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Note on oco-superharmonic functions.

Peter LINDQVIST and Juan MANFREDI*

Abstract

The purpose of this note is to show that all viscosity superso-

lutions of
dv v 8%

3(3,‘ E aziaz,- -

are variational. That is, they are limits of p-superharmonic func-
tions, induced by the operator

Ao =

Apv = div(|Vo[P~2Vv) ,

as p approaches oo. In addition, it is shown that each viscosity
supersolution of Av < 0 is Lipschitz continuous.

1 Introduction
The solutions of the differential equation

2. 8h Oh 9°%h
6:1:z 81:] O0z;0z;

=0 (1.1)

are called oo-harnionic functions. They play an essential role as the
best Lipschitz extensions of their boundary values, cf. [A | and [J]. Their
regularity properties are poorly understood, but at least it is known that
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they belong to C(2) N Wllc;zo(ﬂ) The mere concept of solution is diffi-
cult, because the equation does not have an ordinary weak formulation
containing only the first partial derivatives, while the second ones needed
to evaluate (1.1) are not even known to exist. There are two options to
overcome this difficulty.

First, one uses the concept of viscosity solutions. This has the ad-
vantage that A, has to be calculated only for smooth test-functions.
Second, one approximates the equation by equations like

div(|VulP™%Vu) =0 , div(|VufP2Vu) = !,

as p approaches co. Both approaches are needed, so far. A strange
mixture of viscosity and variational methods prevails.

 For the details of the variational method see [DBM]. The viscosity
method is developed in [J] where a remarkable uniqueness result is ob-
tained. It is proven in [J] that, given continuous boundary values in an
arbitrary bounded domain in the n-dimensional Euclidean space, there
is a unique viscosity solution attaining the given boundary values at
every boundary point. As a matter of fact, this viscosity solution is
the uniform limit of the corresponding p-harmonic functions, as p ap-
proaches co. (The solutions of the equation div(|VA|P~2Vh) = 0 are
called p-harmonic.) Although the framework of viscosity solutions is
needed to prove uniqueness, it does not produce any “new” solutions.

The objective of our note is to prove that even the wviscosity super-

solutions of the equation are variational, i.e., they are locally uniform
limits of p-superharmonic functions, as p approaches co. We use an ob-
stacle problem in the Calculus of Variations, a tool that is of independent
interest. A noteworthy consequence of the variational characterization
is that certain estimates now are automatically extended to the full
class of viscosity supersolutions. As an example we mention Harnack’s
inequality (Corollary 4.5) and Liouville’s theorem (Corollary 4.7).

2 Some Definitions
The viscosity supersolutions of A,v < 0 are equivalent to the oo-

superharnionic functions defined via a comparison principle. To be on
the safe side, we mention the definitions. Let { denote a domain in R".
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2.1 Definition. The function v : Q — (~00,00] is a viscosity superso-
lution, if

(i) v#£ oo
(i) v is lower senficontinuous, and

(iii) at any given point x we have Ap(z) <0, if p € CP(N), ¢ < v
in 2, and p(z) = v(z).

Notice that A, has to be calculated only for the test-function ¢,
not for v itself. Analogously, a viscosity subsolution is defined. Finally,
a function that is both a viscosity super- and a viscosity subsolution
is called a viscosity solution. Thus viscosity solutions are continuous
by definition. By the result of R. Jensen the Dirichlet boundary value
problem has a unique viscosity solution, cf. [J]. To be more precise,
suppose that () is bounded and that f : 80 — R is a given continuous
function. Then the equation A,k = 0 has a unique viscosity solution h
in © with boundary values

lim h(z) = /(6)

at each £ € 9. As a matter of fact, imp .o hp = h uniformly in
Q, where hjp is the solution to the equation Ayh, = 0 with boundary
values f in Q. (It is known that hy is unique and that h, attains the
prescribed boundary values, if p > n = the dimension of the space.) To
begin with, it is not clear that different sequences of p’s approaching
00, would yield the same function h. It is here that Jensen’s uniqueness
result is indispensable. Accordingly, the full sequence converges to h.

2.2 Definition. The function v : Q — (—o00,00] is co-superharnionic,
if
(i) v# oo,

(ii) v s lower senficontinuous, and

(iii) v obeys the coniparison principle in any subdomdain D with D cc
Q: if h € C(D) is co-harnionic in D and h < v on 8D, then h < v
in D.
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Notice that this definition requires that the concept of oo-harmonic
function has been defined in advance. Here we take the co-harmonic
functions as the viscosity solutions. This mixture of two concepts in one
definition is not esthetic.’

2.3 Proposition. The viscosity supersolutions and the co-superharnionic
functions are the sanie functions.

Proof. The viscosity supersolutions satisfy the comparison principle by
[J, Theorem 2.1] and hence they are co-superharmonic.

Suppose now that v is co-superharmonic. Given z¢ € @ and ¢ €
C2(Q) such that p(x) < v(x), when = € Q, and p(z0) = v(z0), we have
to show that A (zo) < 0. Suppose, on the contrary, that Asp(zo) >
0 for some ¢. By continuity As¢(z) > 0, when |z — zg| < r. Denote
B = B(zg,r). Consider the auxiliary function

w(z) = p(z) — elz — zo|? .
A direct calculation yields

Avuw(z) = Doop(z)—2e|Vo(z) —2¢(z — zo)|?

~2¢(z — 20) - V|V(2)[? + 6% Y _(z: — z0:)
i,j

8%p(z)
8x,~3zj (xj - ij)

= Acp(z) +0().

Hence Aow(z) > 0 in B, when € > 0 is small enough. This means
that w is a classical subsolution to the equation and as such it satisfies a
comparison principle: w < h in B, h denoting the co-harmonic function
having the same boundary values on 8B as w. In particular, v(zg) =
p(z0) = w(z0) < h(zo).

On the other hand,

hlos = vloB = vlaB — er® < vl —er? .

By the assumption v(z) > h(z) + er? in B (the translation by the con-
stant er? does not matter). Thus v(zg) > h(zo) +er?, which contradicts
the inequality v(xg) < h(zo) above. Hence the assumption A (zo) > 0
was false. This proves that v is a viscosity supersolution.

1We do not know, whether one may further restrict the A’s in (iii)’ to those having
second partial derivatives, so that the condition Ash = 0 could be directly verified,
at least at almost every point.
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3 The Obstacle Problem

We will prove that the solution to an obstacle problem in the Calculus
of Variations is oco-superharmonic. Suppose that v : Q- Risa given
Lipschitz continuous function and that v € W1°°(Q). For simplicity,
assume that € is a bounded domain. The function v will act as an
obstacle: all admissible functions are forced to lie above . We aim
at constructing a function v, € C(S—I) N W1’°°(Q) such that vy, > v,
v|6Q = |62, and for each subdomain D C

||V'v°o "oo,D < " V"’"OO,D (3-1)

whenever v € C(I-)) NWL°(D), v > ¢ in D, and v|dD = vx|dD. In
other words, one can characterize vy, as the best Lipschitz extension to
Q of the boundary values of 1, under the constraint that the admissible
functions are forced to lie above the obstacle.

The solution to the obstacle problem is unique. Fortunately, we need
not deduce that from (3.1). For our purpose it is enough to construct one
solution as the limit of p-superharmonic functions, which solve the same
obstacle problem for the integral f, |Vv|Pdz. To this end, we minimize
the variational integral [, |Vv|Pdz in the class

fpz{vEC(ﬁ)ﬂWl’p(Q)lvzwinQ, v=ypondQ}. (32)

There is a unique minimizer in this class, say v,. Thus

/|va|pd:z$/ |VulPdx (3.3)
Q Q

for each v € F,. We refer to [L] about this obstacle problem. Notice
that the class of admissible functions is not empty, since v € F,. (We
tacitly assume that p > n, so that the boundary values certainly are
attained in the classical sense.)

Using the familiar inequalities

Vopllpa < ’Qlllp"Vi/J“oo,n ,

i-r»
lvp(x) — vp(y)| < 2njz —y|" 7| Voplpa
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and some compactness arguments, we deduce that a subsequence of v,’s
converges uniformly to a function vy and that vy, € Foo. Actually, the
full sequence converges, see Remark 3.5 below.

3.4 Theorem. The constructed solution vy, to the obstacle probleni is
oo-superharmonic in Q. It is co-harmonic in the set {vy, > ¥}

Proof. We claim that v, is oo-superharmonic. Choose a subdomain

D CC Q and suppose that ke, € C(D) is an co-harmonic function such
that heo < veo on the boundary 8D. By Jensen’s uniqueness theorem
ho is variational, i.e., it is the uniform limit of p-harmonic functions
with the same boundary values as ho, on 8D. Given ¢ > 0, we have
vp > U — € for (a subsequence of) large p’s. On the boundary 6D we
have hp < voo < vp + € for large p’s. By the comparison principle for
p-superharmonic functions, the inequality hp < vp + € holds in D. At
the limit we get hoo < voo +£. Since € > 0 was arbitrary, we have proved
that vo > hoe in D. Thus vy, satisfies the comparison principle. This
proves that vy, is co-superharmonic.

To prove that v is co-harmonic in the set where the obstacle does

not hinder, we proceed as follows. Given & > 0, consider the open set
D = {z € Q| voo(z) > ¥(z) + €},

provided that it is not empty. When p > pe, vp(z) > voo(z) — € and
vp(z) > ¥(z) in De. Strictly speaking, this holds for a subsequence
of p’s. It is known that vy is p-harmonic in the set {v, > %}, cf. [L].
Especially, vy is p-harmonic in D¢, when p is large. This means that v
is the uniform limit in D, of p-harmonic functions. It is easily seen that
the uniform limit of p-harmonic functions, as p approaches oo, always is
oo-harmonic. Thus we have established that vy, is co-harmonic in each
D, when € > 0. This is the desired result.

3.5 Remark. A subsequence of p’s was used in the construction of v
Indeed, the full sequence converges. To see this, suppose that we have
two functions vl and v2, in the previous theorem, perhaps resulting
from different subsequences. If the set {v) > vZ} is not empty, vl
is oco-harmonic in this set, because véo > vgo > 4 so that the obstacle
does not hinder. But, on the boundary of the same set, v}, = v2. By
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comparison, v2, > the co-harmonic function vl , a fact that contradicts

the definition of the aforementioned set. This proves that v} < v2 in
Q. By symmetry, v}, > vZ.

Finally, it is worth our while mentioning that the minimization prop-
erty (3.1) follows rather directly from the construction. (We will not
need it.)

4 Viscosity Supersolutions Are Variational

We will show that every viscosity supersolution is variational. In other
words, it is locally the uniform limit of p-superharmonic functions. To
prove this we will solve the obstacle problem with the supersolution itself
acting as obstacle! Therefore we had better first prove that we encounter
a Lipschitz continuous obstacle.

4.1 Lemma. The co-superharmionic functions are Lipschitz continuous
on conipact subsets. In particular, they are locally bounded and belong
to Wllo’zo.
Proof. Although a direct proof is not difficult, we will deduce the
result from Corollary 3.10 in {J], according to which bounded viscosity
supersolutions are Lipschitz continuous. Thus we have only to show
that the co-superharmonic function v is locally bounded. Since this is
a local question we may as well assume that v > 0 in 2, v being lower
semicontinuous by definition.

If v(zg) = oo at some point zg € {2, then we would have that v = co
in Q, a situation excluded by definition. Indeed, choose a ball B(zg,r) C
Q. Then the inequalities

v(z) > k(r — |z — x0l) , k=1,2,3,... (4.2)

hold, when x = ¢ and when |x — xo| = r. The function A(zx) = k(r —
|z — zg|) is co-harmonic in the domain 0 < |z — xg| < r, so that (4.2)
holds in B(zg,r) by the comparison principle. This means that v =
0o in B(zg,r). Continuing like this, with a chain of balls, we get the
contradiction.

If v is locally unbounded, we can always select a sequence of points

T1,Z92,13,... such that v(zg) > k and zg = limzy is an interior point.
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For a sufficiently small r all B(zg,r) C §2, and
v(z) 2 k(r -z —zk]) , k=1,23,..., (4.3)

when x = zr and when |z — zx| = r. Again the inequality holds in
B(zk,r) by comparison. Thus v(x) > %, when |z — zx| < 5. This
certainly yields that v(zg) = 0o and so we are back to the first case.

4.4 Theorem. Any oo-superharmionic function is variational, i.e., it is
a locally uniforni linjit of p-superharnionic functions.

Proof. Suppose that we, is an arbitrary oco-superharmonic function
in Q. By Lemma 4.1 it is locally Lipschitz continuous. Let D CC 2
denote a subdomain. By Rademacher’s theorem Vwy, exists a.e. in Q
and wy, € WH®(D).

We solve the obstacle problem in the domain D with ws as obstacle.
The solution vy, is obtained as the uniform limit in D of p-superharmonic
functions. By the construction vy, > woo. We refer to Section 3. In the
(components of the) open set where the obstacle does not hinder vy, is
oo-harmonic, that is, vy is co-harmonic in {vee > we}. But on the
boundary of this set vy = woo (recall that both functions coincide on
8D by the construction), whence the comparison principle yields that
Woo = Voo In the set where wy, < vy. This is a clear contradiction,
except, if the aforementioned set is empty. We have proved that vy, =
Weo In D.

Using an exhaustion of  with bounded subdomains D;, D1 C Do C
---, and a diagonalization procedure, we obtain that w, = limwv, in €2
The convergence is uniform on each subset Dj, but it may happen that
vp is defined in Dj only when p > a certain index depending on j. For
the diagonalization one has to observe that v,l,) "> v,l,) 7 in Dj, where
an obvious notation has been used.

This proves the theorem.

4.5 Corollary. The Harnack inequality holds for all non-negative co-
superharmionic functions:

lz—yl

v(@) < e Fru(y) (4.6)
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when =,y € B(zg,7) and B(zg,R) C 2,0 < r < R.

Proof. This was proved for variational oo-superharmonic functions in
[LM] and by Theorem 4.4 they are all of this kind.

4.7 Corollary (Liouville) The only co-superharnionic functions bounded
frond below in the whole R™ are the constants.

Proof. Adding a constant to the function, we may assume that it is
non-negative in R™. Let R — oo in (4.6).
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visiting The University of Texas at Austin and the University of Pitts-
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