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Morphisms of Klein surfaces.
F. J. CIRRE*

Abstract

We give an elementary proof of a theorem of Andreian Cazacu
on the behaviour of morphisms of Klein surfaces under composi-
tion.

1 Introduction

Klein himself introduced in the past century the notion of Klein sur-
face as a way to endow conformal structures on surfaces which may be
non-orientable or with boundary. Of course, this notion agrees with the
classical one of Riemann surface when dealing with orientable surfaces
without boundary. In 1971, Alling and Greenleaf [A-G], founded the
theory of Klein surfaces in modern terms. In addition to its own in-
terest, this theory acquires more relevance since they proved that, in
the same way as a compact Riemann surface is. associated with a com-
plex projective smooth algebraic curve, each. compact Klein surface §
can be associated with a real projective smooth algebraic curve whose
field of rational functions is the field of meromorphic functions on S.
Hence, the problem of classifying real algebraic curves up to birational
transformations and that of determining the group of automorphisms of
a real algebraic curve, are closely related to the study of isomorphisms
between Klein surfaces.

Let us denote by 85 the boundary of the Klein surface S. In this

*Partially supported by DGICYT PB92-0498 and CEE-CHRX-CT93-
0408.

1991 Mathematics Subject Classification: 30F50.

Servicio Publicaciones Univ. Complutense. Madrid, 1997.



80 F. J. Cirre

paper we prove the following

Theorem. Let f : S — S’ and g : 8' — 8" be two non-constant
continuous maps between Klein surfaces such that f(8S) C 8S’' and
g(88') C 8S". Consider the following statements:

(1) f is @ morphism
(2) g is a morphism
(3) go f is a morphism.
Then:
(i) (1) and (2) imply (3).
(ii) If f is surjective, (1) and (3) imply (2).
(iii) If f is open, (2) and (3) imply (1).

The basic part (i) of this theorem was proved in [A-G] while the state-
ments of parts (ii) and (iii) are due to Andreian Cazacu [A]. Her proof of
part (#ii) is based on a powerful theorem of S. Stoilow [St, Ch. V| IL.6],
which was originally stated in the setting of interior transformations.

Our goal is to give a self-contained and easier proof of part (iii) by
using only elementary and well-known results of complex analysis. For
the sake of completeness we also include a proof of part (i¢), which as
far as we know does not appear in the literature.

The author wishes to thank the referees for their helpful suggestions
and corrections, which have contributed to get a more readable paper.

2 Preliminaries

2.1 Dianalyticity

Let U be an open set in €. A function f : U — C is antianalytic on
U if its complex conjugate, f, is analytic on U, and dianalytic on U if
its restriction to every.connected component of U is either analytic or
antianalytic. Easy computations show that

- If U is connected and . f is simultaneously analytic and antianalytic,
then f is constant.
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- Let f and g be dianalytic functions on an open connected set U. If
f and g are both either analytic or antianalytic, then g o f is analytic.
Otherwise, g o f is antianalytic.

Let A be open in €t := {z € € : Imz > 0} but not in C. A
function f : A — C is said to be dianalytic on A if it is the restriction
of a dianalytic function fy : U — C where U is an open set in C
containing A.

2.2 Klein surfaces

A surface is a Hausdorff connected topological space S together with a
family A = {(U;, i) : i € I} such that {U; : i € I'} is an open covering
of S and each map ¢; : U; — ¢;(U;) is a homeomorphism onto an open
set of CT. The family A is a topological atlas on S and its elements are
charts. The transition functions of S are the homeomorphisms

<Pi<P}1 : (Ui N U;) — o3(U; NU;).

The orientability of S is defined as for a real 2-manifold, under the
identification of € with IR%. The boundary of S is the set

88 ={x €8 : piz) € R for all i € I with z € U;}.

The topological atlas A is said to be dianalytic if the transition functions
are dianalytic. We say that two dianalytic atlases .A and B are equivalent
if AUB is dianalytic. A dianalytic structure-on S is the equivalence class
of a dianalytic atlas on S.

A Klein surface is a surface S equipped with a dianalytic structure.

2.3 Morphisms of Klein surfaces

The folding map is the open continuous map
. C—-Cr:iz+vV-1ly—z+v-1{y].

Obviously, ®(z) = ®(%) and if A is a subset of C* then ®1(4)= AUA
where A := {2 € C: z € A}.

A morphism between the Klein surfaces S and S’ is & continuous
map f : S — S’ such that
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i) f(8S) C as, |

il) given s € S, there exist charts (U, ), (V,9) with s € U and
f(U) C V and an analytic function F : ¢(U) — 'C such that the following
diagram commutes:

U f - V

‘| y

o)L~ ¢ -2 ¢+

Since ¢(U) is contained in C*, F extends to an analytic function

F : o(U)Up(U) — C by taking

R F(z) ifzee(U),
F(z) = L L

F(z) ifzeo(U).

Indeed, if ¢(U) and WJ—) are disjoint, then F is analytic on W since
it is the composite of two antianalytic functions, namely, the complex
conjugation and F. In case of o(U) and o(U) are not disjoint, ¢(U)NIR
is not empty and the analyticity of Fon e(U) U;(—U—')- is a consequence of
Schwarz’s Reflection Principle [S, Th. 16.4], provided that F maps the
reals into the reals. But F(p(U)NIR) = F(p(UNAS)) and if z € UNSS
then f(z) € V N 8S’; therefore ®F p(x) = ¥ f(x) € R as required.

As to the derivative of ﬁ, straightforward computations show that
it satisfies the same formula than F : i.e., F'(z) = F'(3).

From condition i) in the definition, if S’ has no boundary, then nei-
ther has S. In particular, when dealing with orientation preserving mor-
phisms between Riemann surfaces, ® can be omitted in the diagram.
Hence this definition of morphism agrees with the classical one.

It is well-known that the image of an open set of € by a non-constant
complex analytic function is also open. It follows that a non-constant
morphism between Riemann surfaces is an open map. The same holds
true for morphisms between Klein surfaces:

Claim 1. If f : S — S’ is a non-constant morphism between Klein
surfaces, then f is open.
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Proof. It suffices to show that f(U) is open for each U as in the defi-
nition. Since f(U) = v '®Fy(U) and ® is an open map, the claim is
obvious if ¢(U) is open in C. If, on the contrary, p(U) is not open in €
but in €, then Fp(U) may not be so in C. However, it is easy to check
that ®F(U) equals ®F(o(U) U o(U)) and since p(U) U o(U) is open
in €, we conclude as above that f(U) = % '®F (o(U) U o(U)) is open
in §'. '

This result points out that we cannot drop the assumption “f is
open” in part (¢ii) of the theorem, as the following example, due to
Andreian Cazacu [A], shows. Set f : C— C:z++v—ly—z+v—1|y |
and g = ® : C — C* (f is not the folding map since f has range C).
Clearly g = gof : € = C7 is a morphism but not f since it is not open.

To finish this section, let us point out another property of morphisms
between Klein surfaces: they are discrete, i.e., they have discrete fibers.
Claim 2. If f : S.— S’ is a non-constant morphism between Klein
surfaces, then f is discrete.

Proof. It is enough to show that for each s € S the fiber f~1(f(s)) is
discrete in U, the neighbourhood of s given in the definition of morphism.
Since the fibers of ® are finite, the proof reduces to verify that the
preimage of a finite set by a non-constant complex analytic function is a

discrete set. This is an easy exercise in complex analysis for which only
the Identity Principle [S, Th 10.8] is needed.

3 Proof of the theorem

In this proof all the neighbourhoods considered will be open, and the
open and connected subsets of C will be called domains. When restrict-
ing a map h, the expression h|x will be written h| if no confusion may
arise.

(i) (1)+(2) imply (3).

This was proved by Alling and Greenleaf [A-G, Theorem 1.4.3]. The
proof is based on the Schwarz’s Reflection Principle and the fact that
the composition of analytic maps is also analytic.

(ii) If f is surjective, (1)4(3) imply (2).

Given s' € S’ let s € S be such that f(s) = s’. Since f and go f
are morphisms there exist charts (U, ), (V,v) and (W, £) with s € U,



84 F. J. Cirre

f(U) =V,g(V) =W and there exist analytic maps F and H such that
®F = ¢fp~" and ®H = £gfp!

U 7 g

w

|

oy —E. 2. B(V)— G _c 2. £(W)
H

2 Y

We look for an analytic map G : %(V) — £&(W) U £(W) such that
G = £gy L. Let F and H be the analytic extensions of F and H,
respectively, to A := o(U) U p(U) as defined in section 2. The diagram
suggests how to find G: roughly speaking it will be the composite of
local inverses of F with H.

1. The analytic function F:4-¢C has analytic local inverses
except in the discrete set D := {a € A : F'(a) = 0}. That is, for
each p € A\ D there exist nelghbourhoods of p and F(p) in A\ D
and F (A \ D), that we shall denote by Ap and By, respectively, and an
analytic map Ly : By — Ap such that F(Ap) = Bp,F|a, 0 Lp = idp,
and Ly o FlAp ida,-

Restricting charts if necessary, we will suppose that D is a finite set.

2. For each p € A\ D we define the non-constant analytic map
a\p:——-l}oLp:Bp—-»(D.

We claim that C/v‘; = 6’; in Bp N By if this intersection is nonempty. To
see this we use the following lemma.

Lemma. Let B be a domain in C and let G1,Go : B — € be two
non-constant analytic maps such that ®G, = ®Gq. Then G = Ga.

Proof. Choose a nonempty domain Y of the preimage of € \ R under
G1. Then the sets M1 =Y N {G; = Go} and Mo =Y N{G; = Ga} are
disjoint and closed on Y. Further, Y = M; U M3 since ®G1 = ®G2 and



Morphisms of Klein surfaces 85

so, either Y = Mj; or Y = My. In the latter case G; should be both
analytic and antianalytic on Y, i.e. G1|y should be constaiit, which is
impossible because G is an open map. Hence G; = G2 on Y and by
the Identity Principle G; = G2 on B.

Back to our claim, it is enough to prove that <I>Gp <I>Gq In fact we
shall show that both are equal to £gy~1®. Let y € Bp N By.

If Ly(y) € o(U),

and also if Lp(y) € —g;(U—),
3G, (y) = o (L)) = OH (L)) = é9v'9F (L)) =

= ¢gv 1@ (F (Lp(y))) = €9v ' ®F Ly(y) = £gv ™' ®(y).
Analogously, for é\ we obtain @(/}\q £gy 1@ as desired.

3. This allows us to_glue together the functions Gp and define a
global analytic function GonF (A \ D) = Upca\pBp by

G:F(A\D) - C: 2+ Gp(z) ifz€ By,

which verifies ®G = gy 18| Y7 a\D)’

Since F(A\D) D F(A)\F(D) and F(D) is a finite set, we may extend
G analytically to F(A) by Riemann’s Removable Singularities Theorem
[S, Th. 11.4], provided that G is locally bounded in F(D) But this
is clear because ®G coincides with gy~ 1®|. This analytic extension,
which we also denote by G : F(A4) — €, is in particular defined on (V')
since R

$(V) = ®Fp(U) C Fp(U)U Fp(U) = F(A).

So, the restriction of G to ¥(V) is an analytic function G : (V) — C
which verifies ®G = £gy 1. Hence g is a morphism.

Notice that if S is compact, then the assumption “f is surjective”
may be dropped because it is a consequence of the hypothesis. Indeed,
since f is open and continuous, f(S) has to be both open and compact.
Since S’ is Hausdorff and connected, f(S) =

(iii) If f is open, (2)+(3) imply (1).
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Given s € S there exist charts (U, ¢), (V,%) and (W,¢) with s € U,
f(U) = V,g(V) = W and there exist analytic functions G and H such
that £g = ®Gy and £gf = PH .

U

W

|

pU)-F. e 2 pv) —& -2 )

{0

We look for an analytic map F : o(U) — (V) U (V) such that
®F = fp~'. The diagram suggests that F must be the composite
of H with local inverses of the analytic extension G of G defined on
A := (V) Uy(V) (see section 2).

1. Set
={a€A:G'(a) =0}, Dy={a€ A:G(a) € R}.

We construct local inverses of G on Y := A \ (D1 U D3).

First, forany pe Y N C" there exist neighbourhoods of p and G(p)
inY n (L'+ and G (Y N C") that we shall denote by 4, and 1 By, respec—
tively, and an analytic function L, : B, — Ap such that G(Ap)

GIA o Ly =1idg, and Lyo G|Ap = ida,.

Moreover, ifp €Y NC™ C* it turns out that PEY €Y NC™, where C™
C*, because G'(p) = ("’(p) # 0 and G(p) G(p) ¢ R. Conseg\uently,
there exist nelghbourhoods Ap = A, and By = B, of p and G(5) on
Y NnC~ and G(Y NneC) respectlvely, such that the analytic function
Lg: Bp — Ap defined by Lz(z) = Ly(Z) verifies G|A_ o Ly = idp_ and
Lgo G | Ay = id Ap-
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Ay _GL> ‘ B P
2
R R
Ly
- O
Ay : Bs
Figure 1.

Note that By does not intersect IR since A, does not intersect Da.
In particular, B, and By are disjoint. (Figure 1 represents only the case
B, C CY).

2. For each p € Y N C" we define the analytic function

Fp:Np:=Wfe ) H(4p) — ApU4p
LyoH(z) if H(z)€By
\ LypoH(z) i H(z)e€ By

The function F), is well defined: if z € (¥ f¢~1)"1(A,), then ®H (x) =
Egfo Hz) = Gy fo (x) € DG(Ap) = ®(Bp) and so, H(z) € BpU Bp.
We claim that F, = Fq in Np N Ny if this intersection is nonempty.
Indeed, if z € Np N Ng then y = ¥f  (z) belongs to Ap N Aq and so
®H (z) = ®G(y) belongs to B, N By. This yields two possibilities:
If H(z) = G(y), then it belongs to By N By; thus

T

Fp(z) = LpH(z) = LpG(y) =y = L¢G(y) = LgH(z) = Fo(z).
Analogously, if H (z) = G(y) =6(y), then it belongs to By N Bg; thus
Fyp(z) = LpH (z) = LpG(7) = T = LgG(7) = LgH () = Fo(z).

This proves the claim. Further, in both cases we have obtained the
identity
DFp(z) = ¥ fo ' ().

As a consequence, if we set

N = U Np C o(U),
peEYNCT
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we get a well defined analytic function F* : N — C given by F*(z) =
Fp(z) if z € Np, which verifies ®F* = v f @~ |n. Moreover, it also verifies
GF* = H|N.

In order to extend F* to ¢(U) we have to assure that o(U) \ N is
thin enough.

3. For short, we denote

L= fel: p(U) - 9(V),

which is a continuous and open map because f is so. Since Y NCT =
UpAp, where p runs over Y NC*, we have I} (Y NC*) = Wyl ~1(4,) = N.
Therefore, since Y = A \ (D1 U D2) and @(U) = I71(A) one gets

e(UY\N =11\ r'i{(y nCt) =17Y(Dy) ui™1(De).

3.1. I"Y(D4) is discrete in p(U).
First, let us note that for any = in I~ 1(Dl) ®H(z) = ®GI(x) belongs
to ®G(D,), i.e., H(x) € G(D1) U G(Dl) = G(D;) and so, z belongs
to H-1(G(D1)). Thus I~ 1(D1) C H™YG(D1)) and we only have to
prove the discreteness of H™}(G (D1)). But this follows from the proof
of claim 2 of section 2 since we may suppose from the beginning that
D; is a finite set.

Note that this proves that I, and so f, is a discrete map.

3.2. I"Y(D2) is a proper (global) real analytic set of p(U).
Indeed, from the equality ®Gl = ®H it follows readily that {=1(Dg)
equals H~!(IR), i.e., it is the zero set in @(U) of the imaginary part
of H.

Summarizing, the complement of N in (U) is thin : it is the union

of a discrete set and a proper real analytic set.

4. Continuous extension of F*.
We have defined an analytic function

F*: p(U)\ (l‘l(Dl) UHY(R)) - €

which verifies ®F* = I|. Evidently, ! extends continuously ®F* to ¢(U)
which in particular implies that F* is locally bounded in ¢(U). Thus,
F* may be extended analytically to the discrete set 1=1(D;) \ H !(IR).
We also call F*: o(U)\ H!(IR) — C this extension.
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Suppose we have found a continuous extension F : ¢(U) — C. Then
®F has to coincide with [, that is, for each z € p(U), F(z) has to be
either I(z) or I(z). We shall show that the behaviour of F* near z gives
the right choice that makes F' continuous.

First, it is obvious that F* extends continuously to any point z in
I"}(R), which is a subset of H 1(IR), by defining F(z) = I(z) = I(z).

Let M be the subset of H"1(IR) \ I} (IR) consisting of those points
x such that for any neighbourhood U* of z, U\ H™}(IR) has more than
two connected components.

The set M is discrete in ¢(U) since H’' vanishes on it. Indeed, given
z € M, if H'(z) # 0 then H|™! is a homeomorphism between a small
open disc UH(®) centered at H(z) and a neighbourhood U? of z. In
particular, the number of connected components of U H(z)\ R and that
of U®\ H™!(IR) should coincide. This is impossible if z € M since
UH(®) \ R has exactly two connected components.

Now we extend F'* continuously to H 1(IR) \ M.

Since the extension is obvious for points in {71(IR), we just have to
deal with points in (H'(R) \ I7}(IR)) \ M. Given such a point z, let
UZ be an open connected neighbourhood of = not intersecting !~!(IR)
such that U* \ H~!(IR) has two connected components. One of these
components is mapped by H onto a domain in €* \ IR and we denote
it by U, and the other is mapped by H onto a domain in €~ \ R
and we denote it by UZ. The reason is clear: H(U®) is a domain in C
intersecting IR but H(U¥UU?) does not intersect IR. Restricting U” we
may suppose that H(UT) = H(UZ).

Let us denote by & the arc U*N H~1(IR). Our purpose is to extend
F* continuously ‘o 6 and for this it is enough to prove that “F*(U7)
is contained in € if and only if F*(U%) is contained in C”. Indeed,
since [(U%) does not intersect IR the equality ®F* = I gives that for
e € {+,—}, F*|yz equals either l|yz, or l|lyz. Now the image of I|yz
(respectively, lluw) is contained in C+ (respectively, €). Thus if the
claim is true, then either F* IUxuUz = lleuUz or F* lU”‘uU“’ = llUﬂuUz
Therefore the continuity of I and I on U® ensures the existence of a
continuous extension of F*[yz y= to .

In order to prove the above claim, we first observe that GI(U?) is
open in €. Indeed, since ! is an open map and [(U*) does not intersect
IR, Y(U?) is open in € and hence so is GI(U?). Further, it contains a
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real interval, GI(6), since I(6) is in Dy = @—l(m).
Let us prove then our claim, i.e., that
F*(Uf)c C" & F*(U%) c C*.

If F*(U) C €Y, then GI(UY) = GO®F*(UT) = GF*(U?) = H(U?)
which is in €*. (Figure 2 illustrates this case).

o

uuz)

R Gl(6)

GlU=)

Figure 2.

Suppose that F*(UZ) C €. Then GI(UZ) coincides with GI(UF) since
GUU?) = G®F*(U®) = GF*(U%) = GF*(U%) = H(UZ) = H(U%). So,
GUU®) = G(UF UUZ® Ué) = H(UT) U Gi(8) which clearly contradicts
the opennes of GI(U?) in €. Thus, F*(U%) C C* implies F*(U%) c C*
and the converse follows by symmetry.

This completes the proof of the existence of a continuous extension
F of F* to p(U) \ M, which also verifies ®F = I| ;)\ p-

The last step is to show that F is, in fact, analytic on ¢(U).

5. F is analytic on ¢(U).

Let = be a point of H1(IR) \ M (recall that F is analytic outside
H71(IR)). For such a point z there exists an open connected neigh-
bourhood U%'in ¢(U) \ M such that U* \ H~1}(IR) has two connected
components U and UZ. Moreover, the boundaries of U$ and U* share
the open Jordan arc 6 := U® N H }(IR) which is rectifiable and accesi-
ble (accesible means that each a € 6 can be joined to any point of UZ,
respectively UZ, by a continuous curve a : [0, 1] — U7, respectively UZ,
with a(0) = a).

Hence, the analyticity of F in U< is a consequence of the following
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Theorem. ([S, Th. 16.3]) Let {G1, f1} and {Ga, f2} be two elements
(that is, G; is a domain and f; is an analytic function on G;) whose
domains are disjoint but share an accesible Jordan boundary arc 6, where
& is open and rectifiable. Suppose f; i3 continuous in G; U6 fori=1,2
and moreover suppose that f1 and fo coincide on 6. Then the function
O defined by

fi1(z) if z € Gy
O(2) = { fi(z) = fa(e) ifz€é
f2(2) if 2 € Gy

18 analytic on G1 U6 U Ga.

Applying this theorem to the elements {U%, F luz} and {UZ,Fly=}
we conclude that F is analytic on U* C ¢(U) \ M and therefore on
e(U)\ M.

Finally, the equality ®F = ¢ f cp"ll‘p(U)\M shows that F is locally
bounded in M. This, together with the discreteness of M ensures the
analytic continuation of F' to the whole ¢(U), where the equality ®F =
¥vfe ! also holds. Hence, f is a morphism.
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