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Levelled O-minimal structures.
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Abstract

We introduce the notion of “levelled structure” and show that
every structure elementarily equivalent to the real exponential field
expanded by all restricted analytic functions is levelled.

An expansion R of an ordered field (R, <,+,-,0,1) is o-minimal if
every subset of R (parametrically) definable in ® is a finite union of
points and open intervals; it is exponential if it defines an isomorphism
of the ordered groups (R, <,+) and ((0, 00), <, -), where (0, 00) denotes
the positive elements of R.

Example The ordered field of real numbers with restricted analytic func-
tions is the structure
Ran = (]R’ <+ -0,1, (f)fGIR.{X,m},mEIN)’

where IR{X, m} denotes the ring of all power series in X1, .+, Xm over
IR that converge in a neighborhood of [—-1, 1]™, and where f : R™ — R
is defined for each f € R{X,m} by

o= { 40 g

s otherwise .

We let Ry exp denote the o-minimal (see e. g. [2]) expansion of IRy, by
the function z — e : IR — R.
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Given an exponential o-minimal expansion R of an ordered field
(R,<,+,-,0,1) there is a unique definable differentiable ordered group
isomorphism

E:(R,<,+,0) — ((0,00),<,-,1)

satisfying E/ = E on R. We denote this unique (hence 0-definable)
function by exp. The function exp behaves (in R) to a large extent
as the real exponential function e* behaves when working over the real
numbers. (See [5] for details on the above.) The compositional inverse
of exp from (0,00) onto R is denoted by log, and is called the logarithm
function (of R); we extend log to be defined on R by setting log(z) := 0
for £ < 0. For r € R and a > 0, we put a” := exp(r log a).

Below, let ® denote an o-minimal expansion of an ordered exponen-
tial field (R, <, +, —,-,0, 1, exp); “definable” means “®-definable”—that
is, “definable in ® with parameters from R”—unless stated otherwise.
The reader is assumed to be familiar with the basic properties of o-
minimal expansions of ordered exponential fields.

Whenever convenient, we regard any particular partial function as
being totally defined by setting the function equal to 0 off its domain of
definition.

Let eg denote the identity on R and put ep4+1(t) := exp(en(t)) for
n € IN and t € R. Similarly, £y denotes the identity on R and
£ny1(t) := log(€n(t)) for each n € IN and t € R. We may also write
£_, for e,, depending on convenience; for example, ultimately we have
Livk(t) = €;(L(t)) for all j,k € Z. (Ultimately abbreviates “for all
sufficiently large positive arguments”.)

A function f : R — R is said to be infinitely increasing if f is
ultimately strictly increasing and unbounded. Note that if f is definable,
then f is infinitely increasing if and only if limy_, 1o f(t) = +o00.

For functions f,g : R — R with g ultimately nonzero, we write
f(t) ~ g(t) if limy, oo £(t)/9(t) = 1.

Suppose that f: R — R is a definable infinitely increasing
function and there exists s € Z such that for some k'€ Z we have
£k(f(t)) ~ £x_s(t). Then s is unique and £;(f(t)) ~ £;_s(t) for all
j > k. Following Rosenlicht [7], we then say that f has level s and
we write level(f) = s. Equivalently, a definable infinitely increasing
unary function f has level s if and only if there exists N € IN such that

En+s(f(2)) ~ N ().
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Definition. The structure R is levelled if every definable infinitely in-
creasing unary function has level; its complete theory Th(R) is levelled
if every A= R i3 levelled.

We can now state the main result of this note.

Theorem (Rgnexp) i3 levelled.

We defer the proof until later.

Levelled structures have nice properties that can show up in unex-
pected ways. For example, it is shown in [6] that if ® is levelled, and
* : R2 — R is definable, continuous and (R, x) is a group, then (R, *)
is definably homeomorphic to (R,+). (It is not known whether this
property holds for ® without the assumption that ® be levelled.)

We now list some basic properties of level; the proofs are easy and
we omit them.

Proposition. Let f, f1, fo be definable infinitely increasing unary func-
tions with level(f) = s, level(f1) = s1 and level(f2) = so.

(1) For each k € Z, £y, has level k.
(2) If ultimately f1(t) < fo(t), then s; < s9.

(3) If a,B€[1,00) are such that ultimately fi(t) < fo(t)* and
fz(t) < fl(t)ﬁ, then s1 = so.

(4) Both f1 + f2 and f1 - fo have level equal to max(si, s2).
(5) The (ultimately defined) composition f1 o fo has level s1 + so.

For AC R™"! and x € R™ put A := {t € R: (z,t) € A}, and for
f:A— R and x € R™ define f;: Az — R by fz(t) := f(=,t).

Definition. The structure R is ezponentially bounded, or e-bounded for
short, if for each definable f : R — R there exists n € IN such that
ultimately |f(t)| < en(t).

Note. Clearly, if R is levelled then R is e-bounded. On the other hand,
if R is e-bounded, then for every m € IN and definable function
f:R™t! = R the set

{level (fx) : fx has level }
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is finite. This follows from (1) and (2) of the previous proposition, and
the fact that for f as above there is some N € IN such that for each
z € R™ ultimately we have |fz(£)| < en(t). (This fact is established
over the reals using 4.18 of [4], but the proof given there goes through
for o-minimal expansions of arbitrary ordered fields.)

Proposition. The following are equivalent:

(1) Th(R) is levelled.

(2) For everym € IN and definable function f : R™t! — R there exist
integers N, s(1),...,s(k) with N > 0,s(1),...,s(k) such that for
every z€R™, if f. 18 infinitely increasing, then
EN(fz(t)) ~ En_q()(t) for somei € {1,...,k}.

(3) ® is e-bounded, and for every m € IN and definable function
f: R™! — R there exists N € IN such that for every z € R™,
if fz is infinitely increasing, then €n,,(fz(t)) ~ €n(t) for some
integer s (= s(x)).

Proof. (1) = (2). We may assume that f is O-definable, say by an
(m + 2)-ary formula ¢ in the language of ®. Let v = (v1,...,vm), and
for each pair of integers (j, s) let v ,(v) be the m-ary formula express-
ing: “If p(v,t,y) defines an infinitely increasing function y = F,(t),
then £;(Fy(t)) ~ €-s(t).” Since Th(R) is levelled, for every % = ®
and every a € A™ (where A is the underlying set of 2) there exist
j,s € Z such that A |= v¥;,(a). By compactness, there exist integers
i(1),...,5(k), s(1),..., s(k) such that

R i= Yv ["/’j(l),a(l)(v) V...V wj(k),s(k)(v)] .

Put N := max{0,;(1),...,7(k), s(1),...,s(k)}.

(2) = (1). Let A = R and g be an A-definable infinitely increasing
unary function; say that g is defined by ¢(a,t,y) with a € A™ for some
m € N and ¢ an (m +2)-ary formula in the language of 8. Let X be the
0-definable set consisting of all z € A™ such that ¢(z,t,y) defines an
infinitely increasing unary function y = f(t). Now define f : A™*1 — A

by
flz, t) == { fz(t), z€X

0, otherwise .
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Then f is 0-definable, and by elementary equivalence there exist N € IN
and s € Z with £n(fa(t)) ~ £n—s(t); that is, g has level s.

That (2) = (3) is clear, and (3) = (2) follows from the note preced-
ing the statement of this proposition.

Note. If Th(R) is levelled and ®' := (R, <, +,-,0,1,exp,...) is a reduct
of R, then Th(R') is levelled.

(This is immediate from the preceding proposition, but this fact can
also be established directly by a basic model-theoretic argument.)

We have no example at present of an o-minimal expansion of an
ordered exponential field whose complete theory is known to be not lev-
elled. However, Boshernitzan [1] has shown that there are real analytic
functions f : (a,00) — R satisfying f(t + 1) = ef® for ¢t > a whose
germs at +o0o belong to Hardy fields; such a function clearly cannot
be ultimately bounded by any fixed compositional iterate of e*, hence
does not have level. Also established in [1] is the existence of ultimately
real analytic solutions to the functional equation g(g(z)) = €* (a so-
called “half-iterate” of e*) whose germs belong to Hardy fields. No such
function could have level (otherwise, 1 = level(g o g) = 2level(g)). It
seems plausible that (IR, <, +, -, exp) could be expanded by some such
functions to an o-minimal structure.

Proof of the Theorem

We now fix some ® = Rgy exp, with underlying set R. We must show
that R is levelled.

We let L., and T,y denote respectively the language and the theory
of Ran, and Lan exp and Tap exp denote respectively the language and the
theory of IRan exp-

We assume familiarity with the main results from [2,3]; we must first
modify some of the constructions from those papers.

If G is a divisible ordered abelian group, then R((t¢)) denotes the
field of formal power series of the form f = ) a4t9, where, g ranges over
G, each ag € R and supp f := {g : a5 # 0} is well ordered. Since the
reduct of R to Lay is a model of Tyy, we can naturally equip R((t€)) with
an Lan-structure so that R(t¢)) = Tan.
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There is a natural valuation v : R({(t®)* — G given by v(f) =
min supp f. We extend this valuation to R((t®)) by putting v(0) := oo,
with v(f) < oo for all f € R((t%)*.

In the following, we say that a map F from an ordered ring D into
an ordered ring D’ is a partial ezponential if F is an order-preserving
homomorphism from the additive group of D into the multiplicative
group of positive elements of D'.

Construction of R((t))F
We construct a chain of divisible ordered abelian groups

{0} =T_1cTocIhcC---

such that T,_; is a convex subgroup of I, for each n € IN. Putting
Kn := R((T")) for each n € Z with n > —1, we will obtain an Lan-
elementary chain '

K 1<Kyg<Ki<---

where T',,_; is an ordered R-subspace of K, for each n € IN. We identify
K _1 = R((t1%})) with R. We will define partial exponential maps En_1 :
Kn—1 — Kp such that E,_; C Ej, for each n € IN.

Let To ;= R. Let E_1 : R — R((t®)) be given by E_i(r) := exp(r).
Suppose now that n > 0 and that I'y, and Ey,—1 have been constriucted
for m < n. Put

Op := {x € Kp : v(z) > 7 for some v € ['n_1}

and
= {x € Kp:v(x)>Th 1}

Note that Op = Kp-1 & my. We extend E,—1 to a partxal exponential
En : O — Ky, by setting En(z) i= En-1(r) Yien(c?/i!) forz =r 4+«
with r € K,_; and a € m,. (Note that ¥ ;cn(a*/4!) is well-defined since
v(a) > 0.) Let J, := {x € Kp : suppz < Tpo1}; 50 Kp = Jn ® Oy as
K,,—1-linear spaces. Then we put I'nt1 := J, ® I'n C K, ordered as an
R-linear subspace of Kp, so T'y, is convex in ' ;.

Finally, extend En to the partial exponential Ey : Kn — Kpi1 given
by
En(z) = t'“ﬁn(b) for z = a+ b with a € J, and b € Op,.

Put R((t))f = UKn, T := UFn and E := {JE,. Then
R((t))? k& Tan and E : R((t))F — R((t))F is a partial exponential that
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agrees with the restricted exponential function on {—1, 1] and ultimately
dominates all polynomials. Note that R((t))¥ is a subfield of R((t])).

Construction of R((t))L¥

Similarly as in §2 of [3] we obtain an Lanexp-embedding
® : R((t))F — R((t))F such that ®(¢t~!) = E(t7!). Let z denote t71.
Put Lo := R((t))E. We can find an Ly exp-extension Ly of Lo and an iso-
morphism 7; : L; — R((t))E such that ; maps R((t))Z onto ®(R((t))F).
Then E(n;*(z)) = z. Indeed, every positive element g of R((t))” has a
logarithm in L; (that is, there exists h € L; such that E(h) = g). We
continue by constructing for each n € IN an L,y exp-extension Lp g of
Lp and an isomorphism nnt1 : Ln+1 — R((t))? such that nny1 maps Ly
onto ®(R((t))F). Every element of L, has a logarithm in L. Finally,
put R((t))LE := U Ln.

Every positive element of R((¢))LZ has a logarithm in R((t))LE.
Thus, from the axiomatization of Tanexp from [2], we see that
R((t))XE |= Tan,exp- By §5 of [2], we may identify the field H of germs at
+00 of definable unary functions with the smallest elementary substruc-
ture of R((¢))LF containing R and the element z = t~! € R((t))LE.
Therefore, in what follows we routinely identify any given definable
unary function f with its germ f € H, which in turn is identified with
the element f € R((t))LE. In particular, note that for every definable
unary function f we have E(f) = exp(f), and if f is ultimately positive
then E(£(f)) = f. Thus, there is no harm in denoting the logarithm
function for R((t))XF by ¢, and using the notation £ for k € Z in the
obvious fashion. Note in particular that 5, !(z) = €n(z) for all n > 1.

Given definable unary functions f and g with g ultimately nonzero,
we have f(z) ~ g(z) if and only if img_, o f(x)/g(z) = 1 if and only if
v(f —g) > v(g). Thus, given nonzero f,g € R((t))LF, we write f ~ g for
v(f—g) > v(g), that is, f = g(1+¢) for some e € R((t))~F with v(e) > 0.
Note also that v(f) = v(g) if and only f ~ cg for some nonzero c € R.
It is easy to see that ~ is a congruence relation on the multiplicative
group of nonzero elements of R((t))%F.

Lemma. Let f,g € R((t))*E with f,g > 0, and v(g) <.0.
(1) If f = gh with g > h" for allr € R, then £(f) ~ £(g).

@) I u(f) = v(s), then ti(f) ~ Li(g) for all k> 0.
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Proof. For (1), note that for all positive » € R we have
r(¢(f) — £(g)) = r&(h) = £(h") < £(g),
that is, v(£(f) — £(g)) > v(£(9))-
An easy induction on k yields (2).
n

Claim. Let g € R((t))¥ with v(g) < 0 and g > 0, and let & be the least
positive integer such that v(g) € I'x (as in the construction of R((t))).
Then £24£(g) ~ £2(z).

Proof. We prove this by induction on k. First, suppose ¥ = 0. Then
v(g) = v(z") for some positive r € R, and by (2) of the Lemma we have

£a(g) ~ £a(z") = £(r) + L2(z) ~ Lao(z).

Suppose now that the result holds for a certain & > 0 and let
v(g) € T'x41 \ I'k. Then v(g) = 6§ + v where § € Ji, 6§ < 0 and v € Iy
Hence, v(6) € T'x \ T'x—1 and v(6) < T'k-1 , so €oyk(—6) ~ €2(z) by the
inductive assumption. Also, we have g = t*(at” + p), with @ € R and
v(p) > 7. Now & < Tk, 50 £(g) ~ £(t°) = —6 and Lo k11(g) ~ Loyi(—6)
by (1) and (2) of the Lemma, respectively. Thus, £o,x.1(g) ~ £2(z).

n

Claim. Let g € Ly, (as in the construction of R(())XE), g > 0 and
v(g) < 0. Then there exists s € Z such that €5 p45(g9) ~ foyn(z).

Proof. Let f, : Ln, — R((t))F be as in the construction of R((¢))LE. By
the previous claim, there is some k € IN such that £o.x(fr(g)) ~ €2(z).
Since fy, is an Lap exp-isomorphism, we have
t24k(9) ~ L2(f7 1 (=) = £2(tn(2)) = Lo1n(2).
Hence €94 n+5(g) ~ €21n(z), where s = k — n.
n

Definition. An element f € R((t))LE has level s for s € Z if f > 0,
v(f) < 0 and there is an N € IN such that £y, 4(f) ~ En(z).

It is immediate from the preceding claim and the construction of
R((t))LE that every g € R((t))LE with g > 0 and v(g) < 0 has level s
for some s € Z. Hence, R is levelled.
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