REVISTA MATEMATICA de la
Universidad Complutense de Madrid
Volumen 10, mimero Suplementario: 1997

Semi-algebraic complexity-additive complexity
of diagonalization of quadratic forms.

Thomas LICKTEIGT and Klaus MEER}

Abstract

We study matrix calculations such as diagonalization of
" quadratic forms under the aspect of additive complexity and re-
late these complexities to the complexity of matrix multiplication.
While in [BKL] for multiplicative complexity the customary “thick
path existence” argument was sufficient, here for additive complex-
ity we need the more delicate finess of the real spectrum (cf. [BCR],
[Be], [KS]) to obtain a complexity relativization. After its out-
standing success in semi-algebraic geometry the power of the real
spectrum method in complexity theory becomes more and more
apparent. Our discussions substantiate once more the significa-
tion and future role of this concept in the mathematical evolution
of the field of real algebraic algorithmic complexity.

A further technical tool concerning additive complexity is the
structural transport metamorphosis from [Lil] which constitutes
another use of the exponential and the logarithm as it appears in
the work on additive complexity by [Gr] and [Ri] through the use
of [Kh}. :

We confine ourselves here to diagonalization of quadratic forms.
In the forthcoming paper [LM] further such relativizations of addi-
tive complexity will be given for a series of matrix computational
tasks.
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1 Introduction

We start our discussion with some general remarks of thematizing char-
acter. The question for the complexity of computing the value y = f (z)
of a polynomial (say) function f : R” — IR™ is always accompanied by
the question for the complexity of checking correctness of y = f(z) given
(z,y) € R® x R™. It can be reasonably conjectured that in many cases
no big complexity differences appear, and likewise as well, that in several
cases the latter decision task may be of considerably lower complexity
than the computation task; however no systematic studies do exist so
far. We refer to [Scho3] for a discussion of this general computation
versus vertfication dualism.

For instance, computing the solution y = X ~lg = f(X,z) of a linear
system, X a regular square matrix, seems to be more dlfﬁcult than the

obvious matrix times vector “control calculation” for X y < z. This phe-
nomenon has been transfered into practical utilization since a long time

in the relaxed form of the numerical a posteriori check || Xy — z|| é €.
If additional information about the condition number of the matrix is
available, testing membership in this tube is useful for repairing an ig-
norabimus, that is, making numerical solution algorithms “waterproof”
whenever a priori bounds on the error propagation are — or are expected
to be — too pessimistic. On the other hand side, original numerical com-
putation requirements in the sense of a backward analysis elucidate the
a priori task of computing some output such that the input-output pair
lies in the tube. Similarly - dependmg on the perspective — also in other
cases, producing some output plus a definite information rather than
a specific function value y = f(z) constitutes the computational task.
We mention furthermore that also the fundamental and important ques-
tion for the possibilities of algorithmic savings by relaxations through
the introduction of redundant representations of (intermediate) results
belongs within the scope of this theme just outlined. The most simple
example is the interpretation of the carry save adders in Boolean parallel
complexity as the relaxation of mteger additiony =z + x to the task of
computing (y,y’) € Z2 given (z,z',z") € 22 withy+y' =z+2' + 2"
the question also plays a very substantial role in elimination theory (see
[HM], [GHMP] and the references given there).

Let R be a real closed field. A semi-algebraic computational task of
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format (n;m) is given by a semi-algebraic input-outpui specification S,
that is a semi-algebraic subset

SCR"xR™ (1)

(The idea of such a definition of a task specification appears already
in [vNG], [Tu], and recently in the papers [Scho3], [BSS], [Lil}).

i.e., the underlying semi-algebraic subset plus the given split — can be
considered as a semi-algebraic family of subsets of R™ indexed by R"
(cf. [BCR], Chapitre 7.4); its domain D (S) is the subset of all z € R"
such that the fiber

S:={y€eR™: (m,y.) € S}

is not empty.

Let O = R U {0,1,+,—,%,/} and P = {=,<}. Assume 7T to
be a semi-algebraic computation tree (that is, with output instruction)
of operational-relational signature (2%, P) and of input-output format
(n;m). T is said to solve the task S if T is executable on all z € D (S)
and its output 7(x) € R™ on input z € R™ lies in the fiber Sy for
all z € D(S). If this is the case, one can also say that 7 computes
the semi-algebraic knowledge S (over D (S)). Throughout this paper we
deal with this a prior: task.

Such tasks (1) with constant output length m are called monochrome
in [LM], and only monochrome tasks will appear in the sequel. In general
the output length will also vary; then the task is called polychrome. See
[LM] for a general discussion.

What does “diagonalization of quadratic forms,” given as symmetric

m X m matrices S,
dy
tMSM:D—-( ) @)
dm

mean in computational terms? There are three possible interpretations.

e DIAG: Compute some regular m X m matrix M and diagonal D
satisfying (2).

¢ OGB: Compute some regular M such that there exists a diagonal
D with (2).
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e Compute some diagonal D such that there exists a regular M with

).

Irrespective of the cost function considered (additive complexity: c; =
174,-3; multiplicative complexity: ¢, = 1y, /}; total complexity: ctor =
1qr p) the second and the third ones are not harder than the first one,
and the third one essentially boils down to the rank-signature decision
task. In the sequel we shall give for the second orthogonal basis task
and additive complexity a relativization to matrix multiplication. As
consequence, the diagonalization task posesses also such a relativization,
but a more precise statement on the “difficult input sets” is possible for
diagonalization. The fundamental concept of the real spectrum ([CR],
[Ro], [BCR], [Be], [KS]), introducing great clarity into semi-algebraic
geometry and complexity, will again be of exceptional importance in
our complexity analysis. (The non-initiate reader may also consult [Li2]
for a short summary on this concept).

Section 2 contains complexity notations and tools, section 3 our main
lower bound result (Theorem 2) in the semi-algebraic framework which
we complement in section 4 with an upper bound discussion in the uni-
form model of [BSS).

For convenience, R[X1,..., X,] and the polynomial functions P(R")
on R™ will be identified in several places.

2 Operational and operational-relational
complexities, notations and tools

We recall some results and terminology. of the complexity modelling from
[Li1], [Li2] to be used in later sections. Rings, fields and algebras are
always assumed to be commutative.

2.1 Straight line programs — operational complexities

Let R be a ring. 2F11{0,1,4, —, %, /} is a possible operational signature
on the category of R-algebras with the interpretation “division by units”
for / and “multiplication with A” for A € R. Let R — A be an R-algebra.
We consider lists (called points) z = (z1,...,zm) € AR, 4 with z; € A.
For a cost function ¢ : QF — N and a further y € A%_ 4, L(c,z,y)
denotes the minimum c-length of an QR-SLP I' over m computing y
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from the point = over R. A pair (I',z) is called an QF-computation
(executable or unexecutable) in the R-algebra R — A; an executable
(T, z) is said to compute y if all y; appear in the result sequence Res(T’, z)
of it.

We comment on the notation used. R-algebra morphisms

A
/

R !
N

Al

transport QF-computations (I',z) in R — A into QF-computations
(T, z') in the arrival algebra R — A’. (We remark that many lower
bound techniques resuit from an application of a morphism that makes
a computational step “unnecessary.”) However one needs also the vari-
able point of view with respect to coefficients. So one is lead to the wider
category flac of all commutative algebras [Li2]. Its morphisms are given
by commutative squares

R — A
i !
R — A

They transport points z € A% 4 into points ' € A _ 4 and QF-
computation (T, z) in R — A into QF'-computations (I, z') in R’ — A’
which is the functorial conception of affine space.

Remark. As a rule, the morphisms in flac that will appear will all be
canonical, and the algebra reader will perform the transition of points
always “mentally.” Nevertheless we shall use the affine space notation
throughout in order to indicate always in explicit form the algebra in
which a list is considered. (The computer science reader will observe that
the affine space notation in [Li2] is parallel to constructs in AXIOM.)

Considerations will often start in the R-algebra R[X], and some
self-explanatory shorthand notations are useful. For the “vector” of
indeterminates in the R-algebra R[X| our standard notation is X =
(X1,...,Xm) € AR px)- If this vector is considered in R(X) = k(o)
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we write X (0) € AR, R(x) or simply X (o). Likewise we shall use self-
explanatory notations such as X(p) € Ag_yp) and Xp € AR, RIX]y
for p € Spec R[X], etc. For o € Spec,.R[X], X(a) € AR k(o) denotes
the image vector of X in the real closure k(a) of the residue field k(p)
with respect to the ordering on k(p) induced by a; here p € Spec R[X]
denotes the support p = supp @ = a N —a of the prime cone a.

2.2 Verifying straight line programs — operational-rela-
tional complexities

Let P = {=, <}. Adding a number of P-comparison instructions at the
beginning and after each computational instruction in an QE-SLP over
m we get an (2%, P)-SLP T over m; these are called verifiers ([Li2]).
Inputs are now ordered field points (over R) (z, <) where z € AR i
and (K, <) is an ordered field. Since the real spectrum “encompasses”
all evaluations R[X] — (K, <) in ordered fields, consideration of the or-
dered field points (X (a), <o) for a € Spec,.R|X] constitutes no restric-
tion of generality. Notationally, we shall make no distinction between
the point X () € AR (o) and the ordered field point (X (a), <a). (One
can also identify a € Spec,.R[X] and the list X (a).)

The complexity V(c, X, a) of verifying o € Spec,.R[X] in its halo
hala = {8 : 8 C a} of generizations is defined as the minimum c-length
L(c,T) of a verifier T over m distinguishing X (o) from every X(3),
B8 C a, through the outcomes of the comparison test. We then say that
T verifies o. A verifier T over m being given, I'(T) denotes the QE-SLP
over m of pure computational steps of T.

The operational complexity ‘I{c, X4, @) of isolating o in its halo of
generizations is defined as the minimum c-length of an QE-SLP over m
computing for some n € N a list f € AR, RiXla from X, such that

2(f) = {o} in Spec,R[X]a.

Analogously one defines the isolation complexity I(c, Xp,p) of a prime
ideal p € Spec R[X], and one has

I(c, Xa, a) < I(c, Xouppa, SUPP a) (3)

for o € Spec,.R[X]. Isolation complexity provides a lower bound on
verification complexity under reasonable assumptions on the counting ¢
under consideration ([Li2]).
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2.3 Semi-algebraic computation trees — path selection

We recall that there is a one-to-one correspondence between semi-
algebraic subsets E C R™ and constructible sets in E C Spec,R[X]; this
“transition is called operation tilda (cf. [BCR]). A prime cone a € E is
called a minimal prime cone of E if it possesses no proper generization
within E.

Let R be a real closed field and 7 be a semi-algebraic computation
tree of operational-relational signature (R, P) over m. We trace the
path 7T, in 7 followed by the input X (o) for o € Spec,.R[X]. Assume
that 7 has input-output format (m;n) and solves the monochiome task
S of the same format. The tilda S of the specification will provide us
with information on the behavior of T, on a. 7T, can be considered as
a verifier over m, and ['(7,) computes the output 7(a) € A% o) of
the tree 7 on input X (c). The prime cone o € Spec,R[X][Y1,.. ., Yn]

defined by the input-output list (X (a),T(a)) € A'E_t',:(a) lies then in

the tilda S which we are going to use for the concrete tasks mentioned
above.

Secondly, T, may verify « in its halo of generizations. This property
(for certain o) is a consequence of the specification in case of decision
tasks or other polychrome tasks (|Li2}, [LR]). For monochrome tasks
separation properties of prime cones are not a direct consequence of the
specification. We shall nevertheless encounter a verification discussion
of paths T, through two ways arguments where one of them will be
guaranteed to “to catch the mouse.”

For a tree T, L(c, To) denotes the c-length of the path 7,; maximizing
over all path lengths we have the c-cost C(c, T) of 7. Minimizing Cle, T)
over all T solving the task S, defines the “minimax” complexity

C(c,8) = Jin 0161;3%) L(c, Ta)

of S.
2.4 Additive complexity and the logarithmic metamor-
phosis

We first recall the statements of two results from [Lil] concerning ad-
ditive complexity which will be needed to prove our main lower bound
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result (Theorem 2).
For f € K = R(X) write

fx+v)= Y XY Ky, Yall
IeNn

and let ford € N

jaf) =Y fixX)Y' € Kny,...,Yy)
|l<d

denote its d-jet. The following Theorem relating additive and multi-
plicative complexity is based on a program transformation (QE-SLPs into
QX_-SLPs) mainly constructed with the help of an appropriate structural
transport (“metamorphosis”) via

exp
m =y — 14+ m,

m denoting the maximal ideal of K[Y]/(Y1,...,Y,)%"], arithmetization
by “symbolic jetting,” and the classical idea in [St2] (see also [Mo], [Wi]).

Theorem 1. [Lil]. Let K = R(Xi1,...,Xn) and d > 2. For
[ = (f1,--.,fm) € AR i additive complezity has the lower bound in
terms of multiplicative complezily as

L{ct, X (0), f) A L(ew, Y, ja(f)) —m — n;

> ——eer e e
T dd-1
here Y = (Y1,...,Yy) € A?{—,K[Y]'
|

Beside this main technical tool our subsequent discussion will require
an absolute lower bound on the additive isolation complexity of prime
cones of height one. If the support p of o € Spec,R[X] has height one
then the inequality (3) becomes an equality. Moreover,

V(C+, X, a) > I(C‘H XP’ P) -1,

and for additive complexity we can use the following Euler derivation
bound:
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Proposition 1 [Lil]. Define A (f) = dimp(}_ RX:8:f + Rf)/Rf for
f € R[X]. Then for every prime principal ideal p = (f) € Spec R[X],

'I(C+7 va p) 2> A+(f)
|

For the discriminant we now bound the value of A, (the bound is in
fact an equality, but we do not need this here).

Lemma 1. For the discriminant dis € R[S;j: 1 <i <j < mj,

Proof. Let § € R[S;j : 1 <i <j < m]™™ be the symmetrix matrix
with entry Sy; for 1 < i < j <m, and let its (m —1) x (m — 1) minors be
denoted d;.;. We show by induction on m that Spmdm;m and the S;;d;;;
with 1 < i < j < m are R-linearly independent. This is clear form =1,
so assume m > 1. For.1 < i < j < m we have

Sijdij = S11(Sijdis;15) + (an Sqi-free term),

and that the Syjd;;; are Syj-free for 1 < j < m; hence by induction the
asserted linear independence follows.

3 Quadratic forms and matrix multiplication

The basic idea for constructing fast (square) matrix multiplication al-
gorithms is to look for “non-commutative algorithms” (computations in
non-commutative polynomial algebras) that can be used recursively by
block matrix calculation (cf. [St1]). We quickly recall this idea (cf. [Pal,
[dG}).

A division free QR-SLP T' over r + s is said to be “(r,s)-
bilinear” if the following holds true: when executed on input XY =
(X1,..., Xr;Y1,...,Y5) € ng[X,Y] then in every multiplication step
of I' the first argument is a linear polynomial in R[X] and the second
argument is a linear polynomial in R[Y].
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Let I" be such a bilinear algorithm for m x m matrix multiplication
(r = s = m?) with n(T) non-linear and I(I') linear computational steps,
assume m > 2, and let 7 = log,,, n(I') > 2. Then recursively one obtains
for m¥ x m* matrix multiplication a bilinear algorithm, denoted I'®),
satisfying

(n+1)T®) = o) - (n + )@T*D) + |(T) - (m*1)2

for k > 1. Dividing both sides by m*™ shows via a geometric series
argument the boundedness of the quotient

(n+)(r®) (n+)@ED)  YT) mED2

Y m (k1T n(T) mEDr
_ @ M) R o,
= Ta@ " a@) Z s

(r+)@) , YT) m2——‘r
n(T) nM) 1-m27

and the irrelevance of the number /(") for boundedness itself. Other
(square) matrix formats can be augmented with zero blocks to the next
m* x m* format.

Let MAMU = (MAMU,, : m € N, ) denote the sequence of m x m
matrix multiplication computational tasks. The above recursion makes
clear the following two things.

1. The asymptotic exponent w of matrix multiplication,

w = w(MAMU) = inf{r € R : C(ctot; MAMUy,) = O(m™)},

IA

(by r > 2)

can be defined via the multiplicative complexity,
w = w, = wy,(MAMU) = inf{r € R : C(cs, MAMUp,,) = O(m")}

since w, can be defined by restricting to bilinear algorithms ([St2]).
(This is the motivation for counting only non-linear steps. For the latest
bounds on w we refer to [CW], [St3]).

2. The non-uniform (semi-algebraic) complexity and the uniform
complexity notion of Blum, Shub, and Smale [BSS] meet asymptotically
in this case of matrix multiplication: if

wpss(MAMU) = inf{r : 3 BSS algorithm A for MAMU with time
bound C(ctot, AIMAMU,,) = O(mT) for m — oo},
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then wpss(MAMU) = w.

Remark 1. Furthermore by Schonhage ([Sch62], p. 67), there is even
an algorithm A for MAMU over Qas coefficient field with a meaningful
variant in the bit-model satisfying for every 7 > w

C(ctot, AIMAMU,) = o(m™) as m — oo.

A is designed in a multi-tasking “researching on all fronts” fashion to
find better and better algorithms for the various MAMUy,y,.

For other sequences of m X m matrix computational tasks & =
(Sm : m € Ni), where such an asymptotic uniformization does not
necessarily exists, we define its asymptotic exponent as

wpss(S) = inf{r:3 BSS algorithm A for § with time bound
C(ctots AlSm) = O(m7) for m — oo}

In [Lil] it is shown that the asymptotic exponent of matrix multiplication
with respect to additive complexity also coincides with w,

wi(MAMU) = w,(MAMU) = w.

We are going to prove a similar complexity relativization for the additive
complexity of the orthogonal basis computation task and the diagonal-
ization task. As above, a quadratic form is thought to be given as a
symmetric matrix; its discriminant is then the determinant of this ma-
trix. For the subset of symmetric m X m matrices we shall simply write
Rm(m+1)/2-

For the rest of this paragraph we fix the matrix size m x m and drop
the index m indicating the size; the next paragraph 4 complements the
semi-algebraic lower bound by an uniform upper bound.

Theorem 2. 1. Let T be a semi-algebraic computation tree (signature
(QF, P) as above) of input-output format (m2,m2) for the orthogonal
basis computation task OGB. Then for every minimal pnme cone a €
Mln(R'"(m+1)/2) having a specialization 8 € Mln(Z(dls) ) the additive
path length is bounded below as

L(ct,Ta) > const. C(cs, MAMU).



194 Thomas Lickteig and Klaus Meer

2. Let T be a semi-algebraic computation tree of input-output format
(m?, m? +m?2) for the diagonalization task DIAG. Then for every mini-
mal prime cone a € Min(R™™+1)/2) the additive path length is bounded
below as »

L(cy,Ta) > const. C(cu, MAMU).

Remark 2. We comment on the geometric signification of the two lower
bound statements.

The first statement of the theorem implies for given 7 the existence
of an open semi-algebraic U ¢ R™™+1)/2 the intersection of which with
Z(dis) is a non-void Zariski open subset of Z(dis), such that

L(c4,Ts) > const. C(c«, MAMU)

for every symmetric matrix S € U \ Z(dis). Moreover, as the discrimi-
nant ideal (dis) € Spec P(R™™1)/2) is central (cf. [BCR}), every ma-
trix S € Z(dis) appears in the closure of U \ Z(dis).
The second statement of the theorem implies for given 7 the lower
bound
L{c+,Ts) > const. C(c., MAMU)
for every symmetric matrix S in some non-void Zariski open

UcC Rm(m+1)/2.

Proof. 1. The organization of this proof is divided into-showing a
relative lower bound and an absolute one. First we show for a small and
a big constant

L(cy, To) > (small)-C(cy, MAMU,,)—(big)-m? > (small)-m“—(big)-m>2.
(4)

In order to get rid of the “w-ignorabimus” we then show

L(cy, Tap) > (m = 1)2(’" —2) (5)

for the common path 7, g of o and its specialization § € Min(ZEfis))
which is a initial segment of T; here the specialization 8 is needed.
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Let 7 be a corresponding computation tree. Let
SER[S;:1<i<j<m]™™

be the symmetrix matrix with entry S;; for 1 < i < j < m, and let
M € R(S)™ ™ be that matfix such that M(a) is the output T(a) of T
on input S(a). Passing from OGB to its tilda OGB we conclude

) dl(a)
M (a)S(a)M(a) = D(a) = ( )
dm(a)

for some regular diagonal matrix D € R(S)™*™.

Using three matrix times vector multiplications we compute with
3(m — 1)m additions from S(0), M, and the vector {1,...,1) the diag-
onal elements dy, .:.,dm € K = R(S), and then with further (m — 1)m
additions (to compute the trace of the product of two matrices)

trace S(0) ™! = trace(M D) 'M.
Altogether we have so far (similarly as in [BKL]),
L(c4, S(0), trace S(0) 1) < L(ey, Ta) + 4(m — 1)m. (6)

In the further demonstration we do no longer protocoll the constants
which in principle are given explicitely.
Now Theorem 1 takes action. The expansion

(S() +¥) ™ = 5(0) ™ = (o)1 S(0) 1 + - € KIYI™™,

equation (6), and Theorem 1 used for d = 3 imply (using further K-
linear operation) for suitable constants

L(cs, Y, trace S(0) 1Y S(0) 1Y S(0) 1Y S(o)!) < @)
const. L(cy,7a) + Const. m?;

the removal of
| trace (S(0) 1 = S(0) 1Y §(0) 1 4 (S(0) 1Y) - (S(0) 'Y S(0) 1))

can be arranged with additional m? many K-nonlinear multiplications
by an extra computation of it since computation of the trace of a product
of two matrices from these requires at most m? multiplications.
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For square matrices 2, B we use now the abbreviation
(2, B) = trace ABABABA.

Within the subsequent reasonings we shall apply several morphisms
in flac. (That is to say, the variable standpoint with respect to coeffi-
cients — rather than the traditional fixed coefficient field view — will be
of particular importance in our argumentation.)

We choose a prime cone v € Spec,K (possibly different from the a
above) such that the matrix

S()7! € k()™

becomes positive definite, an orthogonal matrix U € Oy,)(m) (classical
orthogonal group) and elements ey,...,emn € k(y) such that

ef
US(7>-1U-1=E2=( )
2
em

is diagonal. First of all, the assignment (in matrix notation)
S(0)™!— 1+ S(0)7!

defines an element in AutpK the induced coefficient conjugation of
which on K[Y] (an isomorphism in flac) implies by (7)

L(cs,Y,7(1 + 8(0)™,Y)) < const. L(cy,Ty) + Const. m?  (8)

with the same.constants as in (7). Performing scalar extension with
k(7v), (7) implies also

L{cs, Y¥O 2(U71E%U, Y *™)) < const. L(cy,Ta)+ Const. m2, (9)
and in addition, (8) yields

Lcw, YEO (U1 + E}U, Y*M)) < const. L(cy,Ta) + Const. m2.
(10)
Now we inspect the slightly “baroque” expression

r(UE?U, Y*O))
=traceU 'E(EUYU1E)(EUYUE)(EUYU 'E)EU
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and the corresponding one with E replaced by v1 + E2 (positive roots
of all diagonal elements) for (U ~1(1+ E2)U, Y ¥0)) to observe that with
the help of the k(7)-algebra morphism of substitution (written in matrix
notation)

Y~ UETlYETWU

inequality (9) and inequality (10), with the help of the substitution

Y = U Y1+ EY) 'Y (V1+ E?)" My,

imply the complexity bounds
L(cs, YFO) trace E(Yk("’))sE) < const. L{cy,Ty) + Const. m2, (11)

and
L(ca, Y* trace V1 + E2 (Y"’("/))3 V14 E§) < (12)
const. L(c,Ta) + Const. m?

since k(v)-linear operations are not counted. (Note that counting only
non-linear operations is an essential point to make the whole proof ar-
rangement possible).

Next we use the straight line program transformation for the gradient
of [Lin] and [BS]. We first note the following trivial fact.

Lemma 2 For a ring A and the polynomial
m
=traceX -Y -Z= Y XyYjrZii € A[X,Y, Z]
,5,k=1
one has for the partials

ot ot at
=(Y -2)ys, —=(Z-X)gj, —=(X-Y)i.

Proof. Since t is invariant under cyclic permutation of the three matri-
ces the last evident equality implies the first two.

Now we differentiate the traces in (11) and (12). Differentiation and
a correction of some scalar factors of 2 show for the matrices

V = (Y*O0)2E2 4 y O g2y *0) 4 g2y k)2
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and 7
W = (Y*N2%(1 4+ E?) + YOI (1 + EAYED) 4 (1 + E?)(YFM)2
the complexity bounds
L(cs, YO, V) < const. L(cy,Ta) + Const. m?,
L(cs, gt W) < const. L(c+,7Ta) + Const. m2.
Since W -V =3 - (Y"('Y))2 we can conclude
L(cw, YO (v¥0))2) < const. L(cy,Ta) + Const. m2.

Let m = 41+ 6 for some § < 3. By a substitution of the m x § east
block and the & x m south block to zero we can reduce the matrix
size to size 4l X 4I. So we assume m = 4l in what follows. The k(y)-
algebra morphism of substitution canonically induced by the R-algebra
substitution R[Y] — R[A, B}, given in matrix notation by

0 0 tA 0

0 0 B O
Y=14B8 0 of

0 0 0 O

shows for [ x ! matrix multiplication the complexity bound

L(cs, AB, YA-B) = L(cs, AKX BK) (4. BYFO))
< const. L(cy,Ta) + Const. m2,

by transfering back the complexity bound over k(v) to coefficient field
R (see the remark below); here, as in [Li2], we use the notation AB €
Al;—l’;ﬁfB] for the concatenated list AB = (Ay1,...,Au; B11,.--,Bu).
Using block matrix calculation in order to get back to m x m matrix
size, this completes the proof of the bound (4).

Remark 3. Let pat = (r, ¢, ¢, a, 5, m;n, l,d) € N® x N3 be a pattern of
numbers. Then there is a first order formula ®,,,(coeff) of the language
of ordered fields with parameters in Z — the package of free variables of
which is denoted coeff - such that for every real closed field R and every
list of polynomials f € A%—»R[Xl,..., Xa)? each f; having degree at most
d, ®pat(coeflicient system of f) is true in R if and only if there exists a
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division free QE-SLP over n computing f from X with r many R-scalar
multiplication, ¢ nullary constant 0, ¢’ nullary constant 1, a addition, s
subtraction, and m multiplication instructions.

As a consequence (by the Tarski-Seidenberg principle), for an exten-
sion R O R of real closed fields and every cost function ¢ : Qf — N
constant on R-scalar multiplications and division,

L(e, X, 1) = L(®, x®, 1)

for every f € As%—»R[XI,..., X5 here ¢® : QR — N denotes the extension of
¢ being constant on R-scalar multiplications. In other words, the scalar
extension with R is an autarkical monomorphism in flac with respect
to the complexity data (c, X) and (c®, X®) (cf. [Li2]).

We are now going to prove the absolute lower bound (5) on the
common path T, g of both, o and 8. According to whether the paths
Ta and T3 split or not we distinguish two cases:

Case 7T, # T3: Since T distinguishes o and its specialization 3 the
last comparision in the path 75 g yields an isolation of 8 € Spec, R[S]supp 3
(see [Li2}). (Note that T, g does not necessarily verify 3; if necessary,
one first has to replace the last comparison by an equality test.) Hence
by Proposition 1 and Lemma 1

m(m — 1)

L(C+, %,B) Z 2

~1,
and the bound (5) is guaranteed.

Case T, = Tp: If there is no split of paths, let p = (dis) € R[S :
1<i<j<m],S €R[S;:1<i<j<m|™™ be the symmetric
matrix with entry Si; for 1 <i <j < m, and let M € R[S]7"*™ be that
regular matrix such that M(a) and M () are the outputs 7(a) resp.
T(B) of T on input S(a) resp. S(B). Considering again the tilda OGB
we conclude for v € {o, 8}

di(v)
"M(7)S(v)M(7) = D(v) = ( )
dYn(’Y)

for some diagonal matrix D € R[S]g"™™ such that D(a) is regular. Since
M(p) is regular and S(8) has rank m — 1, exactly for one diagonal
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element, say the first one, d1(8) = 0, but d1(a) # 0. In order to get
an isolation for 8 € Spec,R[S]p we multiply the above matrix equation
from the right with the inverse M ~1(v) — which we do not compute! -
getting

M (v)S(v) = D()M " (v).

Since M (8) is regular at least one element in the first row of M ~1(8)
must be non-zero, say (M ~!)1;(8) # 0. Considering the left side of
of this matrix equation we see that one can compute the element d; -
(M~1)y; € R[S]p from M and Sp with additional m — 1 additions,
and this element provides an isolation of 8 € Spec,R[S]p. Hence by
Proposition 1 and Lemma 1

m(m — 1)

L(C+, 7:!’[;) 2 9

-—m+ 1,
and the bound (5) is guaranteed in this case as well.

This completes the proof of the first part of Theorem 2.

2. The proof of the second part is similar to the first one. The relative
lower bound proof above did not require o to possess a specialization in
Min(Z(dis)), and remains valid here. For the absolute lower bound we
make a slightly different distinction. Let again p = (dis) € R[S;; : 1 <
i < j < m). If the SLP T'(7,) of purely computational steps along 7,

is not executable on S(p) then its execution on Sp produces a non-zero
non-unit in R([S]p, so an isolation of its maximal ideal, and

m(m——l)'

L(C+_, 7::!) =z 9

(13)

If it is executable, let M, D € R[S]y"*™ be those regular matrices such
that the pair (M(a), D(c)) is the output T(a) of T on input S(a).
Evaluation in p,

"M (p)S(p) M (p) = D(p),

shows that one of the diagonal elements of D provides an isolation of
p € Spec R[S]p. So inequality (13) in valid in this case too.
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4 BSS Discussion

The lower bounds of the last paragraph can be complemented by uniform
upper bounds, even for total complexity.

Theorem 3. Asymptotically, for m — oo, diagonalization, orthogonal
basis computation, and matriz multiplication have the same total com-
plezity,

wpss(DIAG) = wpss(OGB) = w.

Proof. We describe a BSS algorithm A for DIAG assuming to have
given for 7 > 2 an algorithm for MAMU with time bound Q(m") when
restricted on MAMU,,. A is calling three main O(m") subroutines to
be described first.

e Are (regularization): This algorithm receives a symmetric m x m
matrix S, finds its rank » < m, and computes a regular m x m
matrix M and a regular symmetric r X r matrix R such that

t _ (R 0Y}
o = (2 0),

Via fast matrix multiplication this can be done with Keller-Gehrig’s
[Ke] elimination variant of Schonhage’s [Scho1] triangulation which com-
putes M and the product M S such that this product is in eliminated
staircase form.

o At (direct sum decomposition): This algorithm receives a sym-
metric m X m matrix S with a regular symmetric ! x ! north-west
block R and computes a regular m X m matrix M and the product

‘A1 SM such that the latter is of the form

t _(R O
MSM—(0 T)

with the same regular symmetric I X ! north-west block R.

A block elimination can be arranged using fast inversion ([St1],
[Scho1], [Sché3)], [Ke]) in the format Ix! and m X m matrix multiplication

yielding
tag 1 o\ . (R
M*(—An—l 1) if S_(A U)'
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o A,y _reg (north-west-regularization): This algorithm receives a reg-
ular symmetric m x m matrix S, m = 2[ + § for some 6 € {0,1},
and computes a regular m x m matrix M and M SM such that
this product is of the form

t (R A
MSM—(A T)

with regular symmetric ! x ! north-west block R.

First we apply Areg to the ! X I north-west block of S, find its rank
r < 1, and assume for the further description the ¢ x I north-west block
of S already to be in the form
R O
0 0

with regular symmetric » x r matrix R. Then an application of Agp;¢ »
in the format (r + 1+ 6) X (r + 1 + 6) and a matrix size adjustment
manufactures a regular m x m matrix M such that the product M SM

is of the form
R 0o O
‘MSM = (0 0 ‘A)
0 A T

where the (I + 6) x (I — r) block A has rank ! — r since S is regular.
A transformation of the whole (I + §) X m south block into eliminated
staircase form yields a further regular m X m matrix M’ such that the
product *M’'*MSM M’ is of the form

MtMSMM' =

cocow™
Qagoe
<gee

0
0
B
0

This whole matrix is transformed into a form with regular ! x I north-
west block once the inner north-west null and south-west regular
2(1 —r) x 2(1 — r) block is transformed into north-west regular form; by
a2(1—r) x 2(I — r) block permutation matrix P we transform this block

into the form
to(0 B, (U ‘B
e(5 o)r=(5 o)
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The goal is reached if U is regular, or in case of a hyperbolic shape U = 0
and B = 1 after performing a simple transformation. The general case is
reduced to these two cases as follows. We apply again Aeg to the north-
west block U, find its rank s < -7, transform the whole 2(I—r) x2(l—r)
matrix accordingly, invert then the resulting south-west block to obtain
finally a transformed shape

W 010
0 0 0 1
1 000
0 100

with regular symmetric s x s matrix W. 'I‘ransformatioxi of the hy-
perbolic block achieves the goal. Multiplying all partial transformation
matrices together we obtain the overall transformation matrix.

The algorithm A now works as follows. Given a symmetric m X m
matrix S, A first calls Areg, finds its rank r < m, and computes a regular
m X m matrix M and a regular symmetric r X r matrix R such that

t _ (R O
s = (£ 9),

Then A calls Anw—reg for the regular symmetric r xr matrix R and manu-
factures a regular m x m matrix M’ such that the product ‘M’ ‘MSM M’
has a regular |r/2]| x |r/2] north-west block. Then A calls Agy,ir/2)
and manufactures a regular m x m matrix M" such that

0 0 O

T 0 0
MM TMSMM'M"={0 U 0

is in block diagonal form with regular symmetric |r/2] x |r/2] matrix
T and regular symmetric [r/2] x [r/2] matrix U; if » ¢ 2Z then an
additional traditional one column elimination is used to have U in the

o= (5 8)

with regular symmetric |r/2] x |r/2] matrix V. Then A is recursively
called twice for arguments T and V. Although matrix multiplication
and related algorithms being called many times, 7 > 2 and a geometric

form
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series argument as described above for matrix multiplication lead to the
upper bound

C(ctot, AIDIAG,,) <2 -vC(ctot,AIDIAGL.,./QJ) + const. m”™ = O(mT).

As 7 > w > 2 was arbitrary this shows wpss(OGB) < wpss(DIAG)
< w.

Acknowledgments We thank the referees for their useful remarks.
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