so

He '@ l=Ne@)N<Uul<Boll +e
and, consequently, [| 7! ||< 1. Hence we have shown that
®: Z/[wmn]L — [wimnl
is an isometry. If we now write zmp == ®~}(w},,), it follows that
2115 %125 221y «+-3 R1n, 22(‘?!—1)’ ceny Z(n_l)z, Znly --s

is a Schauder basis in Z/[wmp] 1 whose associated linear functionals are
(11). Consequently, (11) is a w*-basic sequence in X*. Given now z in
Z/[wmn] L, we find z; in Z such that ¥(z1) = 2. Then, if w belongs to
[wmn], we have that

| {(z:w) | = | {z1,w) | = | {e(z1), w) | = | (®(2), w) |,
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whence we conclude that
2]l =1l @) | = sup{| (2(2),w) | : w € B(lwmnl)}

= sup{| (z,w) | : w € B([wmn|)}

and hence, [wyy] is a 1-norming subspace of (Z/[wmn) 1)* = [wma]~ We
take now an element v in Y N [wmy]5 [| v [|[= 1. We may find a sequence
(vn) in [wmpl, Il va [I= 1, n € IN, such that it converges to v for the
weak* topology. Then, after result b), (v,) converges to v in norm, from
where we have that v is in [wmy] and thus this space is o(X*, X')-closed
inY.

Let (wn) be a subsequence of (11). We write the sequence (11) in
the form (yn) and the subsequence (wn) as (yn;). Let w be an element
of [wy] NY. Then for the weak* topology,

o0
w =Y ayn,,
Jj=1

which also allows us to write, again with respect to the weak* topology,

0
w = Z bny‘n’
n=1

with b, = 0 for those n different from the n;. We then have that w is an
element of [wy,)] NY and, after what has already been shown, w € [wpy),
from where we deduce that w = } 72, ajyn; € [wp), and so we conclude
that [wy] is 0(X*, X)-closed in Y. ' [

Theorem 2. Let X be a separable Banach space. Let V be a norming
closed subspace of X*. Let(zmn) be a double sequence in X such that,
for eachm € IN,

Hfgl(zmn,v) =0, veV, inf{|l zmn|: n€e N} > 0.
Then, there is a subsequence (Ymn)2; of (Tmn)S>;, m € IN, such that

Y11, Y12, Y21, ---> Y1n, y2(n—1)1 evey y(‘n—l)2’ Ynl, --- (12)

is a basic sequence in X which is a subsequence of

Z11,T12, X215 ---» T1n, 3:2(71,—-1)1 eesy x(n—1)21 Znl, ---



346 Manuel Valdivia

so that, if (zy) is an arbitrary subsequence of (13), then [zp] is o(X,V)-
closed in X.

Proof. Clearly, we may assume that V is separable. If ¢ is the canonical
mapping from X ** onto X **/V <, then we have, since V is norming, that
¢(X) is a subspace of V* = X**/V < isomorphic to X. Thus ¢(X) is a
separable closed subspace of V* and (¢(zmn)) is a double sequence in
¢(X) such that, for each m of IV, (¢(zmn))o>; converges to the origin
for the weak* topology and

inf{l| ¢(xmn) | : n€ N} > 0.

We apply Lemma 3 and obtain a subsequence (ymn)32; of (zmn);,
m € IN, such that

‘P(yll)’ <p(y12), <p(y21), eer ‘p(yln)a ‘p(yZ(n—l))v ey ‘p(y(n—1)2)7 So(ynl): (3)
1

is a w*-basic sequence in V* which is a subsequence of

Sa(xll)’ ‘P($12), Sa(le): ey ‘P(l’ln)y 30(1"2(",—1))’ ey ‘P(I(n—l)2)7 (p(.'l‘nl), ..

so that, if (wy) is an arbitrary subsequence of (13), then [wy] is o (V*,V)-
closed in @(X). It is now immediate that

Y11, Y12, Y215 ---» Y1n, y2(n—-1)’ weey y(n—1)2’ Ynl, ---

satisfying the statement of the theorem. [ |

Theorem 3. Let X be a separable Banach space. Let U C V separable -
norming closed subspaces of X*. Let Z be a normed separable subspace
of X* such that ZNV = {0}. Then there is a double sequence (zmn) in
X such that

Z11,%12,Z215---3 T1n, 3:2(1).—1), seey z(n—l)‘z: Inly--- (14)

is a basic sequence in X and if (zmn)3%, is an arbitrary subsequence of
“ (Tmn)oZy, m € IN, then there is a subsequence (ymn)oe; of (zmn)3i,
m € IN, such that

Y11, Y12, Y215 ---> Y1n, y2(n—1)7 (IR} y('n— 1)2, Yni, ---
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is a subsequence of (14) and if ¢ is the canonical mapping from X* onto
X*/[ymn)t, we have that

(U n [ymn]l)~= [ymn]l: ‘P(U) = SO(V) = [y:nn]’
VCU+[ym*s (V + [yma]t) 0 Z = {0}.

Proof. We may assume, by conveniently renorming X if necessary,
that U is 1-norming. Let S(X**) = {z** € X** ;|| z** ||= 1}. Since
Z NV = {0} and Z being separable, we may find in VX N S(X**) a
sequence (tn) so that {tm : m € IN} separates the elements of Z. Now,
since V and Z are separable, we may find in X a sequence (Smn)3,
converging to t,, in every point of V + Z and such that, for each m,

inf{|| smn||: n€N} > 0.

We apply Theorem 2 to obtain a subsequence (zmn)ie; of (Smn)ari,
m € IN, so that

T11, %12, £213 «-+s T1n; T2(n—1)s ---» L(n—1)2» Tnly --- (15)

be a basic sequence in X and if (z,,) is an arbitrary subsequence of (15),
[zn) is o(X, U)-closed in X. We take an arbitrary subsequence (zmn)ax;
of (Zmn);, m € IN. From (z2mn)32; we extract a subsequence, which
we shall still denote by (zmn)oe;, such that

211 %125 2215 --+5 Z1ny 22(n—1)s +--» ¥(n—1)2 Znl, --- (16)

is a subsequence of (15). Now, since U is 1-norming, limu(zmn,v) = 0,
m € N, v € V, and inf{|| zmn [|: n € IN} > 0, we obtain, applying
Lemma 2, a subsequence (ymn)3%; of (2mn)aey, m € IV, such that

Y11, Y12, Y21, --s Yin, y2(‘n——1)’ eeey y(n— 1)2: Ynls -

is a subsequence of (16) and if ¢ is the canonical mapping from X* onto
X*/[ymn]*, then

P(B(U)) = ¢(B(V)) = B({yn))- 17)

Now, since [ymn] is (X, U)-closed in X, one has that, after the bipolar‘
theorem,

(un [ymn]L)A': (UL + ([ymn]J_)J.)l = [ymn]L'
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We deduce from (17) that o(U) = ¢(V) = [y},,). If v is an arbitrary
element of V we may find u in U such that ¢(u) = ¢(v). Then, v €
% + [ymn)t and, therefore

V CU + [yma]*.

Finally, if there is an element w in Z, different from the origin, then
there is a positive integer m such that (¢tm,v) # 0. Let v be any element
in V. Then

0 (tmyw) = (tmw =) = lim(ymn,w ),
and hence w — v is not in [yy,p]*. Consequently,
(V + [ymnl*) N Z = {0}.

a2

Corollary 1. Let X be a Banach space with X* separable. Let U C V
be two norming closed subspaces ‘of X*. Then there is a basic sequence
(zn) in X such that

(U N [zn]t) = [xa]t and U + [zp)t = V.

Proof. We can take a separable normed subspace Z of X* such that
zZNnV = {0} and Z + V = X*. We apply the former theorem and so
obtain a double sequence (ymy) in X with the properties there stated.
We write the sequence

Y11, Y12, Y215 - Y1ns Y2(n—1)s -+ Y(n—1)2s Ynl, ---
in the form (z). It is then immediate that
(UN[zn]t) = [zn]t and U+ [zp)t = V.
]

Corollary 2. Let X be a Banach space with X** separable. LetY be a
closed subspace of X** with X C Y. Then there is a w*-basic sequence
(zp) in X* such that

(lzn] )™= [""n]l, X+ [T'n]‘L =Y,
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and |[zy], has infinite dimension.

Proof. We take a normed separable subspace Z in X** such that
ZNY = {0} and Z +Y = X**. We apply Theorem 3 switching X
by X* U by X and V by Y and obtain a double sequence (zmn) in
X* with the properties there stated. Then, by applying Lemma 3 to
the double sequence (zyy) in the separable space X* we obtain a sub-
sequence (zmn)oe; Of (Tmn)oe1, m € IN, in such a way that

211, 212, 2215 -+ Z1ns 22(n—1)s **+1 (n—1)2; 2nl, -

be a w*-basic subsequence of z1,212,721,...,. It is now evident that
211, 2125 221, -1 Z1ns 22(n—1)» -+» Z(n—1)2» 2nl, --- MY be chosen so that [2mn] 1
has infinite dimension, by considering, if necessary, convenient subse-
quences of (zmn)ow;, m € IN.

Now, Theorem 3 guarantees that there is a subsequence (ymn)ne; of
(zmn)5>1, m € IN, such that

Y11, Y12, Y21, ---; Y1n, y2(n—1)7 weey y(n-—l)27 Yni, ---

is a subsequence of 211, 212, 221, ---» Z1n, 22(n—1) --» Z(n—1)2s ?ni, --- and sat-
isfies the properties stated in Theorem 3 and also those of Corollary 1,
replacing X and X* by X* and X**, and U and V by X and Y. Hence,

(xXn [ymn]-L)~ = [ymn]l, X+ [ymn]‘L =Y.

If we now write the sequence y11, ¥12, Y21, - ¥1ns Y2(n—1)s ---» Y(n—1)2: Yn1, ---
in the form (z,)32,, we have a w*-basic sequence which satisfies

(2] 1) ™= (X N[za]") "= [onl", X +lan]t =Y.

Finally, from [2p)) C [zp], it follows that {z,]; has infinite dimension,
which concludes the proof. ]

If in the previous corollary we take Y = X, it follows that [z,];
is a subspace of X which is reflexive and of infinite dimension. Conse-
quently, X and X* are somewhat reflexive, [10]. On the other hand, let
us suppose that k is a positive integer less or equal than the dimension
of X**/X. We may take Y so that Y/X has dimension k and thus [z,]
is quasi-reflexive of order k; if we take Y in such a way that X**/Y
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has dimension k, then X/[xy], is quasi-reflexive of order k. As a conse-
quence, we have that in X and X* there are quasi-reflexive subspaces of
order k, [18]. Corollary 2 also implies that quasi-reflexive subspaces of
order k are "twisted sums” of quasi-reflexive spaces of order 1. Actually,
it is an open question to know if there exists a quasi-reflexive space of
order 2 which is not a direct sum of two quasi-reflexive spaces of order
1.

Corollary 3. Let X be a Banach space, clearly non quasi-reflexive,
such that X* has a norming closed subspace U of infinite codimension.
Then there is a basic sequence (z,) in X such that it has the following
properties:

1. X/[zyp] is not quasi-reflexive.

2. [zyn] is not k-shrinking for every non-negative integer k.

Proof. We may assume, after Proposition 2, that both X and U are
separable. It is immediate that we may find in X* a separable closed
subspace V containing U and a separable normed subspace Z such that
the dimensions of V/U and Z be infinite and ZNV = {0}. We apply now
Theorem 3 and obtain a double sequence (ymy) in X with the properties
there stated. We write the sequence

Y11, Y12, Y21y ---» Y1n, y2(n—1)7 “eey y(n—l)21 Ynl, ---
in the form (z,). From
(U N [zn]t) "= [za]* = (X/[za])* and V C U + [zq]",

we deduce that (X/[zn])* has a weak*-dense subspace UN[zy]* of infinite
codimension and, hence, X/[z,] is not quasi-reflexive. From

(V + [zal ") N Z = {0},

we obtain, if ¢ is the canonical mapping from X* onto X*/[xn]t, that
¢|z is one-to-one and, since p(U) = (V) = [z;], it follows that ¢(Z) N
[z2] = {0} and the conclusion follows.
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Corollary 4. Let X be a Banach space with X* separable. If X is not
quasi-reflexive, then there is a boundedly complete w*-basic sequence
(zn) in X* with the following properties:

1. ([zn)L) = [zn]t and [x4)]) is not quasi-reflexive.

2. X/[zn]L is not quasi-reflexive.

Proof. It is clear that we may find in X** a separable closed subspace V,
V C X, and a separable normed subspace Z, such that the dimensions of
V/X and Z be infinite and ZNV = {0}. We apply Theorem 3 replacing
X by X* and U by X, thus obtaining a double sequence (z,ny,) With the
properties there mentioned. Besides, having Lemma 3 in mind, such a
double sequence can be chosen so that

Y11, Y12, Y21, ---s Y1n, y2(n—1)7 ey y(n—1)21 Ynl, ---

be w*-basic and boundedly complete. Then, if we write

Y11, Y12, Y21, ---y Y1n, y2(‘n—1)7 eeey y(n——l)27 Ynl, ---

in the form (z,), we have that (z,) is a boundedly complete w*-basic
sequence of X * satisfying properties 1 and 2.

The following results are proved in [3]: ¢} Let X be a Banach space.
If X* contains a norming closed subspace of infinite codimension, then X
has a basic sequence that is not k-shrinking for any non-negative integer
k. d) If X is a non-quasi-reflexive Banach space, then X contains a
closed subspace Y such thatY and X/Y are not quasi-reflexive. Notice
that result ¢) may be obtained from Corollary 3. On the other hand,
result d) is an easy consequence of Corollaries 3 and 4.

If in Lemma 3 we take umn = un, m,n € IN, we may obtain the
following result which is a refinement of a theorem of [10]. e) Let X
be a separable Banach space. In X*, let (u,) be a sequence that weak*-
converges to the origin such that

inf{llunll: n€eN} >0.
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Then there is a boundedly complete w*-basic subsequence (un;) of (uy)
such that [upn;] is 1-norming with respect to X/[un;] 1. From the same
lemma we may also obiain the following result of [10): f) Let X be a
Banach space with X* separable. In X*, let (un) be a sequence that
weak*-converges to the origiz so that

inf{llun||: n€ N} >0.

Then there is a boundedly complete w*-basic subsequence (un;) of (un).
The following theorem can also be found in [10]: g) Let X be a separable
Banach space such that there is in X* a closed subspace Y isomorphic to
a subspace of a separable conjugate space. Then X has a quotient with a
shrinking basis; moreover, this basis may be chosen with its biorthogonal
functionals lying in Y, hence Y has a weak*-closed subspace with a
boundedely complete basis.

In the coming proposition we obtain a result which unifies both re-
sults f) and g).

Proposition 3. Let X be a separable Banach space. Let (un) be
a sequence in X* which weak*-converges to the origin and such that
inf{l| un | : » € N} > 0. If [uy] is isomorphic to a subspace of a
separable conjugate space, then there is a w*-basic subsequence (un;) of
(uyn) that is boundedly complete.

Proof. Let Y a Banach space with separable dual Y * such that there is
an isomorphism v from [uy) into Y'*. Since both X and Y are separable,
we may assume that (up) is w*-basic and that (1 (un)) is weak*-Cauchy
in Y*. Let vg be the weak*-limit of (3 (uy)) in Y*. Let us suppose that
vo is distinct from the origin and contained in [ (us)]. Since (¥(ur)) is
a Schauder basis of [/(up)], we have in this space that

vo = zanw(un).
n=1

If r is a positive integer such that a, # 0, then vy does not belong to
the closed linear span of (¥ (un))32, ;- Consequently, we may assume
to have taken (up) so that vg is not in [y (un)).

If vg = 0, we write Z := Y, vp := ¥(up), n = 1,2, ..., and ¢ for the
identity in Y*. If vg # 0, then we write Z to denote the linear subspace
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in Y orthogonal to {vg} and if L := lin{vg}, then ¢ will denote the
canonical mapping from Y* onto Y*/L = Z*; we write in this case
vp = ¢(¥(un)), n = 1,2,.... In any case, whether vy be zero or not,
we have that ® = ¢ o ¥ is an isomorphism from [uy,] into Z* such that
®(upn) = vy, n = 1,2, ... and (v,) converges to the origin in Z* for the
weak* topology.

We take now a subsequence (un;) of (un) such that (vy,) is a bound-
edly complete w*-basic subsequence in Z*. We choose an arbitrary se-
quence (bp) in K such that (3772, bjun,)me-; be bounded in X*. Then

(Z bj‘»(“m))ﬁ:l = (Z ijﬂj );.r(z):l
=1

=1

is bounded in Z* and, consequently, > =1 bjvn, converges in this space.
On the other hand, 2721 bjun; converges in X* and the conclusion fol-
lows.

As a consequence of result g), it is shown in [10] that if X is separable
Banach space and Y is a subspace of X* isomorphic to /1, then X has a
quotient isomorphic to ¢g. In the next proposition we obtain a refinement
of this result.

Proposition 4. Let X be a Banach space and let (us) be a sequence
in X* equivalent to the unit vector basis of l;. If (uy,) is weak*-Cauchy
then X/[uy], is isomorphic to cg.

Proof. Let u be the weak* limit of (uy). If u happens to be the origin
of X*, then we proceed as follows. For each x in X, we define Tz :=
({(z,un)). Then T is a continuous linear mapping from X into cg. We
also have that 7* : I! — X* is weak*-weak* continuous and, for each
(an) of I*, T*((an)) = -2 @nun. If (ay) and (by,) are distinct elements
of 11, it is clear that T7*((an)) # T*((bs)) and so T(X) is dense in cq. It
then follows that T*(l;) = [un] and T*(B(l1)) is a neighborhood of the
origin in [un|, hence there is a positive integer m such that mT*(B(l;))
contains B(X*)NT*(I;). Let {v; : j € J,>} be anet in B(X*)NT*(1;)
that weak*-converges to an element v of X*. Since T*(B(l;)) is weak*
compact, v belongs to mT*(B(l1)) C T*(l1), from where we deduce that
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B(X*)NT*(1;) is weak*-closed in X* and, making use of Krein-Smulian’s
Theorem, (9], T*(l;)) is weak*-closed in X*. We now obtain after [13]
that T is onto and the result follows.

Let us assume now that u is not the origin of X*. Let Y be the
subspace of X orthogonal to {u} and let L be the linear span of {u}.
If « does not belong to [un] and ¢ denctes the canonical mapping from
X* onto Y* = X*/L, it follows that ¢ : [up] — Y* is one-to-one and
¢(un)) is a sequence in Y * which is equivalent to the unit basis of I; and
such that it weak* converges to zero. Hence we have that Y/[p(un)]y is
isomorphic to c¢g. On the other hand,|p(un)]1 = [up]L and Y/[up], is
a closed hyperplane of X/[uy] |, thereby isomorphic to ¢o. Finally, if u
is in [uy), there is (an) € I such that u = Y 22, anu, in X*. Let r be
a positive integer such that a, # 0. We set v; := uj, j = 1,2,...,7r — 1,
vj = ujy1, j = 7,7+ 1,..., . Then, (vy) is equivalent to the unit vector
basis of I! and thus u is not in [vs], and hence, applying what we said
above, X/|vn]1 is isomorphic to cp.

Proposition 5. Let X be a Banach space that contains no copy of I*.
If X* contains a copy of 1!, then X has a quotient which is isomorphic
to cg.

Proof. We know after [8] that X* contains a sequence (uy,), equivalent
to the unit vector basis of I!, which is a Cauchy sequence for the weak*
topology, hence it suffices to make use of the former proposition to reach
the conclusion.

Note. If in Lemma 2 we take Tn = Tn, m,n € IN, and X* is separable
and such that {uj, ug, ..., up, ...} be dense in X*, then the following result
follows, [10}: h) In the Banach space X, let (z,,) be a sequence that
converges weakly to the origin. If X* is separable and inf{|| z, || : n €
IN} > 0, then there is a subsequence (yn) of (zn) such that it is basic
and shrinking. On the other hand, if in Lemma 2 we take zyp = 2q,
m,n € IN, (zp) having a weak*-adherent point ro in X**, zo ¢ X,
X* is separable {uj,us,...,up,...} is a dense subset of the hyperplane
H orthogonal to zg, then we obtain, by renorming X if necessary so
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that [un| be 1-norming, the following result, [20]: i) Let (zn) be a
bounded sequence in the Banach space X such that {z1,z2,...,Zn,...}
is not weakly relatively compact. If X* is separable, then there is a
subsequence yn) of (xy) such that if (2,) is an arbitrary subsequence of
(yn) then (zy) is a 1-shrinking basis of [zy).

The following proposition is an isometric version of a result of {10].

Proposition 6. In the Banach space X, let (u,) be a sequence in
X* converging weakly to the origin such that [un]* is separable and
inf{]| un || : n € N} > 0. Then, there is a subsequence (uy;) of (un),
w*-basic and shrinking, such that [us]* is isometric to X/[un,] ;.

Proof. Since [u,]* is separable, we apply result h) to extract a subse-
quence of (uy), which we shall still keep denoting by (un), that is basic
and shrinking. We take a dense subset {v;,v2, ..., vn, ...} of B({us]). For
each pair of positive integers m and n, let z,,, be an element of X such
that

1
Il zmn i=lvall and | (zmn,vn) [ > Jon |l ——.

We put Y := [zmn]. Then Y is a 1-norming subspace of X* respect to
[un]. We apply Lemma 2 to obtain a subsequence (un,) of (un) so that
if ¢ is the canonical mapping from X** onto [unj]l = [up,] it follows
that . . . .

B([un;]) = B([un,]*) = 0(B(X)) = 0(B(X™*)),

from where we deduce that (un,) is w*-basic and [un,]* is isometric to
X/[un;]1. It is plain that (up;) is shrinking,

The following results can be found in [19): j) Let (xp) be a bounded
sequence in the Banach space X. If {xp, : n € IN} is not weakly rela-
tively compact then there is a subsequence (yn) of (zn) such that every
subsequence (zp) of (yn) is basic and has Property P*. k) If X is a
separable non-reflexive Banach space, then X has a quotient which has
a basis of the type P. _

In what follows we shall obtain properties related with results j) and
k).
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Proposition 7. In a Banach space X, let (zmn)ae, be a bounded se-
quence which has in X** a weak*-adherent point m, m = 1,2, ..., 7, such
that 1,2, ..., s are linearly independent and X N lin{z},z2, ..., 2y} =
{0}. Then, there is a subsequence (ymn)oz; Of (zmn)ae1,m = 1,2,...,7,
so that

Y11, Y215 ---s Yrls -y Ylny Y2ny oy Urny ---

is a basic sequence in X with Property P*.

Proof. If we denote by (zmn)32; the subsequence of (zmn)n; formed
by all those elements with norms greater than % || zm ||, it follows that
(zmn)., has z,, as a weak*-adherent point in X** and

inf{| zmn | : n€N} >0, m=12,..,r

We write Zmn = Trny Tm = Tp, m =7+ 1,7+ 2,..., n € IN. We then
have [zp| = lin{z1,z2,...,zr} and so the subspace of X* orthogonal
to [xn) is norming. We apply Proposition 1 and obtain a subsequence
(vmn)3%; of (Zmn)o21, m € IN such that

Ui} — 1,U12 —Tr1,uU21 — T2, ,Uin — T, u2(n——1) — T2 u(n—1)2 — Tn-—-1,
Unl — Tny -
is a basic sequence in X** and
u11, w12, U21, ---; Uln, u2(n—l)7 veey u(n—1)21 Uni, ...

is a basic sequence in X. If we write ymn = Um(m), m = 1,2,...,7,
n € IN, we have that

Y11 — T1, Y21 — T2, -» Yrl — Try ooy Yln — T1, Y20 — T2y -y Yrn — Ty oo (18)

is a basic sequence in X* and

Y11, Y215 -1 Yrls --s Yin, Y2n - Yrny --- (19)

is a basic sequence in X. Let F the closed linear span of (18) in X**
and let G be the closed linear subspace in X spanned by (19). We take
zin FN X. Then

= Z Z amn('ymn m)-

n=1m=1
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Let T be the linear projection on X + lin{zy,x2,...,z;} over
lin{z1,xy,...,z,} along X. Since T is continuous, it follows that

oo T
z Z a"mT(y"'m - x‘m) = - Z Z AmnTm =
n=1m=1 n=1m=1
T 00
- Z (Z amn)Tm
m=1 n=1
and hence
00
E Amn — 0, n= 1, 2, ey T E Z AmnYmn, (20)
n=1 n=1m=1

from where we have that F N X is contained in G. Suppose now that
our formerly considered vector z has the form Y 7,_; bmymi. Then

Z bmym1 = Z Z amnYmn

n=1m=1
and so
o0
@mn = 0, n=2,3,..., b= ami = Y amn = 0, m=1,2,..,r
n=1

Consequently, if E is the linear span of {ym1 : m = 1,2, ...,r} it follows
that EN F = {0}. For a given integer m < r, we have that y,; € E
and, for n > 1,

Ymn = Ym1 + (ym2 - yml) +-+ (ymn - ym(n—l)) = Ymil

+ (Ym2 — Tm — (yml —zm)) +..
+ (ymn — Tm — (ym(n_l) - IL‘m)) € F + FnX

and hence, G = E + FNX. We now write the sequence (19) in the form
(2n). For each positive integer n, we put p(n) and ¢(n) to denote the
positive integers such that zn = yp(n)q(n)- Given an arbitrary element «
of G, it may be written in a uniqueway asz =y+z2,y € E, z€ FNX.

Then
o oo
= Z cn(2n — xp(n)), Z cn=0
n=1 n=1
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and since 2),2) — 22, ..., zr_1 — 2 is a basis for E, we have that

v = bizy + ba(z1—22) + ... + bp(zp—1 — 2p).

We write n
Kp = Zc,-, n=12,...
j=1
Then '
m m
z = hnlflg CnZpn = h,gl(nz:; '.Cn(zn -~ Znt+1) + Km+12m+1)

and, since (Km+12m+1)3_, converges to the origin, it then follows that

(o o]
z = ZIcn(zn— Zn+1)-
n=1

From here we deduce that

T =y+z=baz+ (bitr)(z1—22) + ... + (brtrr1)(zr-1—27) +

[o o]
Z’Cn(zn - Zn+1)
n=r
and therefore, if we set
V1= 21, Un4li= 2np— 2n+l, N = 1’21 “eey

it is immediate that (vy,) is a Schauder basis in [vs| = [2p], and the result
now follows.

Theorem 5. Let X be a Banach space with X** separable. Let r be
a positive integer. If the dimension of X**/X is greater or equal than
r, then there is a closed subspace Y of X such that X/Y is a quasi-
reflexive Banach space of order r with a Schauder basis that is shrinking
and satisfies Property P.

Proof. According to Corollary 2, we may assume that X is quasi-
reflexive of order r. Let M be the subspace of X *** orthogonal to X. In
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M we take a basis {1, zg, ..., zr}. We find in X* a sequence (Zmn)oe;
that converges to z,, in X*** for the weak* topology, m = 1,2,...,r.
We proceed as in the proof of last proposition to obtain a subsequence
(ymn)3; of (Tmn)oey, m = 1,2, ...,7, such that

Y11, Y215 --» Yrly ---: Y1ns Y2ns ==+ Yrny --- (21)

be a basic sequence in X* with Property P*. On the other hand, hav-
ing in mind Lemma 3, we may obtain (21) so that it is w*-basic and
boundedly complete. Then, if Y is the subspace of X orthogonal to
the linear span of (21), it follows that X/Y is quasi-reflexive of order r,
has a shrinking Schauder basis and, after result a), such basis satisfies
Property P.

The author wishes to express his gratitude to the referee for sev-
eral interesting suggestions concerning references [4], [5], [6] and [7] in
particular, which will undoubtedly help the reader to gain a better un-
derstanding of this material, and also for a few remarks on some results
which have certainly improved the final version of the paper.
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