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Abstract
We consider the semilinear elliptic equation

—Au = ) f(u),

posed in a bounded domain Q of R™ with smooth boundary 8 Q2
with Dirichlet data ul gq = 0, and a continuous, positive, in-
creasing and convex function f on [0, 00) such that f(s)/s — oo
as s — oo. Under these conditions there is a maximal or ex-
tremal value of the parameter A > 0 such that the problem has
a solution. We investigate the existence and properties of the
corresponding extremal solutions when they are unbounded (i.e.,
singular or blow-up solutions). We characterize the singular H?
extremal solutions and the extremal value by a criterion consisting
of two conditions: (i) they must be energy solutions, not in L*°;
(ii) they must satisfy a Hardy inequality which translates the fact
that the first eigenvalue of the linearized operator is nonnegative.

In order to apply this characterization to the typical examples
arising in the literature we need an improved version of the clas-
sical Hardy inequality with best constant. We establish such a
result as a simultaneous generalization of Hardy’s and Poincaré’s
inequalities for all dimensions n > 2.

A striking property of some examples of unbounded extremal
solutions is the fact that the linearization of the problem around
them happens to be formally invertible and nevertheless the ap-
plication of the Inverse and Implicit Function theorems fails to
produce the usual existence or.continuation results. We consider
this question and explain the phenomenon as a lack of appropriate
functional setting.
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1 Introduction

In this paper we consider the semilinear elliptic equation
—Au = X f(u), (1.1)

posed in a bounded domain 2 of R™ with smooth boundary 8 on
which we impose Dirichlet data

ulgq = 0. (1.2)

We refer to the combination of (1.1) and (1.2) as Problem (E)), or
simply (E) when ) is understood. We assume that the nonlinearity f is
a continuous, positive, increasing and convex function defined for u > 0

with f(0) > 0 and

im £ _ o (13)

s—00 g
Typical examples are f(u) = e* and f(u) = (1 + u)?, with p > 1.
Equation (1.1) appears in a number of applications, like the description
of a ball of isothermal gas in gravitational equilibrium, proposed by
lord Kelvin [Ch]. It has been actively investigated in connection with
combustion theory, [G], see also [JL]. It is well-known that there exists
a finite positive number \*, called here the extremal value, such that
problem (Ey) has at least a classical positive solution u € c?3(Q) if
0 < A < A*, while no solution exists, even in the weak sense, for A > \*,
cf. [B4] and its references. The aim of this work is to study the properties
of the solutions of problem (E) at the extremal value A = A*, so-called
extremal solutions.

As in [B4] we define a weak solution of Problem (E) as a function
u € L}() such that
f(u) 6 € LX(Q), (1.4)

where 6(z) = dist(z,d ) is the distance function with respect to the
boundary, and (1.1)- (1.2) are satisfied in the form

[@actrsw az=0 (15)

for all ¢ € C%(Q) with ¢ = 0 on 8. It easily follows from standard
regularity theory that a bounded weak solution is smooth, i.e., a classical
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solution. Our main interest are the unbounded or singular solutions.
The analysis of singular extremal solutions involves an intermediate class
of solutions, cf. [MP1], where v € H}(Q). Then it also follows that
f(u)u € L1(Q). We call these solutions energy solutions.

The existence and properties of the extremal solutions depends
strongly on the dimension n, domain €2 and nonlinearity f. The proper-
ties of classical extremal solutions have been well studied. We concen-
trate here on the analysis of singular extremal solutions for general Q
and f, which departs in many ways from the properties of the classical
extremal solutions. Examples of singular solutions are well known when
Q) is a ball and the reaction term is either exponential f(u) = e* or
power-like f(u) = (1 + u)?, p > 1. It happens that a singular solution
is not always the extremal one. Our first result characterizes the sin-
gular H! extremal solutions and the extremal value A\* by a criterion
consisting of two conditions:

(i) They must be energy solutions, not in L.

(ii) They must satisfy the condition

)\Lf’(u)¢2d:c§[]|v¢|2d:c (1.6)

for all ¢ € C}(Q), cf. Theorem 3.1. This formula, which roughly speak-
ing says that the first eigenvalue of —A — X f/(u) is nonnegative, is
a version of Hardy’s inequality. In our analysis we need an improved
version of the classical Hardy inequality [HLP] with best constant, cf.
Theorem 4.1. Our result is in fact a simultaneous generalization of
Hardy’s and Poincaré’s inequalities.

A second type of result concerns the first eigenvalue of the linearized
operator, —A —\* f'(u), which for classical extremal solutions is known
to be zero, precisely as a consequence of the impossibility of continuing
the solution branch beyond A\*, cf. [CR]. It is quite surprising to find
out that for the typical examples of singular extremal solutions with
f(u) = e* and f(u) = (1 + u)P, cf. Sections 5 and 6, the first eigen-
value is positive, not zero. This apparently contradicts the fact that the
branch of solutions cannot be continued beyond A*. The failure of the
continuation depends on the fact that the Implicit Function Theorem
cannot be applied in this singular settin even if the linearized operator
is usually invertible at A = A\* in suitable spaces, e.g., from H}(f2) onto

5
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H~1(Q). See further details in Section 7. The same reasons explain the
nonexistence results for the equation Au + A* f(u) + ¢ = 0 with ¢ > 0.
This time the Inverse Function Theorem fails.

These results are complemented by the existence of weak solutions
which are not energy solutions. We note that they are not extremal
solutions even if in some cases they satisfy condition (1.6). Their exis-
tence shows that condition (1.6) has to be applied to energy solutions,
even if it makes sense for all solutions. See details at the end of Section
6. These examples of singular non-energy solutions are isolated objects,
not accessible as limits of regular solutions. The existence and the role
in the general theory of such solutions is not understood at this time.

We conclude in Section 8 with a list of some striking open problems.

2 Preliminaries

As we have mentioned, Problem (E) admits classical solutions for every
0 < A < X*. We summarize here the main properties, most of them
well-known, see e.g. [BN1], that will be used below. Thus, for every
X in the range 0 < X < \* a classical solution exists which is minimal
among all possible solutions; let us call it uy(z) € C?(Q). The family
(branch) of such solutions depends smoothly and monotonically on f
and A, and in particular

A< N = uy(2) < uy(z) (2-1)
Lemma 2.1. Minimal solutions are stable, i.e., the linearized operator
Ly(v) = —Av—X f'(uy)v (2.2)

has a positive first eigenvalue

w(Ly) = inf Joll Vo2 = A f’(!LA)¢2} dz 2.3)

we H3(S) Jq#%dz

for every 0 < A < X*. Moreover, ui(L,) is a decreasing function of A.

Proof. The first assertions, including the variational characterization
(2.3) are well-known. The fact that pu1(Ly) is decreasing in X follows
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easily from the variational characterization of u; and the convexity of
f. ]

Lemma 2.2. Under condition (1.3) on f we obtain as A — \* a finite

limit a.e.
uw*(z) = lim u,(z), 2.4
(z) ) )‘,_A( ) (24)

and u* € LY() is a weak solution of problem (Ey+)-

We emphasize the role of condition (1.3) in this result. Thus, if we
take a linear function, f(u) = a + bu, with a,b > 0, problem (E) admits
a unique branch of (classical) solutions which in the limit A — A* (which
equals p1(—A/b)) gives a limit u* which is infinity everywhere in (, i.e.
there is no extremal solution.

The limit, or extremal solution, can be either classical or singular.
In many cases u* is a classical solution of (E,+), see examples below.
The following result characterizes the classical extremal solution among
all classical solutions.

Lemma 2.3. The linearized operator
Lez(v) = —Av — X* f'(u*)v, (2.5)

corresponding to a classical extremal solution has zero first eigenvalue.
Moreover, \* is a turning point for the (\-u) diagram.

A turning point means that there exists a parametrized family of
(classical) solutions

s— (A(s),u(z;s)), . s € (~¢,¢), (2.6)

with A(0) = A* and A(s) < A* both for s < 0 and s > 0. The former
branch coincides with the minimal solutions while for s > 0 we obtain
a branch of non-minimal solutions which emanates from (\*,u*). De-
pending on n,  and f this branch is continued in different ways as the
examples show. The fact that

p* = p1(Les) =0, 2.7

follows from a simple argument. On the one hand, p1(L,) > 0 on the
minimal branch for A < A\* so that in the limit x* > 0. On the other
hand, if * > 0 the Implicit Function Theorem could be applied and
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would allow to continue the branch X ~+ u, in a classical way beyond
A*. [Note: we use the notation L, instead of L* to avoid confusions].

Lemma 2.4. At a non-minimal classical solution v of (E)) with 0 <
A < X* the linearized operator

Ly(w) = —Aw — X f'(v)w (2.8)

has negative first eigenvalue.

Proof. Suppose by contradiction that p;(Ly) > 0. Then for every
¢ € H}(Q) we have

(Lot 6) = [(V9F = 21/ (0)¢) dz 2 . 29)

Let now » = uy be the minimal solution with the same A. We have
v > u and

~Aw —u) = A (v)(v — u) = A[f () — f(u) = f'(v)(v—u)] <O.

Hence, putting ¢ = v — u in (2.9) we get

A / [F(v) - £(u) = £'(0) (v = w)](v — w) dz > 0.
[9]

Since f is convex the integrand is nonpositive, so that the inequality is
only possible if

f(@)= fu)+ f'(v)(v —u) ae in Q. (2.10)

Now, when f is strictly convex we immediately conclude that v = u,
hence v is the minimal solution, which is impossible. When f is not
strictly convex the same conclusion is obtained as follows: in case v # u
the function f must be necessarily linear in any interval of the form
[u(z), v(z)], hence in the union of such intervals which is an interval.
Then both u and v are solutions of a linear problem with f(u) = a + bu,
ie.,
~Au = A(a + bu),

for which uniqueness is known.
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Remarks. 2.5. a) The above results completely characterize the clas-
sical branches in terms of linearized stability. Thus, u; is positive on the
minimal branch, it is zero for the extremal (turning) point and negative
for the non-minimal branches. Such a classification fails for singular
solutions.

b) Lemma 2.4 holds for energy solutions, and this fact will be useful
in the next section.

Finally, we point out that turning-point solutions are unique.

Lemma 2.6. If u* is classical there is a unique solution of (E \*) even
in the weak sense.

Proof. Consider the classical and positive solution ¢ of the problem
~A¢ = A* f(u*)g.

If u* is the minimal classical solution and v > u* is any weak solution
we have

Av —u*)g + X*[f(v) — f(u')]¢ = 0.
Integating in 2 we get

/(v — u")Agdz + A* /(f(v) — f(u*))pdz = 0.

Thanks to the definition of ¢ we get
3 [615) - 1) = 7' o = w)]dz = 0.

Since the integrand is nonnegative we conclude that f(v) = f(u*) +
f'(u*)(v—u*) ae. in Q. If v € L®() then v is smooth and we conclude
as above that v = u*. Otherwise, there is a sequence {z5} such that
v(zn) — +00. Since f is linear on [u*(zy),v(zn)] we conclude that f is
linear on [A4, +00) for some A. This contradicts (1.3).

|
Remark 2.7. A delicate result of Martel [Mr] extends Lemma 2.6. It

says that (E ,\‘) has always a unique solution, even if u* is merely a weak
solution. We shall use this fact in the next section.
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3 Extremal solutions

The present work is motivated by the existence of well-known examples
of singular solutions which are in some cases extremal, in other cases not.
It is therefore convenient to investigate the properties of such solutions
in a general setting.

Our main result characterizes the singular extremal solutions in the
energy class.

Theorem 3.1. Assume that v € H}(Q) is an unbounded weak solution
of (E)) for some XA > 0 (in the sense of (1.5)). Assume that

’\./n f'(w)e?dz < /n |V ¢ dz (3.1)

for all ¢ € CY(Q). Then X = X* and v = u*. Conversely, (3.1) holds
for A= X* and v = u*.

Proof. We begin by recalling that the extremal solution u* is the in-
creasing limit of classical solutions uy with positive first eigenvalue,
hence

A / fl(w\)p?dz < / |V ¢ de,
Q Y]
which in the limit gives (3.1).

Let us prove the converse. We have an unbounded energy solution
satisfying (3.1) and we want to conclude that it is the extremal solution
u*. We first recall (see {[B4]) that no weak solution exists for A > A*.
Next we exclude the possibility A < A*. We observe that, by a
density argument plus Fatou’s theorem, inequality (3.1) holds for
every ¢ € H}(). Taking ¢ = v — u, (it is at this stage that we use
the assumption that v € H}(Q)) we get

,\/ f(w)w— y/\)zda: < / | V(v — u)‘)|2dx,
Q Q
and we conclude as in the proof of Lemma 2.4 that

F) = fluy) + @) v —uy).

Since v € L™ this yields a contradiction as in the proof of Lemma 2.6.
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Hence, we have proved that A = A*. We conclude that v = u* by
invoking the uniqueness result of Martel [Mr] which says that (E,+) has
a unique weak solution.

|
Remark 3.2. Assumption (3.1) makes sense for a general solution (not
necessarily in H!). One may think that Theorem 3.1 still holds for a

general weak solution. However, this is not true, see the example in
Theorem 6.2. In that direction we also have

Remark 3.3. Under the extra condition

. f'(s)s
hmmf_,__.oof—(s)— > 1, (32)

any extremal solution lies in the energy class.

Proof. For all the solutions ) in the minimal branch we have

Al f 2d</V 2d<,\/ dz.
[ [19uPe <x [ 1) n e
As a consequence of (3.2) we also have

(1+¢€)f(s)s < f'(s)s* 4+ C

for some € > 0. It follows from both formulas that

[famaz<c, [|VuPa<o
Q Q

with a constant C independent of )\, hence the estimates are valid for
u* = limuy.

We do not know of any example where the extremal solution is not
in the energy class; see Open Problem 1.

Remark 3.4. Consider

* .
u1 = lm pi1(Ly).
i= lim, (Ly)
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As we have already pointed out, if u* is a classical solution, then u} = 0.
However, if u* is singular it may happen that 4} > 0 (see e.g. Theo-
rems 5.1, 5.3 and 6.1). In that case, it has been proved in [CM] that
any number g € [0, u}] is an “eigenvalue” of L., associated to a weak
eigenfunction ¢ € L1, ¢ >0, ¢ # 0, with f'(u*)¢ € L!, such that

—./ ¢A<dx—x'] f'(u‘)¢(dz=u/¢cdx
N 9] [

for every ¢ € C*(Q?), ¢ =0o0n 8.

4 Hardy inequalities

The basic ingredient in the characterization of singular extremal solu-
tions, inequality (3.1), is actually a version of the Hardy inequality with
weight, which says that for certain functions w(z) € L}, .(Q), w > 0, we
have for all ¢ € C4(Q)

L w(z) d(z)2dx < /Q |V 6(z)[2 dz. (4.1)

The classical Hardy inequality (also called the Uncertainty Principle)
occurs for a weight of the form w(z) = C/|z|*> when n > 3 and then it
is well-known that if 0 € Q the best value of C is
2

H= (—"—‘iz)— >3, (4.2)
It is also known that the best constant is not attained in H(2). On
the other hand, if we take w(z) = C we find the standard Poincaré
inequality, which is attained at the first eigenfunction of the Laplacian
operator in 2 with best constant C = u1(—A).

The Hardy inequality with best constant will play a prominent role
in the analysis of the next sections. Actually, we will need an improved
version of the classical Hardy inequality which includes the estimate of
the error term and generalizes at the same time the Poincaré inequality.

Theorem 4.1 (Improved Hardy Inequality). For any bounded do-
main Q in R™, any dimension n > 2 and for every u € H}(Q) we have

2 :
/ |V ul2dz > H/ ﬁ—zdx + Hy (5’1) / uldz. (4.3)
0 a |z 1) Ja
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The value of H = H(n) is given by (4.2). The constant Hz is the first
eigenvalue of the Laplacian in the unit ball in n = 2, hence positive
and independent of n. Both constants are optimal when 2 is a ball. wy,
denotes the measure of the unit ball.

Proof. (i) The first step is to make a symmetrization that replaces Q2
by a ball By with the same volume,

wn R™ = |,

and the function u by its symmetric rearrangement. It is well-kown that
the rearrangement does not change the L%norm, decreases the H(S)
norm and increases the integral [(u?/|z|?) dz, cf. [B]. Hence, it is enough
to prove the result in the symmetric case. Moreover, a simple scaling
allows to consider the case R = 1.

(ii) The result for n = 2 is just the Poincaré inequality with corre-
sponding eigenfunction the Bessel function Jo(zr), where z is the first
zero of Jg, i.e., z = 2.4048. The corresponding eigenvalue is Ho. We

have
Ho = 22 2 5.7832. (4.4)

(iii) Let us tackle of the main part of the proof, proving the inequality
for radial functions in the ball B = B1(0) in R", n > 3. The basic idea
stems from the consideration of why the best constant H is not attained
in H}(BR). If we solve the corresponding Euler-Lagrange equation,

Au+ H |z| 2w =0,
we find the solution I
a(e) = o2, (45)

which just does not belong to H1(B) in R™ if n > 2. Usually, perturba-
tions of (4.5) of the type

1 1
Te(z) = (e + |x|2)(n_2)/4 (e + 1)(n-2)/4°

are employed to show that H is the best constant. The proof we present
uses the function % to make a dimension reduction of the problem
from n to 2 dimensions as follows. We define the new variable

v(r) = u(r)r(n_Q)/Q, r=|z|. (4.6)
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The “magical” computation comes now:

|V ul?dz—H ;—;dz =nwn 1('l;')21'd1' ~(n-2) 1 v(r)v'(r)dr| .
B B 0 0

Taking for instance u € C§(B) the last integral is zero and we get

2 !
u
/BIVu|2d:c—HL:2-d:c=nwn/(; (v'(r))2 rdr. (4.7)

This is where Poincaré’s inequality in two dimensions comes:

! ! 2 ! 2
A(v (r) rerHg/o v(r)rdr. (4.8)

We finally observe that

/Bu2(n:) dz = nwn /(;1 v(r)?rdr. (4.9)

The last remark consists in removing the restriction v € C}(B) and this
is done by density.

Remark 4.2. The existence of a correction term in (4.3) explains in
a concrete way why the best constant H in the classical inequality is
not attained. On the other hand, H2 is not attained either, since, by
(4.7), it would correspond to equality in (4.8), which happens precisely
for v(r) = ¢ Jo(zr), hence

Jo(zr)

u(z) =c -/

which is not in H!(B). It seems interesting to obtain further correction

terms improving formula (4.3). See Open Problem 2 in Section 8.

Extension 4.3. Theorem 4.1 is reminiscent of the improved Sobolev
inequality with best constant; see [BN1] (§5 in Section 1.3) and also
[BL]. In fact, the proof of Theorem 4.1 yields a stronger inequality

2
2 u 2
/Q|vu| dz > H/(; e + aplul (4.10)
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for every u € H} and every p < 2n/(n —2), with ap > 0.

Proof. We have to estimate more precisely the integral appearing in
the first member of (4.8). By the Sobolev inequality we have for every
g<oo

1 1 1
/ v2(r) rdr > Cq(/ v¥(r) rdr)¥ = Cq(/ ud r(n=24/2..4r)2/a,
0 0 0
(4.11)
On the other hand, the p-norm of u is

1
ull? = nwn / |u(r)Pr™1dr. (4.12)
0

We want to relate both quantities for suitable p and ¢, 1 < p < ¢ < oo.
For that we write for some a > 0

1 1
A |uPr™ldr — A (JufPr®) (r2~")rdr

1 r/e
< (/ |u|qraq/prdr) (r("_2_a)7) v ’
0

where we have used Holder with v given by (1/+4) + (p/g) = 1, v > 1
since p < ¢. In view of (4.11), (4.12) we need to choose a so that

ag/p = (n —2)q/2, i.e.
| oo P(n—2)

2

(4.13)

(4.14)
The last factor of (4.13) is finite if
n-2-a)y>-2. (4.15)

This choice is possible if a < n, i.e., if p < 2n/(n —2). Summing up, for
any given p < 2n/(n—2) we define a by (4.14) and then v > 1 satisfying
(4.15). This defines ¢ > p and then (4.13) implies that

1
/ v2(r) rdr > ol / |u[Pdz)?/P
0 B
for some ap, > 0.
| |
Let us finally point out that the dimension reduction is a technique

with precedents in the study of Schrodinger equations, cf. e.g. [RS] or
[VY], but the present use seems completely different.
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5 The exponential case

The results of Sections 3 and 4 allow for a quick analysis of the sin-
gular extremal solutjons in the exponential case f(u) = e* posed in a
ball, 2 = B1(0). This is the most popular example, motivated by the
problems of combustion theory and the A-u diagram was studied in the
classical papers by Gelfand [G] and Joseph-Lundgren [JL]. We recall that
our functional approach is not confined to radially symmetric solutions,
which have been more investigated. We start our review from the fact
that there exists an explicit weak solution

U(z) = —2logr, r=|z|, (5.1)

which is obviously in H}(B) for n > 3. It corresponds to the value of
the parameter

A =2(n - 2). (5.2)
The linearized operator is
2(n—-2
Lyp = -A¢ — (—nﬂ—ztﬁ- (5.3)

Theorem 3.1 asserts that U is the extremal solution if and only if (3.1)
holds, i.e., if

2
2(n - 2) / S dr< / |V 6|2 dz, (5.4)
BT B
According to Section 4 this inequality holds precisely if

(n —2)°

— < —

(5.5)
ie., if n > 10. Then \* = 2(n — 2) and u* = U. We recall that on the
other hand, if n <9 the extremal solution u* is smooth for any domain
Q; see [MP2]. Therefore, U cannot be the extremal solution. When
3<n<9 N> A and the weak solution U lies at the “end” of the
curve of unstable solutions, cf. [JL].

Let us discuss now the existence of a first eigenvalue of the linearized
operator at the singular extremal solution. The analysis is different in
dimensions n > 11 and n = 10.
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Theorem 5.1. Let n > 10. Then the linearized operator Loy has
a positive first eigenvalue p} corresponding to an eigenfunction ¢ €
H}(B) N H?%(B). This eigenvalue is the limit of the eigenvalues of the
operators Ly as X — A*.

Proof. As was remarked in [PV], where the dynamic stability analysis
is performed, inequality (5.5) is strict, hence the bilinear form associated
to Lez is coercive in H}(B) and there is a bounded inverse operator from
H71(B) to H}(B). Moreover, the second-order Hardy estimates

2
[Laz<c / (Au)? dz, (5.6)
JB T B

proved in [D4, Appendix] for n > 4, show that this inverse is well-
defined from L2(B) into H2(B) N H}(B). In order to characterize the
first eigenvalue we consider the variational inequality

R N ¢?
fiveras—a [ s )62z = (Vo 20 -2)5)dz >

>(1- 2222 [ |vgan,

which for [ ¢2dz = 1 gives

.. n—10 9
> Vél“dz =
pMZ Bl ¢|“d=x

n

- 10

—A).
— #(=4)
The fact that the decreasing sequence p1(L,) converges towards pj
comes from the monotone convergence and is left as an exercise to the
reader.

Remark 5.2. Despite the fact that Leg is formally invertible (e.g., from
H} onto H ') one cannot apply the Implicit Function Theorem or the
Inverse Function Theorem, see Section 7.

The case n = 10 is somewhat different.

Theorem 5.3. For n = 10 the linearized operator Lo, does not have a
first eigenfunction in H§(Q). However, the previous calculation gives a
positive value for pu] defined now as

* .
pi= lm_pi(Ly).
L7 o A
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Actually, p7 = Hy > 0.
Proof. We have for every ¢ € H} and every A < A*

/B |V ¢|?dz - A /B f'(uy) ¢%dz > (L)) /B |61? dz.

Passing to the limit as A — A* we find

#° 2
v 2dz—,\*/—dzz */ dz,
[3' ¢! B 12 M B'¢I

with A* = 2(n —2) = 16 = (n — 2)2/4. Since H is the optimal constant
in the Improved Hardy Inequality we see that u} < Hz. On the other
hand, we have

uy < u* = log(1/r?),

and thus X f'(uy) < A* /2. Consequently,

’ 2
/|V¢|2dz—x/f’(gA)¢2dzz /|V¢[2dz—A'/ ¢—2da:2H2/¢2d:t.
B B B BT B

Hence, pu1(L)) > H2 and passing to the limit as A — A* we find that
ul = Ho.

The behaviour of the limit of the first eigenvalues as we approach
the singular extremal solution is in contrast with the behaviour near
the classical extremal solutions (turning points), where the limit value
is zero (cf. Lemma 2.3), and even more in contrast with the behaviour
as we approach singular non-extremal solutions, like solution (5.1) for
3 <n <9. In that case A = 2(n — 2) is less than A* and a branch of
classical, unstable solutions (\¢, us(z)) meanders up in the A\-u diagram
towards (2(n — 2),U), cf [G], [JL].

Theorem 5.4. Let 3 < n <9 and let L,, be the linearized operator at
(At,ue). If as t — 0o we have Ay — 2(n — 2) and uy — U then

tlim ﬂl(Lut) = —0o0. (5.7)
—00
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Proof. Since now A\ = 2(n — 2) > H there exist functions ¢ € H}(B)
such that

2
/¢2d:c=l, /|V¢|2dx—)\“/¢—2dz$—e<0.
B B BT
We can scale one such function in the form

| k2g(kz) if Jo] < }
¢"(“’)_{ 0 if 1<zl <1,

for some large k > 1. Then [ ¢?dz does not change but

2
/|V¢kl2d:c—,\"/ %’idzs-ek%
B BT

which can be made as negative as we please. In order to complete the
proof we now observe that u(x) converges nicely to U(z), cf. [JL], so
that by approximation as before

prLt) — —oo.
n

The last result displays the extreme instability of the singular non-
extremal solutions just considered. Figure 1 displays the variation of
u with X for n = 3,6,10,11. Previous results, mostly confined with
radially symmetric solutions, can be found in [BS] or [RS].

6 Power case

We now consider the case f(u) = (1 + u)? with p > 1 and 2 = B;(0), a
ball. In dimensions n = 1,2 we have a diagram with a classical turning
point and exactly two solutions for every X € (0,A*). The same happens

for n > 2 and 42
n
< — .

cf. [JL]. For n > 2 and p > n/(n — 2) we find the explicit weak solution

U(z) = Ja| 77 — 1, (6.2)
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corresponding to parameter

A= fl(n— 2p ) (6.3)

p—1

We always have U € W} (B), but U € H}(B) only if p > p,, ie., if
n—2>4/(p — 1). The linearized operator at this solution is

LU A A f(U) A r2 9 Cn,p p—l (n p—l 3 (6.4)

the same type of Laplace operator with inverse-square potential as in
the exponential case. We wish to understand where the pair (A, U) lies
with respect to the curve of classical solutions. For this purpose we have
to distinguish 3 cases.

Case 1. 4
/4 14
—-2> = . .
n—22> F(p) p—1+4 o (6.5)
Case 2. 1
——<n—-2< F(p). (6.6)
p—1
Case 3. 5 4
—_ —_2< — 6.
p_1<n 2_p—-1 (6.7)

Let us now proceed with the separate analysis of these cases.

Case 1. Condition (6.5) holds if and only if

n—2vn-1
n—4-2y/n—-1

n> 10 and p > p, = (6.8)

In this case the main result is

Theorem 6.1. Assume (6.5). Then A' = X\* and U = u*. Moreover,
the operator Ly is coercive and if the inequality in (6.5) is strict then
Ly has a positive first eigenvalue. In the critical case we still have

lim_ p1(Ly) > 0. 6.9
Jim (L) (6.9)
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Proof. We apply Theorem 3.1. Note that U € H{ sincen—2 > 4/(p—1)

and that c,p < H, i.e.,

_2”_(n_ 2p )5("_2)2.

r—1 p—1 4

This case is similar to the case where f(u) = e* and n > 10.

Case 2. If (n—2) < F(p) holds ( i.e., if n < 10 and any p, or if n > 10
and p < py), it is known from the results of [MP2] that the extremal
function u* is smooth. Therefore, U cannot be the extremal function,
hence Af < A* (by [B4]). If (6.6) holds the results of [JL] assert that the
branch of classical unstable solutions ()¢, Uz) meanders up in the (A-u)
diagram towards (A", U). The situation is similar to the one we have
encountered in the exponential case with 3 < n < 9. Here also

tl—l—gloul(L"‘) =%

Case 3. Recall that since p < (n+2)/(n—2), problem (E ) has exactly
two classical solutions for every A € (0,)*) and it has one classical
solution, namely u*, at A = A*. Thus, Af < A*.

Since n—2 < 4/(p — 1) the weak solution U does not belong to H!.
Here, it may or may not satisfy condition (3.1):

Case 3A. If

2p-1)<n-2<—P _4[P_
p—1 p—1

or, in other words, if

n <p <o n+2v/n-—-1
n—2 P=PT T o /ao T

then (3.1) holds for v = U.

Case 3B. If 4 1
D p
— 4 —2< —
p—=1 Vp—1<n 2—p—l’

or, in other words, if
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then (3.1) fails for v =U.
We may now state

Theorem 6.2. For every p in the range (6.7), i.e.,

n+2
<P<Pa=m,

n

>3, 6.10
n—2 n= (6.10)
there ezists a weak solution of problem (E) with A given by (6.3) which
is not an energy solution and hence not an extremal solution, even if in
the subrange

—— <p<5h (6.11)
condition (8.1) is satisfied.

What is most remarkable about these weak solutions is that they can-
not be approached by the branch of classical solutions; they are not lim-
iting singular solutions in the terminology of [Ch] and [JL, Section III],
i.e., limits of regular solutions, which leaves them in a kind of “limbo”
with respect to the classical theory. The existence of additional weak
solutions is an interesting open problem, see Problem 7 in Section 8.

Figure 2 summarizes graphically the three cases discussed in this
section. From left to right: Case 1 for n = 11 and p = 9, Case 2 for
n =3 and p = 8, and Case 3A for n = 3 and p = 4.

7 The “failure” of the Inverse and Implicit
Theorems

We return now to some peculiar properties associated with singular ex-
tremal solutions. For simplicity we consider just the case where =
B1(0) and f(u) = e* in dimension n > 11. A similar phenomenon
occurs when f(u) = (1 + )P and n — 2 > F(p).

As we have observed in Theorem 6.1 the extremal solution u* coin-
cides with U(zx) = —2log |z| and corresponds to A* = 2(n — 2). More-
over, the linearized operator

2(n —2)

Lez=—-A =) fl(u*) = -A - 5

r
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is coercive, hence bijective for example from H} onto H~!. In view of
the Implicit Function Theorem one might have expected Problem (E, )
to have a solution “close” to u* for every ) near A\*. Of course, we cannot
apply the Implicit Function Theorem to F(u,\) = —Au — X e* in the
space Cg’a for u* does not lie in C%2. Since u* € H} one might then try
to consider F as a map from H} x R into H 1. But again this does not
make sense since e* need not be in H~! for u in H} near u*. In fact,
there is no appropriate functional setting since we know that (E)) has
no solution even in the weak sense for any A > \*, see [B4].

Similarly, there is a “failure” of the Inverse Function Theorem. Con-
sider for example the problem

—Au=2e"+¢ in Q= B;(0).

u=20 on 8%, (7.1)

where c is a constant. If ¢ = 0 problem (7.1) admits the solution u*
and the linearized problem at u* is formally bijective. Thus, it seems
reasonable to expect that for every ¢ € R with |c| small there is a solution
u of (7.1) near u*. This is indeed true for ¢ < 0 small as may be shown
using the methods of [B4]. However, we have

Theorem 7.1. Problem (7.1) has no solution if ¢ > 0.

Proof. Suppose that there exists a weak solution for some ¢ > 0. Using
Lemmas 4 and 6 of [B4] we construct a bounded supersolution for the
problem
—Av =Xe+c—¢ in Q,
{ v =0 on 40

for any e € (0, ¢]. Since u = 0 is a subsolution there must be a bounded
positive solution. In particular, for &¢ = ¢ there must be a bounded

extremal solution. This is impossible since the extremal solution u* is
unbounded.

8 Open problems and further developments

We summarize some of the problems that have arisen or would be inter-
esting to consider in connection with the results of this paper.
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Problem 1. We have shown in Section 3 that, under a mild extra
condition on f at infinity, all singular extremal solutions are energy
solutions. The question is, does there exist some f and 2 for which the
extremal solution is a weak solution, not in H}(Q)?

Problem 2. In Section 4 we have introduced an “Improved Hardy
Inequality”. For example in the ball B;(0)

(n —2)

A>T 2
A2 TLpe

+ Ha,
where Hj iste firteigenaue ofA in 2-D. Are these just the first two terms

of a series? Is there a further improvement in the direction of extension
4.3?

Problem 3. Assume that € is a bounded smooth convex set in R™
with n > 10. Let f(u) = e* Is u* always unbounded?

Problem 4. Assume Q = B1(0) in R3. Are there examples of smooth
convex functions f for which u* is unbounded? .

Problem 5. For singular radial solutions in a ball the singular set of
u* is just a point, the origin (this follows from the fact that u = limuy
and u, is radial decreasing in ). What can we say about the blow-up
set when (Q is not a ball? Is it a finite set? Is it a single point for convex
domains? What is the behaviour of f'(u*) near the singularities? Does
it look like C/r??

Problem 6. Construct simple examples in 3-D domains where the
Inverse Function Theorem “fails” (in the sense of Section 7) despite the
fact that the linearized operator is formally bijective. For example, is
the problem

2

—Au = 25 +c in B1(0), u=20 on 8 B1(0),
r

solvable in the weak sense for |c| small?. (See added in proofs).

Problem 7. When Q@ = B;, n > 3 and f(u) = e* we have a weak
solution U of (E,) for the special value A = A= 92(n - 2) < A% Are
there other radial (resp. nonradial) weak solutions for different values
of A? for every A € (0,A*)? Similar question when f is a power?
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H. Matano [Ma] has informed us that he is able to construct nonra-
dial singular solutions of the exponential problem in dimension n = 3
with a logarithmic singularity near 0. Nonradial singular solutions have
been obtained by Y. Rebai [R] for f a power with any exponent p €

(3,00) when n = 3 and p € (25, 23] when n > 4.

Problem 8. Is it possible to prove that every singular energy solution
has generalized first eigenvalue p = —oo if it is not extremal?

Problem 9. Dynamical instability. We have already mentioned
that the singular non-extremal solutions of Sections 5, 6 are extremely
unstable. On the other hand, it is rather standard that a classical ex-
tremal solution (turning-point solution) has lateral stability in the dy-
namical sense. Namely, if we consider the evolution equation

ut — Au = f(u) (8.1)
supplied with zero boundary data
u|g =0, (8.2)
where S = I' x(0, T'), and initial conditions
u(z,0) = up(z) > 0. (8.3)

then, for every initial data ug > 0 such that up < u* the solution u(z, t)
of problem (8.1)-(8.3) converges to u* as t — oo. However, for data
ugp > u*, ug # u* there is blow-up in finite time. The study of such
Problems was started by Fujita, [Fu].

The phenomenon of stability from below continues to be true for
singular extremal solutions, cf. a detailed study in [B4] and in [D4]. As
for the instability from above, it has been proved in [PV] in the case of
the exponential case, f(u) = e*, that all possible solutions above U(z)
blow up instantaneously (so that no solution can be defined even for
a short time interval; the phenomenon has an obvious physical interpre-
tation in terms of flame ignition [G] since the model is an approximation
to the actual equations). This is the strongest form of instability. It is
not known whether the result is general for singular extremal solutions
or not.
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Added in proofs. Problem 6 has been solved by H. Brezis and X.
Cabre, ( “Some simple nonlinear PDE’s without solutions”, to appear).
They prove that if n > 3 the equation —Au = u?/r? + ¢ in B;(0) with
u = 0 in 8b;(0) has no weak solution when ¢ > 0 and it has a unique
solution u < 0 when ¢ < 0.
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