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Abstract

We discuss the cost of controlling parabolic equations of the
form y, — Ay — k(-A)% = vl, in a bounded smooth domain
Q of R™ with homogeneous Dirichlet boundary conditions where
0 < 6 < 1is fixed The control v acts on the system through
the open and non-empty subset w of Q. As k — oo the system
becomes more and more unstable. We analyze the dependence of
the control v on the parameter k in the context of various different
control problems. We show that the norm of the control diverges
when the trajectory is driven from an initial state y° € L%(Q)
to the null state at any time T > 0. However, we prove that
the control converges to zero when the null initial state y° = 0 is
driven into a ball of an arbitrary radious ¢ > 0 around a given
terminal state y! € L2(Q2) or when the solution fulfills exactly a
finite number of constraints at time 7.

1 Introduction

Let us consider a distributed system whose state y is the solution of the
following P.D.E. (Partial Differential Equation):
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dy
3t + Agy = Bv (1.1)

where Ay, is a differential operator depending on a parameter £ € R and
where B is an operator which maps the space of controls (denoted by v)
into the space where %‘{ + Ay lies.

For the time being the writing of (1.1) is formal. We shall go into
very precise hypotheses later on. It suffices for the moment to assume
that (1.1) admits a unique solution, provided one adds to (1.1) an initial
condition

y |t=0 = y(0) = °, y° given (1.2)

and provided also one adds boundary conditions that we do not make
explicit for the time being.

We are interested in the cost of controllability when Aj, becomes less
and less stable as k — oo.

Let us make things a little bit more precise.

We are given a finite time horizon T and we are given y! in the state
space.

The controllability problem consists in (trying to) driving, by an ap-
propriate choice of v, the system from y0 to

N(y') = “neighborhood” of y'. (1.3)

Actually “neighborhood” will be taken in several forms, which may
be remotely related to the topological meaning of neighborhood.
If we take

Ny =y (1.4)

then one deals with ezact controllability.
If

N@EYH = y' + 8B, 8> 0, B= unit ball of the state space (1.5)

then one deals, if 3 > 0 can be taken arbitrarily small, with epprozimate
controllability.
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We shall also use a weaker notion where
NG = S(?t of s.tates whose projection on a f:mit.e L (L6
dimensional space E equals the projection of y*.

Assuming (a property that we shall check in all the situations studied
here) that there exists a control v in a Hilbert space & such that

y(T;v) EN(y') (1.7)
we then define the cost of the control as
. o1 2
inf > 1 I (1.8)

where v spans the set of all elements in U/ such that (1.7) is satisfied.
The quantity (1.8) is a function of k, 3% N (y!):

¢ (kin®, N (). (1.9)

We shall refer at this type of functions as the cost and we want to
study the behaviour of all these functions as k — oo (i.e. as A becomes
less and less stable).
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|
We shall consider operators A, with the following structure:
A= A—-KkC (1.10)
where
A is a linear coercive operator (1.11)
C is an unbounded operator which is linear, (1.12)
coercive and strictly weaker than A. )

It follows from (1.11)-(1.12) that the problem (1.1)-(1.2) and the bound-
ary conditions which will be expressed by

y(t) € Domain of A (1.13)

admit a unique solution. [ |
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Remark 1.1. We can also remark that problem (1.1), (1.2), (1.13)
admits a unique solution for all kK € R. The system becomes less and less
(resp. more and more) stable as k — +o00 (resp. k — —00). [

We can now present what is the bottom line of the paper, and of
subsequent papers. A preliminary remark is in order.

Remark 1.2. With hypotheses (1.11)-(1.12), system (1.1) is time irre-
versible. The backward (in time) problem is not well set but, at least
formally, we can expect different results (actually “opposite” results) as
k — 00 or k — —o0, and also as we take y° # 0,y = 0 or when we take
y'=0,y' #0.

Then the general form of the results we wish to prove is as follows:

¢(k;4°,0) — +00 as k — +00
{ (and — 0 as k — —00) (1L14)
and
o(k;0, N (y')) — 0 as k — +oo (1.15)
(and — 400 as k — —o0). ’

A few remarks are in order, before we proceed with more precise
statements.

Remark 1.3. Very roughly speaking, (1.14) means that it costs more
and more to drive a more and more unstable system from y° # 0 to 0,
and (1.15) means that it costs less and less to drive a more and more
unstable system from 0 to N (y?).

Remark 1.4. Of course in (1.14) we can replace “0” by some kind of
“neighborhood” of 0. This remark will be used in Section 3.3.

Remark 1.5. As we shall make precise in section 2, the controls we
consider in this paper are distributed controls. For the case of boundary
controls we refer to [LiZ5]. [



The cost of controlling unstable systems. .. 485

Remark 1.6. The situation is different for similar questions in the case
of time reversible systems. We shall present this case in a second paper
of this series.

Remark 1.7. Behind the above statements there is the general question
of comparing couples of operators {Ag, B}, in order to estimate the cost
of a couple. When is a couple “better” than another?. Of course one
has then to introduce notions independent of y°(or y!), i.e. to introduce

sup ¢(k;y°,0)
lylli<1

and

sup ¢(k;0,N(y')).

lytfi<1

Notions of this type have been introduced in [Li3] but without con-
nections with unstability. We hope to return to these questions.

Remark 1.8. It seems plausible to think that somewhat similar results,
at least locally around a trajectory, will hold for some non linear systems
with unstability. But this is an open direction of research.

Remark 1.9. A number of numerical experiments concerning the ques-
tions studied here are presented in [GLi}.

The content of the paper is now as follows.

In section 2 we define in a precise manner a class of examples which
enter in the general above framework.

In section 3 we study the cost of controlling to zero (or near zero),
and in Sections 4 and 5 we study the cost of controlling from zero to
some “neighborhood” of a given state.
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Some other cases are briefly indicated in Section 6, which can be
treated by the quite general methods introduced in Section 3, 4 and 5.

In Appendix A we give the technical details of the proof of a unique-
ness result that is used in section 3. Finally, in Appendix B we give
the proof of an abstract result showing that approximate controllability
implies simultaneous finite-approximate controllability.

2 A family of distributed systems

Let Q be a bounded smooth domain of R",n > 1.
Given T > 0 let us consider the following parabolic equation in the
cylinder Q@ = Q x (0,T):

v —Ay—k(-A)Py=vl, in Q
y=20 on X (2.1)
y(z,0) = y°(x) in 9,

where 0 <9< 1,k>0and =T x (0,T), I' = 892

Both the state y and the control v depend on the space-time variables
(z,t) € Q. In (1) (—A)? denote the powers of the unbounded operator
—A in L?(R) with domain D(—A) = H3(Q) N H}(N) (i.e. —A denotes
the Dirichlet Laplacian). By /' we denote derivation with respect to time.

In (2.1), 1, denotes the characteristic function of the open subset w
of Q. Therefore the control v acts on the system through the subset w.

As the value of the parameter £ increases, system (2.1), in the ab-
sence of control (i.e. when v = 0) becomes more and more unstable. This
can be easily seen by computing the eigenvalues of —A + k(—A)? with
Dirichlet boundary conditions. Indeed, if 0 < A; < Ap <--- < A; < -
are the eigenvalues of the Dirichlet Laplacian, the eigenvalues of this op-
erator are \; — k)\g Therefore, as k increases more and more eigenvalues
become negative thus leading to a larger and larger unstable subspace
of L%(Q) that when k / oo, eventually, covers the whole L%(Q).

This paper is devoted to the analysis of how the controllability prop-
erties of system (2.1) behave as k / oc.

We fix any 0 < @ < 1 and consider the following three controllability
problems:
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Problem 1. Null-controllability.

Given y° € L2() we look for v € L%(Q) such that the solution of
(2.1) satisfies

y(T)=01in Q. (2.2)

The methods of [LR] and [LZ] allow us to show that for every 0 < 6 < 1
and k& > 0 system (2.1) is null-controllable. Therefore, for any Y0 €
L?(9) the set of admissible controls

Uk, = {v € L*(Q) : y solution of (2.1) satisfies (2.2) } (2.3)

is non-empty.
We introduce the quantity

M( ;90 0 inf / / v2dzdt (2.4)

veu k

which measures the amount of control that is required to drive the initial
state yo to zero.

This function gives now a precise definition in the present situation
of ¢(k;y°,0) in (1.14). The quantity M depends on three parameters:
k, which is the parameter in system (2.1) that measures its unstability;

0 the initial data to be controlled and, on a third variable that takes
account of the final condition to be reached and that, in this particular
case, is always zero.

This problem will be studied in detail in section 3. Roughly speaking
we prove that

M (k;yo,()) — 00 as k — o0 | (2.5)

for any y* # 0. We also give some estimates on the growth of the
function M (k;°, 0).

This is a natural result. Indeed, as we mentioned above, as k — oo
the unstability of the equilibrium y = 0 of system (2.5) increases and
consequently, it becomes harder and harder to drive the solution to this
equilibrium.
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The fact that the unstability of system (2.1) increases as k increases
suggests that it may become cheaper and cheaper to drive the initial
data y° = 0 to a non-trivial final data y! # 0. Indeed, in this case we
are trying to quit the equilibrium y° = 0 whose unstability is increasing.

Therefore, let us consider now the case in which 3 = 0. In other
words, let us consider the system

v —Ay—k(-APy=vl, in Q
y=20 on X
y(0) =10 in

(2.6)

Due to the irreversibility of system (2.1) the exact controllability
property does not hold and therefore the set of reachable states at time
T is strictly contained in L?(Q). It is then natural to relax the control
requirement

y(T)=y! in 0 (2.7)

at time ¢t = T.
We consider here two different possibilities:

Problem 2. Approximate controllability from y° = 0.

Given any y' € L%() and 8 > 0 we relax condition (2.7) to
1 9(T) — " llL2)< B (2.8)

or, in other words,
y(T) €y' + 8B (2.9)

where B denotes the unit ball of L2(().
System (2.6) is approximately controllable and therefore the set of
admissible controls

uk, (yl;ﬂ) = {v € L(Q) : y solution of (2.6) satisfies (2.9) } (2.10)

is non-empty for any 4> 0 and y' € L2(Q).
We set

T
M (k;o,y1+ﬂ3) = inf 1/ /vzdwdt. (2.11)
Ukiip 2J0 Jo
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This function gives now a precise definition in the present situation
of ¢(k;0, M(y')) of section 1 with M(y') = y' + 8B.

The behavior of this function with respect to k will be addressed in
section 4. As we will see

M(k;O,lerﬁB)—»O as  k — 00 (2.12)

for any y' € L%(Q2) and 8 > 0 and this agrees with our intuition in
the sense that more instability makes the control of the system cheaper.
However we will only be able to prove (2.12) in two particular cases: (a)
w =N and (b) § =0.

Problem 3. Finite-dimensional controllability from y° = 0.

Let E be a finite-dimensional subspace of L%(Q) and let us denote
by 7g the orthogonal projection over E.

Given any y! € L%(Q) there exists some v € L%(f) such that the
solution of (2.6) satisfies

mi (y(T) — ') = 0. (2.13)

This finite-dimensional controllability property is in fact an inmediate
consequence of the approximate controllability property of Problem 2
above (see [Z}).

Therefore, the set

uk, (0,7rp;(y1)> = {v € L%(Q) : y solution of (2.6) satisfies (2.13) }

is non-empty.
We set

1 (T o
M (k:O,WE(yl)) = inf 5/ /v“dxdt. (2.14)
vl Ey0rp@r) < /O S

This function gives now a precise definition of ¢(k; 0, M(y!)) with M(y')
given as in (1.6). As we will see

M (k;O,wE(yl))—)O as k — oo

too. This will be done in section 5 in two cases: (a) when E is fixed; (b)
when E is the span of the eigenfunctions of the laplacian associated to
eigenvalues \ < u(k) with p(k) = k% and some 6 < 2 depending on 6.
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When considering any of the problems we have described it is useful
to have in mind that all computations are rather explicit in the particular
case in which 8 = 0. Indeed, when 0 = 0 the state equation reduces to

y — Ay — ky = vl,,.
This equation, by the change of variables z = e *y and w = e ¥y

reduces to
2 - Az = wl,,.

Therefore, at this level, the dependence with respect to k¥ disappears.
However, when dealing with Problems 2 and 3 one has to take into
account that the final requirements at time ¢t = T change with this
change of variables.

3 The cost of controlling to zero

3.1 The main result

Let us recall that M(k;y% 0) measures the amount of control that is
needed to drive the initial data y° to the zero equilibrium.
The main result of this section is as follows:

Theorem 3.1. For any y° € L2(Q),y° £ 0, ‘
M(k;4%,0) = 00 as k — . 3.1
More precisely, there exists ¢ > 0 (which depends on y°) such that

M(k;3°,0) > ck as k — oo. (3.2)

Remark 3.1. As we will see in Remarks 3.2 and 3.3 below the linear
growth can be sharp or not, i.e. M(k; O, 0) can grow ezactly like ck as
k — oo or, in other cases, it can grow faster than ck.

Remark 3.2. One could ask, according to the general question raised in
the Introduction, what happens when k¥ — —oo. We suspect that in that
case M — 0. But this is an open question. One can go further if one
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weakens the notion of controlling to zero. This will be presented in Sec-
tion 3.3 below. u

Proof of Theorem 3.1.

Let us consider the adjoint system

—¢' —Dp—k(-A)YPp=0 in Q
=0 on X (3.3)
o(T) = ° in Q.

The null controllability of system (2.1) is equivalent to the existence of
a positive constant Cj > 0 such that the following holds:

T
1 0(0) 220y < Ok /O /w o2dzdt, Ve® € L3(Q). (3.4)

More precisely, there exists Cy > 0 such that (3.4) holds if and only
if for every y° € L?(9) there exists v € L%(Q) such that the solution of
(2.1) satisfies

y(T)=0in O

and the mapping y° € L2(Q) — v € L%(Q) is continuous.
The methods of [LR] and [LZ] allow to prove that system (2.1) is
null-controllable and therefore there exists a constant Cy such that (3.4)

holds.
By duality (see J.-L. Lions [Li], vol. 2) one can show that the control

v of minimal norm such that

2/ /vkdxdt M(k;4°,0) = 1nf —/ / v2dzdt (3.5)

(according to the notations of (2.3)-(2.4)) is given by
vp = ¢ in w x (0,T) with ¢ solution of (3.2) where

©° minimizes Ji(-;3°) below in the Hilbert (3.6)
space of data ¢° such that x(0) € L2(9).

Jk ,y 2/ / 2da:dt+/ )ydz. 3.7

where
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Once (3.4) holds it is easy to see that Ji(-;3°) has an unique min-
imizer such that ¢(0) € L%(Q) and therefore the optimal control v is
uniquenely determined by (3.6).

On the other hand

1 (T
—/ /v,%dzdt = M(k;4°,0) = -
2Jo Juw

Therefore (3.1) is equivalent to prove that

min J 0; 0. 3.8
(oD oy R ) (38)

: 0.,0
{¢:¢((%lé%2(n)} Je(p3y") = —o0 as k — o0. (3.9)

To show (3.9) we evaluate the functional Ji over particular choices
of the initial data °.

To do that we denote by 0 < A\; < A2 < --- < Aj £ --- — o0 the
eigenvalues of —A in H}(2) and by {w;} the corresponding sequence of
eigenfunctions constituting an orthonormal basis of L2(2).

We choose (0 = pw; with p € R and j € IN. Then the solution ¢ of
(3.2) can be computed explicitely in separated variables:

o = peFN 2Ty (). (3.10)
Then @
Jk(@°) = J(pwj) = —2lp2 + bjp (3.11)
where
2(kXS-A)T _
2(kX0= ;) ) Ju 9

Observe that in (3.11) and in the sequel we drop y° from the variables
on which Ji depends to simplify the notation.
Then, for any j € IV,

b2
inf Jip(pw;) = — L 3.13
and obviously
b2
min (%) < inf Ji(pw;) = - (3.14)
{p%:p(0)eL2(02)} <R 2a;
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Let us analyze now the quantity b§/2aj:

Q206N 2T kA" ( / yowj d$)2
o . (3.15)

( 2(ch9 AT / w? 247
w

It is then clear that, for j € IV fixed,

2
i
2

2
bz )\g (/ yowjdz)
2—a- ~k 2 - ) (3.16)
J / widz
w
In particular
b2 0
lim < = Vi : i .
;ngoza, oo,Vi €N /Qywjdz#O (3.17)

and in view of (3.8)-(3.14) this concludes the proof of the Theorem.

Remark 3.3. According to the proof of the theorem, (3.2) holds with

(3.18)

It is easy to see that in some particular cases this constant diverges.
Indeed, let us consider the one-dimensional case in which = (0, 1) and
w = (1, i.e. the control acts everywhere in 2. Then X; = (j7r)2. On the

2
other hand, there exists y° € LQ(Q) such that ( / yOw j) ~ j7176 a5
0

j — oo for any 6 > 0.
Going back to formula (3.18) we see that

2
(4
AV ~ jHO-1/2-5

2
wj
w
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Therefore, as soon as ¢ > 1/2, if a is defined as in (3.18), then ¢ = oo
for suitable choices of y° € L2(Q2). This shows that the linear growth
estimate of (3.2) for M(k) with respect to k is not optimal in general.
We will obtain sharper estimates in section 3.2 below.

Remark 3.4. It is not hard to see that the linear growth estimate (2.2)
is sharp in some cases.
Consider the case in which w = Q and y° = wjo, for some jo € IV,
i.e. y0 is chosen to be an eigenfunction of the Dirichlet Laplacian.
Then, if ¢° = Zajwj; we have
Jj21

2(kX8-X)T

1 - e it —1 SV WRY o

0 2

7 (#5i0) = 5 32 (m) e
Jjz1 J J

It is clear that the minimun of Ji is achieved on the one-dimensional
subspace generated by wj,. Proceeding as in the proof of Theorem 3.1
we deduce that
@ _ .
250200 T (28— 20
(ez(kAgO—AjO)T ~ 1)

M(k;wj, 0) = ~ ,\gok as k — oo.

3.2 Further estimates.

The object of this section is to show that, on particular examples, the
linear growth estimate of (3.2) can be improved in the sense that M
grows faster.

We consider some particular cases:

Example 1. One space dimension.

We set Q = (0,1) so that wj(z) = v2sin(jrz) and ); = (j=)2. We
choose w = (o, 8) with0 < a < 8 < 1.
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According to (3.8)-(3.14), given any y° € L%(0, 1) we have

1 2
2Ak(Gm)?*°—(3m)*)T (}.:(j7r)29 - (j7r)2) (/ ° sin(j1ra:))
0

8
(ez(k(jvr)”—(jme_ 1) / sin’(jmz)

o

M(k;9°,0) >

(3.19)
We choose j so that fx(j) = k(jn)® — (jn)? is maximum. Equiva-
lently,
1
(7)) = (kO)TS & j = L(ko)T0®), (3.20)
T
However, this choice of k does not guarantee that j € IN. Thus, let
us consider the sequence k; — oo such that all the j-s given by (3.20)
belong to IV.
The value of f(j) at this point is (09/1’9 - 61/1'0) k118 = cop1/1-0
with cg = 69/17% — §1/1-9 5 0. Thus, with this choice of k = k;:

1 2
0 . .
62C9Tk1/(1‘9)69k1/(1-0) (/0 Y Sln(]"m))

egcokl/(l—oyr 8 2 -
/ sin(jrx)
2]

Since ff sin?(jmx)dz remains bounded above and below by positive
constants we see that there exists vg > 0 such that

M(k;4°,0) >

1 2
M(k;y°,0) > yok!/1~0) ( / yosin(jm)) : (3.21)
0

In view of (3.21) it is clear that the rate of growth of M(k) depends
on the initial datum y° under consideration. For instance, if

/ yOsin(jrz) ~ cj_%'a ,J — 00 (3.22)
Q

for some ¢>0 and 6> 0 (observe  that this guarantees

oo 2

z (/ y° sin(ij)dz) < 00 or, in other words, y° € L2(0, 1)), taking
; 0

j=1

into account that j is of the order of k1/2(1-6) we deduce that

M(E;0,0) 2 7ok (/0107 1/20-00-6/1-0) = 1/20-0)-8/0-0)  (5,93)



496 Jacques-Louis Lions and Enrique Zuazua

Therefore, for suitable choices of the initial data we see that the estimate
(3.2) may be replaced by (3.23) along the subsequence k; such that (3.20)
holds.

Observe that 1 > 1/2(1 — ) if and only if 8 < 1/2. Therefore (3.23)
only shows a faster growth than (3.2) in the range 6 > 1/2.

Let us also check that (3.23) holds not only for the sequence k; but
for the whole family k¥ — 0o. Indeed, for any k > 0 sufficiently large we
choose j = [%(k0)1/2(1‘9)] where [] denotes the integer part. Then

f ([_71;(,69)1/2(1—0)]) _f (1_1;(k0)1/2(1—9)) be =gk /179 4 ¢
with

lel<

5 (l(ka)l/Q(l—"))l <c [kHTz(%T + km—’-—‘os] -0 (kﬂilffoi) .
s

Therefore
f ([l(ka)l/z(l“’)D ~ KO0 a5 ks oo
T

We conclude that (3.23) holds without extracting a subsequence.
Therefore we have proved that:

Proposition 3.1. In one space dimension and when 6 > 1/2, for every
1<y < 1/2(1 — 8) there ezists y° € L*(Q) such that

M(k;yo,()) >ck” ask — o

for some ¢ > 0.

Example 2. Several space dimensions and w = neighborhood.
of the boundary.

Let us consider now the general case of a bounded smooth domain
of R™ n > 1. Suppose that the support of the control w is a neighbor-
hood of 8§ in Q. In other words, w = @ N} where O is a neighborhood
of 81 in R™.

In this geometrical setting it is well-known that when the control
time is large enough the wave equation is exactly controllable in H§ () x
L%(Q) with L*—controls supported in w (see [Lil], vol. 1).
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As a consequence of this we deduce easily the existence of a positive
constant ¢ > 0 such that

0< CS/w;-.’dx,v]' EN. (3.24)
w

Of course, condition (3.24) holds for more general subdomains w. For
instance, from [Lil, vol. 1] we know that it holds when w is a neighbor-
hood of a subset of 8 of the form I'(z%) = {z € 8Q : (z - z0) - v(z) > 0}
for some z° € R™(v(z) denotes the outward unit normal to Q at w € 99
and - the scalar product in R"™). More general sufficient conditions for
(3.24) to hold may be obtained in terms of the propagation of bicharac-
teristic rays (see [BLR] and Appendix II in [Lil, vol. 1]).

We reproduce the computations of Example 1 above.

According to (3.8) and (3.14) we have

2
e 2(RX=X)T (k/\g _ /\j) (/ yowj)
M(k;4°,0) > 2 .

> (ez(k,\g—,\j)T _ 1) [du,?

Recall that the maximum value of the function fi(X) = kA% — X is
achieved when

(3.25)

A = (6k)1/(1-0), (3.26)

It is clear that (3.26) provides an eigenvalue of —A in H}(Q) only
for suitable values of k. We choose the subsequence j = ¢, { € IV with
o > 0 to be fixed later on. We set

1 _
ke = 5()\@7)1 8 (3.27)

We analyze the lower bound on the right hand side of (3.25) as £ — oo
by taking j = £ and k as in (3.27).
Since max Fe(N) = gk /179 in view of (3.24) we get

2
M (ky; yO, 0) > Ck;/(l—e) (/ you;ga> . (3.28)
JQ

We now recall the existence of a constant ¢ > 0 such that Aj > cj 2/ n,
n being the space dimension. Then

Xj = Ao > b/, (3.29)

[ d

{
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We choose the initial data y° € L?(f2) such that its Fourier coeffi-
cients / yowj are non-zero if and only if j = 9 for some ¢ € IN. Then,
0

according to (3.29) we can choose y° € L?(Q) such that

2 -
(/ yowgadx) ~ /\;‘,'27 ’ , as { — 00, (3.30)
0

for some 6 > 0.
In view of (3.27), (3.28) and (3.30) we deduce

—L
1-6

0 o (1-5%)
Mke;y”,0) > cky 4 (3.31)

Observe that (1-n/20)/(1—6) > 1if and only if § > - which holds
for any 8 > 0 provided o is chosen sufficiently large (i.e. o > n/29).
We have proved the following result:

Proposition 3.2. Let Q be any bounded smooth domain of R™ and w a
neighborhood of its boundary. Then, forany§ > 0andl < v < 1/(1-6)
there exists y° € L2(Q) such that

.. q,0
lim sup M(k;y°,0)

m su > 0. (3.32)

Remark 3.5. The result stated in Proposition 3.2 is much weaker than
the one we have proved in Proposition 3.1 for space dimension n = 1.
Indeed, while in one space dimension

M(k;y°,0) > ck”

holds for all ¥ — oo, in Proposition 3.2 we find a subsequence kg —
oo such that this inequality holds. Observe that k¢ is of the order of

20(1-6)
ke ~ €7 n with ¢ > n/20 and therefore ky >> £(1-8)/6, Thus the
subsequence k¢ grows faster and faster as § — 0

Example 3. Several space dimensions and exceptional w.

In Example 2 above we have considered the case in which (3.24)
holds. However, it is well known that for some particular domains
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there exist subdomains w for which there exists a subsequence of eigen-
functions {wj(g)} such that

/w?(l)da: — 0 as £ — oo. (3.33)
w

This is for instance the case when Q is the unit ball and w is the ball
of radious r with » < 1. Indeed, in this case it is well known that there

exist eigenfunctions whose energy is concentrated on a neighborhood of
the boundary and for which (3.33) holds (see for instance [CMZ]).

For these subsequences of eigenfunctions, since w;‘?d:c appears in

w
the denominator, the rate of growth may be faster than in (3.32). [ |

Example 4. 6§ = 0.

When 6 = 0 all the computations can be done explicitely. Indeed, in
this particular case, system (2.1) reads as follows

yY-Ay—ky=vl, in Q
y=20 on X (3.34)
y(0) = ¢° in Q.

Observe that if v is such that the solution y of (3.34) satisfies y(T') =
0. Then z = ye *t is such that

Z—Az=pl, in Q
z2=0 on X (3.35)
z(0) = ¢/° in Q
with p = e ¥y and 2(T) = 0.
Let us see that
M(k;3°,0) — 00 as'k — 00 (3.36)

as soon as y° # 0.
We argue by contradiction. If (3.36) does not hold there exists a
sequence k; — oo and controls v; such that the solution yy; of (3.34)

satisfy yx;(T) = 0 and
T
f L

o

T<C <00,V (3.37)




500 Jacques-Louis Lions and Enrique Zuazua

According to the change of variables above this implies the existence
of a sequence of controls p; = e‘kitvkj for (3.35) such that the corre-
sponding solution zj; satisfies

21y (T) = 0 (3.38)

and moreover, in view of (3.37),

T
/ / e2kjt
0 Jw

From (3.39) we deduce that pj; is bounded in L%(w x (0,T)) and
moreover

2
pkjl dzdt < C < 00, Vj. (3.39)

pr; = 0 in L(0, T; L3(w)) (3.40)

and
pr; — 0 weakly in L%(w x (0,T)). (3.41)

By the regularizing effect of the heat equation, from (3.41) we deduce
that

2k;(T) = 2(T) in L¥(Q) (3.42)
where z solves
2/ —Az=0 in Q
z=0 on X (3.43)
z(0) = ¢° in Q

Clearly (3.38) and (3.42) are in contradiction since 2(T) # 0 whenever
0
y' #0.

3.3 Weakening of the notion of controlling to zero.

Let us introduce

E, = span{w; : A; < pu} and 7, = orthogonal (3.44)
projection from L%(Q) onto E,,. ’
We then define
Mu(k;y°,0) = inf 2 / / v2dzdt, (3.45)
v2Jo Ju

where v is such that
muy(T;v) = 0. (3.46)
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If we denote by Ll‘fd,u the set of v's such that (3.46) holds true, we
have obviously
L(fd’u D Uk, (as defined in (2.3)) (3.47)

so that
My(k;y®,0) < M(k;y°,0). (3.48)
Using duality as in Section 3.1 above, we have

L0y s 0,0
Mll:(k’y ,0) - ‘pégg Jk(SD ' Y ) (3’49)

m

(compare to (3.8) where 0 spans an infinite-dimensional subspace of
L3(Q)).

The arguments of section 3.1 apply provided one can find w; € E,
such that

(% w;) # 0
ie.
y* ¢ By (3.50)
(a condition which is always satisfied if y% # 0 when u = +00, E, =
L*(Q)).
Therefore,

Theorem 3.2. Provided y° satisfies (3.50), one has

M (k; 4%, 0) — +00 as k — +oo. (3.51)

One can go one step further in that case:

Theorem 3.3. We assume that (3.50) holds true. Then there ezxist two
positive constants vi,ye such that

ik < My(k;9°,0) < vok (3.52)
as k — +o0.

Proof of Theorem 3.3.

The lower bound in (3.52) can be proved as in the proof of Theorem
3.1.
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To prove the upper bound, let us take

0= Y fiw;. (3.53)
Aj<p
Then :
o= @ilt)fiw; . (3.54)
Aj<p
where
— o+ (A,- - k)\g) 0; =0, p;(T)=1 (3.55)
and
2
1 T
Ik (¢%54°) = —/ dt/ Y ei®)fsws | dz+ D 5(0) /y wjdz.
2Jo Jo \izu A<
(3.56)

Let us recall now the following result from [LR} and [LZ|:

Lemma 3.1. Assume that Q is a bounded domain of R™ of class C™.
Let w be any open non-empty subset of . Then, there exist two con-
stants C1,Cq > 0 such that

2

/ Z ojwi(z)| dz > Cre”C2VE E | a; |2 (3.57)
“Ix<u Aj<u

for every u and every {a;} € £2.

Then
inf Jg (<p°,y°) > Z inf [ a;f? +ﬁ,f,] (3.58)
Aj<u fieR
where

T
C = Cle—cz\/ﬁ, aj = /0 (p;';(t)dt, /Bj = wj(O)Ayourjd$,

l.e.

(3.59)

'iank(go )>—-Z

e 200:]



The cost of controlling unstable systems. .. 503

or

2
Mu(ki1%0) < 3 . (3.60)

But ¢; = e~ NO(T — ¢) so that (3.60) can be written in an
explicit form

2
2kXe—2;)T 0
2B 2(kX5 ) (/S;y wjd:z:) (k/\g— Aj)

e
M (k;4°,0) <
u\%s 1 AJZS:# 2N =X)T _ 4

(3.61)

hence the result follows.

Remark 3.6. Note that Lemma 3.1 is only required to make explicit
the dependence of the upper bound (3.61) with respect to u. Otherwise
it is sufficient to use the fact that {w;},<, are linearly independent in
L%(w). [
Remark 3.7. It is interesting to notice that (3.61) (which is valid for
k — —o0) implies

Theorem 3.4. When k — —o0 one has

Mu(k;yo, 0) — 0 ezponentially fast. (3.62)

We notice that this result follows the botton line of this paper. It be-
comes cheaper and cheaper to control to zero systems which are more and
more stable but we emphasize that this is proven only for M ,,(k;yo, 0)
with p finite.

4 Controlling to a ball from % =0
We consider now the system with null initial data
y - Ay—k(-A)Py=vl, i Q

y=20 on X (4.1)
y(0)=0 in Q.
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Given y! € L%(Q) and 8 > 0 we look for v € L%(Q) such that
y(T) € y' + BB. (4.2)

The fact that this approximate controllability problem is solvable for
every y! € L%(Q) and 8 > 0 is a consequence of the following unique
continuation property for the dual system: If ¢ solves

—p'— Ao —k(-8)P9=0 in Q
=0 on ¥ (4.3)
o(T) = ¢° in  Q

and ¢ =0 inw x (0,T), then ©° = 0.

This uniqueness property can not be derived from Holmgrén’s Unique-
ness Theorem since the equation in (4.3) is an integro-differential equa-
tion. However using the analyticity of the semigroup generated by
(4.3) the uniqueness problem can be reduced to the case where ¢ =
ae”(’\j‘k)‘?)(T_t)wj(:c) for some @ € R and j € IN. In this case the
uniqueness holds trivially since w; are the eigenfunctions of —A in H(Q)
and therefore w; = 0 in w implies immediately that w; = 0. We refer to
the Appendix at the end of the paper for the details of the proof and to
[LiZ1,2] for various applications of this kind of arguments.

This shows that the set of admissible controls

Uk (y*;8) = {v € L*(Q) : y solution of (3.1) satisfies (3.2) } (4.4)
is non empty.
We define the cost of controlling to y! + 8B as
1 T
M(k;0,y' + B) =  inf —/ /dexdt. (4.5)
vellbyu1,0) 2 /0 Jw

The optimal control v that realizes the infimum in (4.5) may be
characterized as follows:

v = ¢ where ¢ solves (4.3) with (4.6)
©? the minimizer of Ji(¢% !, ) below in L%(Q) ’

with

1 /T
Ti(e%yt, B) = 3 /0 /sogddeb’ I @° 2 —Ly1¢°dw- (4.7)
. w
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We refer to [Li2] and |FPZ] for similar questions in the context of the
classical heat equation.

Taking into account that the unstable subspace of system (4.1) in-
creases as k increases it seems natural to expect that

M(%;0,y' + BB) = 0 as k — oo.

We are going to prove that this does indeed hold in two particular
cases. The general case remains open and it is unclear whether this
property will still be true when w C Q,w # Q and 6 > 0.

Example 1: w = Q.

In this case the control v acts everywhere in 2. We can try to
reproduce the arguments of Example 4 in section 3 above.
Let us consider first the heat equation

Z—Az=p in Q
z=10 on X

z(0) = 0.

(4.8)

Given y' and 8 let p be the optimal control (the one of minimal
L2—norm) for (4.8) such that

z(T) € y* + BB.

The control p may be developed in Fourier series

p=_pi(thwj(z) (4.9)

Jj>1
and then

t
z= ZL e M= )pj(s)dsw;(x). (4.10)

Jj21
We now look for a control v such that the solution of (4.1) satisfies
y(T) = =(T) @

and therefore, in particular, (4.2) holds.

We have
v= Zvj(t)wj(z)
Jj>1

505
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and

t » '
y=3 [ Oy o)dousz).

Jj21

Therefore equation (4.11) becomes
T T
/ e“(Aj"kAg)(T_’)vj(s)ds = / e_’\j(T—")pj(s)ds. (4.12)
0 0

The simplest solution of (4.13) is given by

vj(s) = e FNT=9p.(s). (4.13)
Thus, the control
—kN(T -
v= 3" e T pi(s)w;(z) (4.14)
721

is such that (4.2) holds and consequently

1 (T 1 T Py
0l <1 2_ 1 ~2X8(T~3)_2
M(k;0,y" + BB) < 2/0 /Qv =3 E A e i pj(s)ds. (4.15)

j21

Thus, it is sufficient to see that

T
)y / e-zk,\g(T-s)pg(s)ds — 0, as k — oo. (4.16)
2170

This can be done easilyy First of all we observe that
e_zk)‘g(T_")pjz-(s) — 0 as k — oo for each j € IN by Lebesgue’s

dominated convergence Theorem. Indeed, we have:
(a) e"2k)‘g(T_s)p]2-(s) —0ae s€(0,T) as k — o0;
(b) e HNT=9p2(5) < p¥(s) ae. s € (0,T), Vk > 0.

The fact that (4.16) holds follows also by Lebesgue’s Theorem since

T T
/0 e 2N T-9,2( ) g < [) p2(s)ds, ¥k > 0, Vj € IV
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and

T T 2
Z/ p?(s)ds =/ /p dzdt < 0o.
1o o Ja

We have proved the following:
Proposition 4.1. When w = Q for every y' € L*(Q) and 8 > 0,

M(k;0,4* + BB) — 0 as k — . (4.17)

Remark 4.1. The method of proof of Proposition 4.1 does not apply
when the support of the control is restricted to some strict open subset
w of Q. Indeed, the method fails since even if supp(p) C w x (0,T), we
can not guarantee that the control v given by (4.14) satisfies supp(v) C
w % (0,T) except when 6 = 0.

The case 8 = 0 is the object of the following example. [ |

Example 2: § = 0.

Let us consider the pérticular case @ = 0 but not for any open subset
w of Q.

The system under consideration is:

y—Ay—ky=vl, in Q
y=0 , on X (4.18)
y(0) =0 n Q.

As in example 1 above we consider first

2Z—Az=pl, in Q
2=0 on X (4.19)
z2(0)=0 in Q.

Given y' € L%(Q) and 8 > 0 we choose p as being the optimal control
for (4.18) such that 2(T) € y! + 8B.
We then look for v such that the solution of (4.17) satisfies (4.11).

Proceeding as in Example 1 above we obtain

oF = Ze_k(T—S)pj(s)wj(x) = e *¥T=9p(z, 5).
21
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We see that, since supp(p) C wx (0, T) we also have supp(v) C wx (0,T).
By Lebesgue’s Theorem it is easy to see that v* — 0in L%(wx (0, T))
and therefore (4.17) holds too.

We have proved the following result:

Proposition 4.2. Let w be any open non-empty subset of Q. Suppose
that = 0. Then, for any y* € L%(Q) and 8 > 0, (4.17) holds.

5 Controlling finite-dimensional projections
from y° =0

. 5.1 The case where the number of frequencies is fixed

We introduce the following family of finite-dimensional subspaces of
L3(D):
E, =span{w;:A; < p}. (5.1)

By =, we denote the orthogonal projection from L3() on Ey.
We consider the system:

v —Ay—k(-A¥y=vl, in @
y=20 on X (5.2)
¥(0)=0 in Q

and given y! € L%(Q) and p > 0 we analyze the controls v such that

mu(y(T) — y') = 0. - (5.3)
We introduce the set of admissible controls

Uk, 0, 7,(y")) = {v € L%(Q) : y solution of (5.2) satisfies (5.3) }
' (5.4)
The admissible set L(:d is non-empty. Indeed, as we have seen in
section 4 above, the reachable set {y(T) : v € L%(Q)} is dense in L%(Q).
Consequently, for any y! € L%(£2) and € > 0 there exists v € L%(Q) such
that " @) \
Yy(T) -y lx@y< e
{ T (u(T) = y1) = 0 - 68)

(see Appendix B for the details of the proof and [Z] for related questions).
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Observe that we do not address here the control problem with the
final conditions (5.5) but rather relax those final requirements to (5.3)
in which we only take into account the finite-dimensional projection of
y(T) over E,.

However the existence of controls such that (5.5) holds guarantees
that the admissible set of controls &¥,(0, 7,(y!)) is non-empty.

Let us analyze now the cost of controlling this finite-dimensional
projection in terms of the parameter k, i.e. the quantity

T
M(k;0, 7u(y)) = inf l/ /v2dxdt. (5.6)
velly0mutyt)) 2 S0 Ju

We have the following result:

Theorem 5.1. For any open subsetw of @, u > 0,0 > 0 andy' € L2(Q)
it follows that

Jim M(k;0, 7u(y')) = 0. (5.7)

As an immediate corollary of Theorem 5.1 the following can be said
for the case in which y° # 0, i.e. for system

v - Ay-k(-A)Py=vly im Q
y=20 on X (5.8)
y(0) = o° in Q

Given p > 0 and y! € L%(Q) we introduce the set of admissible
controls

ks (%, mueh) = {o € 17(Q) : 65:9)
y solution of (5.8) satisfies (5.3) }, )

and the cost of achieving the control property (5.3), M(k;y°% m,u(3?)),
as

T
M(k; %, mu(yh)) = inf = / / v2dzdt. (5.10)
vell 0 mu(t)) 2 S0 Jo

As a consequence of Theorem 5.1 the following holds:
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Corollary 5.1. Under the assumptions of Theorem 5.1, if y° € LQ(Q)
is such that 7, (y°) = 0 then

M(k; 30, 7,(y!)) — 0 as k — oo. - (5.11)

Remark 5.1. Theorem 5.1 guarantees that the cost of controlling ex-
actly a finite number of frequencies converges to zero as the parameter
k measuring the degree of unstability of the system diverges. However,
this holds when the initial data vanishes, or, as in Corollary 5.1, when
the projection of the initial data over the frequencies to be controlled
vanishes.

Remark 5.2. The same control problem for system (5.8) can also be
addressed when 7, (%) # 0. In this case the same proof of Theorem 3.1
applies and we obtain that M(k;y°, 7, (y1)) — oo as k — oo.

Therefore we see that the unstability may make more expensive con-
trolling a finite-dimensional projection. This depends on whether our
control problem is compatible with the dynamics of the system in which
the energy of every Fourier component of the system, in the absence of
control, increases more and more rapidly as k — oo.

Remark 5.3. The proof of Theorem 5.1 provides an estimate of how
rapidly M (k;0, 7,(y!)) — 0. Indeed from (5.11) below it is easy to see
that for every y! € L2(Q) there exists a constant C > 0 such that

M(k;0,7,(y")) < C as k — oo.

2Tk’
In fact, if 7 (y') = O for some p' = Xj, < p this estimate can be
improved and

k
1
M(k;0,m,(y7)) < C g 85k — oo
e J0+1

holds for a suitable C > 0. ]
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Remark 5.4. The understanding of Theorem 5.1 and of the estimate
of Remark 5.3 can be improved by looking at the case £k — —oo, ie.
when we want to control finite dimensional projections from 3% = 0 of
operators which are more and more stable.

We shall prove in section 5.3 that

M(k;0,7,(y")) = +ooas fast as | k | when k — —oo.

Assuming that Theorem 5.1 holds let us prove Corollary 5.1:
Proof of Corollary 5.1.

We decompose the solution y of (5.8) as y = yg + z where yg solves

yo — Ayo — k(—A)oyo =0 in Q

yo=20 on X (5.12)
yo(0) = ° in  Q

and
2 —Az—k(-A)¥z=vl, in Q
z2=0 on X (5.13)
2(0)=0 in Q.

Then 7,(y(T) — y') = 0 if and only if =, (2(T) — (¥* — vo(T))) =
0. However, since 7,(y%) = 0,7, (yo(T)) = 0 too and therefore
this condition is equivalent to m, (2(T) — ') = 0, M (k;0, 7, (y")) =
M (k;3°, 7,(y')) and consequently (5.11) holds.

Proof of Theorem 5.1. First of all we observe that the optimal con-
trol realizing the minimum (5.6) among the admissible controls can be
characterized by means of the adjoint system

—o' —Ap—k(-A)¥Pp=0 in Q@
=0 on X (5.14)
o(T) = ¢° n  Q
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More precisely

v = ¢ where ¢ solves (5.8) with % € E, such that (5.15
the functional J}f below achieves its minimum in E,, -15)
1 T

Jﬁ(cpo) = —/ / @2dzdt — / y'ldz. (5.16)

2 0 Jw 2]

On the other hand
) 0 — i 7k(,,0

M (50 mu(v!)) = - min JE(o°) (5.17)

We refer to [Lil] and [Z] for the details in the case of the classical heat
equation.
We recall that according to Lemma 3.1:

/

Actually since the frequency u is fixed in Theorem 5.1, it suffices to
observe that there exists C > 0 such that

[., Y ejwi(z) 2

dz >C Y |a; % V{aj} € £ (5.18)
Aj<p Aj<p
which follows from the fact that the w;’s restricted to w are linearly
independent in L?(w) when \; < p.
On the other hand. any solution ¢ of (5.15) with data ¢° € E, can

be written as .
o(z, t) = Z aje(kAJ.—Aj)(T~t)wj(m)

2

dz > C1e C2VF Z | a; |2, V{a;} € £,
Aj<p

> ajwi(x)

Aj<p

Aj<u
provided
©® =Y ajuwj(z).
Aj<p
Therefore
T 2
1 IWRY
Jﬁ((po) =X / Z aje(k)‘g AT t)wj dzdt
2Jo Ju A <p




We set

Then

1
-M (k;O,vr,‘(yl)) {a‘}a [5 Z a,-a?— z aj/nylwda:
3 <u

Thus

The cost of controlling unstable systems. ..

- Z ajAyled:c

Aj<p
25 [ 5 fos P ANT - 5 o [ e
=) lajl|” e 4 Jo ¥ I
2(kA-);)T
¢ 2 e J - 1 1
'—“‘-Zlajl T —Zaj/ywjda:.
2 Aj<u 2(kj = A4) N<w f

. L2(RNE-ANT _
WEV\ 2NN )

> inf
Sl R VRS Aj<p
L 2
B 1 Ly wjdx)
2 o o

2
M (k;O, ﬂ.p(yl)) < % ) ,(_/sw"jll”—jda:),

Aj<p o7

|

(5.19)
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On the other hand, for every j fixed, a; — oo as k — 0o. Therefore

the upper bound on (5.20) converges to zero as k — oo and (5.7) holds.

5.2 The case where the number of frequencies increases.

In section 5.1 we have adressed the problem of controlling a finite number
of frequencies that is independent of k. However the same problem can
be considered when u = p(k) — oo as k — oo. In fact one would like to
know how rapidly may p(k) grow and still keep the property that the
cost of controlling converges to zero as k — oco.
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The following result provides an answer to this problem:

Theorem 5.2. Under the assumptions of Theorem 5.1, if
u(k) = 6k° (5.20)
for some § > 0 small enough and o = min(2, 1/(1 — 8)), it follows that

M (k;O, r”(k)(yl)) — 0 as k — oo. (5.21)

Remark 5.5. Observe that the frequencies that are unstabilized by &
are those for which
—Xj+kx>0

ie. /\;_9 < kor Aj < k/(-9), In view of (5.20) we have u(k) = 6k° <<
k1/(1=6) as k — 0o when 6 > 1 /2. Therefore the range of frequencies in
which Theorem 5.2 applies does not cover the whole range of unstable
frequencies for 6 > 1/2.

Whether (5.22) holds with u(k) = 6k for any o < 1/(1 — ) or not
when 6 > 1/2 is an open problem.

The iterative arguments developed in [LR] and [LZ] for the null-

controllability of the heat equation that are based on Lemma 3.1 may
be helpful to address this problem.

Proof of Theorem 5.2. As in the proof of Theorem 5.1 (see (5.19))
we see that

Z M (5.22)

1
M (k;O, vr,,(k)(yl)) <3 =
A;<pu(k) 7
with o« p
(kX0—;)
oy = Cre=CaVi® (€2 7 1} (5.23)

In view of (5.21) we see that

oT (kAg - )\,-) > Cg\/m (5.24)
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with C3 > Cy provided
C3V6k°/% + 2T ; < 2Tk’ (5.25)
which holds if

C3Voko/2 < TkXY
{ 2hs < k)\g. (5.26)
P . . k 1/(1_9)
The second inequality of (5.27) holds if A; < (5) . The first one

2
holds provided o = 2 and § < (T,\‘f/C'a) . Therefore if u(k) is as in
(5.21) with o = min(2,1/(1 — 0)) and é small enough we deduce that
(5.25) holds.

Going back to (5.24) and taking into account that the function =
(e* — 1)/z is increasing for > 1 we deduce that

Vu(k) eC:;v p(k) _ 1 _ Ce(Ca—Cg)‘/p(k) _ 6_02 /Il(k)
Vulk) Vu(k)

Combining (5.23) and (5.28) we deduce that

Vulk) ) ’
M (k;0, M < ¢ z: d
(k0 mw@)) < (e(Ca-Cz)\/m_e-cn/W) ot ([)y o
IS

v u(k)
(e<cs-02)\/m - e-cn/;W)

aj > Ce 2

(5.27)

c ' IZ2—0  (5.28)

as k — oo since C3 > Cas.
|

Remark 5.6. Observe that the proof of Theorem 4.2 shows that
M (k; 0, w“(k)(y1)> converges exponentially to zero.

5.3 The case where the operator becomes more and more
stable.

Following Remark 5.4, we consider the case where k — —o0 in (5.2). Of
course (5.17) is still valid. We choose a particalar set of 0, namely

{ p® = pwj, p € R to be chosen,

where j is such that / yle =a; # 0. (5.29)
Q
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Then
inf 75(¢°) < inf JX(pw;). 5.30
‘PO u(‘P ) pGR p(p J) ( )
But for the choice (5.30) one has
¢ = pwjp;
5.31
{ ~¢+ (A= k29) 05 =0, 05(T) = 1, (5.31)
ie pj= e~ (Ni=R)(T-1),
If we set T
a; = (Lw?d:c)‘/o‘ <p?dt (5.32)
then . '
Ji (pwj) = 500" — ajp
so that 0
a -
inf Jf (pw;) = 'Ei' (5.33)
Using (5.17), (5.31), (5.34) we obtain
a?
M (k30,mu()) > o (5.34)
3

When k — —o0, 1/a; increases like | k |, hence the result of Remark 5.4
follows. _

We have obtained, in conclusion, that M (k;0,m,(y')) goes to zero
when the system gets more and more unstable (k — +00) and goes to
+00 when the system gets more and more stable (k — —o0).

6 Further comments

The results of section 3 and 4 apply in the more general setting of ab-
stract parabolic equation of the form

v + Ay — kAoy =vl, (6.1)

where A is an unbounded, self-adjoint, coercive operator in the
Hilbert space H (= L2() or (L2(R2))" in most examples ), A~ being
compact.
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The results of section 5 do not apply in this general context. Indeed,
as far as we know, the most general result analogous to Lemma 4.1 is
due to L. Escauriaza [E] and it applies to second order elliptic sym-
metric operators in divergence form with Lipschitz coefficients in Holder
domains. Therefore, in principle, the results of section 5 are valid for
this case.

However, the proof of Theorem 5.1 requires a result much weaker
than Lemma 5.1. In fact, the proof of Theorem 4.1 only requires the
following uniqueness result:

If {a;} <, are such that Z ajw; = 0in w,
Aj<p (6.2)
then a; = 0 for all A\; < p.

Indeed, if (6.2) holds, taking into account that the space of elements
of the form ZAjSu ajw; is finite-dimensional, for any 0 < p < oo we
deduce the existence of a positive constant C(p) > 0 such that

2

dz > C(u) 3 |a; [*, ¥{aj}. (6.3)
AjSp

However, obviously, this uniqueness argument does not provide any es-
timate on the growth of C(u) with respect to u.

Therefore, we see that the analogous of Theorem 5.1, i.e. controlling
a fixed finite number of frequencies, only needs the uniqueness result of
(6.2)

The uniqueness result of (6.2) holds for a large class of elliptic oper-
ators A. Indeed, proceeding as in [LR] and [LZ] we set

sinh(/A;t)
t) = aj——=wj.
p( ) A,Zsu: 3 ’_)\j )

Then p solves the elliptic system

p'—Ap=0
p(t) e D(A),0<t<T (6.4)
r(0) = 0.

On the other hand p(0) = 2_a;<u ajwj- Therefore (6.2) holds whenever
the elliptic unique continuation result applies to the operator 8? —A

[
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in @ x (0,T). In particular, it holds for elliptic operators A of order
2m, m > 1 and also for Stokes operator.
More precisely, we can consider, for instance, the system

v+ A%+ k(A% =vl, in Q
y=Ay=10 on X (6.5)
y(0) = 30 in .

In this case, all the results of this paper apply, since the eigenfunc-
tions of the underlying elliptic operator are precisely those of the Dirich-
let Laplacian and therefore Lemma 3.1 applies.

The situation is different when the boundary conditions of (6.5) are
replaced by

y=0y/0v=0o0nX. (6.6)

To our knowledge it is unknown whether the analogous of Lemma 3.1
holds for the bilaplacian with these boundary conditions. Therefore we
do not know if Theorem 5.2 applies in this case. The rest of the results
of this paper, and in particular, Theorem 5.1 apply in this case since
the uniqueness property (6.2) holds. Indeed, proceeding as above the
problem is reduced to the unique continuation in (6.5). In this case, since
the coefficients of the operaror A are constant, Holmgren’s uniqueness
Theorem can be applied.

The situation is the same for the Stokes system. Indeed, all but
Theorem 5.2 of the results of this paper apply. It is unknown whether
the analogous of Lemma 3.1 holds for the eigefunctions of the Stokes
system too.
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Appendix A:

The object of this appendix is to give the details of the proof the
uniqueness result for system (3.3) stated in the beginning of section 4.
More precisely, consider the system

—¢'—Ap—k(-A)P9=0 in @
(A1) p=0 on X
o(T) = ¢° in  Q

Then, the following holds:

Proposition A. Let w be an open and non-empty subset of @ and T > 0.
Assume that k > 0 and 0 < 0 < 1. Let ¢ be a solution of (A.1) with
©° € L*(Q) and such that

(A.2) e=0inwx (0,T).

Then necessarily ¢ = 0 everywhere, i.e. ©° = 0.
Proof of Proposition A.
By the change of variables t — T — ¢, system (A.1) is reduced to

P —Ap—k(-APp =0 in Q
(A.3) v=0 on ¥
$(0) = ° in Q.

The semigroup generated by the operator —A — k(—A)? is analytic.
On the other hand, due to the regularizing effect of system (A.3), for
any 7 > 0 and s > 0, the solution ¢ of (A.3) is such that ¥(s) €

D ((—A — k(-A)%)°).
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By elliptic regularity we deduce that, for any zo € Q,%(zo,t) is
analytic for ¢ > 0.
In view of (A.2) and this analyticity property we deduce that

(A.4) ¥ =0in w x (0,00).
On the other hand, ¥ can be developed in Fourier series
(4.5) ¥= D aje M wy(a)
jelN

where {w;} is an orthonormal basis of L2({2) constituted by the eigen-
functions of the Laplacian and pj = A j—k,\g where ); are the eigenvalues
of —A.

Let jo be such that

i, = min(p4).
Ko je]N( 5)

Then, multiplying in (A.5) by e”jo! we observe that

(A.6) el = ajowjo(z) + Z aje—("j_#jo)twj'

jelN
j#io

Combining (A.6) with (A.4) and the fact that the last term of (A.6)
converges to zero in L2(Q) as t — oo, we deduce that

(A.?) Ao Wip = 0in w.
Then, either aj, = 0 or
(A.8) wjo = 0 in w.

However, (A.8) may not hold by elliptic unique-continuation, since wj,
is an eigenfunction of —A. Thus aj, = 0.

Therefore
P = z aje"‘jtwj.

ieIN
Jj#io

In a second step we consider j; € IN such that
pjy = min(pj).

JeL
Jj#3jo
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Proceeding as above we see that aj, = 0 too.
By inducting we prove that a; = 0 for all j € IV.
This concludes the proof of the Proposition.

Appendix B:

This section is devoted to prove, as indicated in section 5.1, that
approximate controllability implies the simultaneous finite-approximate
controllability property (5.5). This is in fact a consequence of the fol-
lowing abstract result:

Theorem. Let V and H be two Hilbert spaces and L a bounded linear
operator from V to H with dense range. Let E be a finite-dimensional
subspace of H and IIg the corresponding orthogonal projection.

Then, given any eg € E, when v runs over the set of elements of V
such that

IIgLv = eg,
Lv describes a dense set in eq + E-L.

Proof. We identify H with its dual and denote by (-,-) both the scalar
product in H and the duality pairing between V and V.

We observe that, since L is of dense range, its adjoint L* € L(H; V"),
V' being the dual of V, is injective, i. e. L*h = 0 implies that h = 0.

We note that it is sufficient to prove the lemma when eg = 0. Indeed,
given eg in E it is easy to find an element vg in V such that IIgLvp = eo.
To see this, we consider a basis {ey,...,em} of E. Then, IgLvg = eg is
equivalent to (Lvo, e;) = (vg, L*e;) = (ej, €0) for j = 1,...,m.

This linear system of m equations is solvable since {L*e;};j—1,...m are
linearly independent.

Then, it is easy to observe that v runs over the set where IIgLv = eg
if and only if w = v — vy runs over the set where llgLw = 0 and that
Lv is dense in eg + E+ if and only if Lw is dense in E*.

To prove the lemma for eg = 0 we consider an element f € E* such
that

(Lv, f) = (v, L*f) = 0 for all v such that IIgLv = 0, i. e. (v, L*e;) =
0 for j = 1,...,m with the notations above. Then, there exist some
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coefficients a;,j = 1,...,m, such that L*f = 377, a;L*e;, and since L*
is injective f = 3 7%, aje;. Therefore f € E and since f € E* too, we
deduce that f == 0.
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