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Optimal degree construction of real algebraic
plane nodal curves with prescribed topology, I:
the orientable case.

Francisco SANTOS

Abstract

We study a constructive method to find an algebraic curve in
the real projective plane with a (possibly singular) topological type
given in advance. Our method works if the topological model T
to be realized has only double singularities and gives an algebraic
curve of degree 2N + 2K, where N and K are the numbers of
double points and connected components of T. This degree is
optimal in the sense that for any choice of the numbers N and
K there exist models which cannot be realized algebraically with
lower degree. Moreover, we characterize precisely which models
have this property.

The construction is based on a preliminar topological manip-
ulation of the topological model followed by some perturbation
technique to obtain the polynomial which defines the algebraic
curve. This paper considers only the case in which T has an ori-
entable neighborhood. The non-orientable case will appear in a
separate paper.

1 Introduction

In a previous paper by the author [Santosl] it was shown that any real
plane nodal curve with N singular (double) points and K connected
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components in the projective plane is isotopic to a real algebraic plane
curve of degree at most 4N +2K. Also, the conjecture was raised that the
degree bound could be lowered to 2N +2K. In this paper we settle down
the conjecture in the affirmative, for orientable curves (see the definition
below). Moreover, we give a topological-combinatorial characterization
of curves for which the degree bound is optimal. Our results also hold
in the non-orientable case, but the proof is more intricate [Santos2] and
will be detailed in a forthcoming paper [Santos3].

Let us fix some concepts and notation. Throughout this paper we
will use the term algebraic curve as an abbreviation for real projective
algebraic plane curve. By this we mean a non-zero real homogeneous
polynomial f € R[X,Y, Z] in three variables, considered up to a con-
stant factor. Sometimes, by abuse of language, we will call algebraic
curve the zero set V(f) C RIP? of the polynomial f. We will normally
assume that we have an affine chart given for the projective plane. This
allows us to speak of the line at infinity and to say, for example, that a
certain conic is an ellipse.

An algebraic curve f is called orientable if its zero set V(f) has an
open neighborhood which is orientable; equivalently, if it can be moved
by an isotopy to the affine chart of the projective plane. It is called
nodal if all its singularities are order 2 singular points with two different
tangents, real or complex. If the tangents are real we call the singular
point a node. If they are complex, we will call it a simple isolated point.

Two algebraic curves (in general, two subsets V and W of RP?) are
said to have the same topological type or to be topologically equivalent if
there exists a global homeomorphism of the plane into itself sending V
to W. Note that this condition is equivalent to V' being isotopic to W,
and stronger than V and W being homeomorphic. Our main result in
this paper is the following, which is a re-writing of Theorem 4.3:

Theorem 1.1. Let F be an orientable nodal algebraic curve with K
connected components and N singular points (nodes or simple isolated
points). Then, F is topologically equivalent to e certain nodal algebraic
curve fe of degree 2N +2K . Moreover, one can find such an f. as being
a small perturbation of the form f. := f + eg, where f is a product of
N + K ellipses (or degenerate conics) and g is the product of 2N + 2K
different lines.
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Translated to the affine plane IR? this gives:

Corollary 1.2. Any compact nodal curve in R? with K connected
components and N singular points has the same topological type as a
certain algebraic curve of degree 2N + 2K.

Of course, for most curves the degree bound in our theorem can
be significantly lowered. The classical bounds by Bezout and Harnack
indicate that for every N and K there are algebraic curves in the condi-
tions of the theorem with degree essentially V2N + 2K. Let us remark
that a construction producing the optimal degree for any topological
type would provide a (constructive) answer to Hilbert’s XVI problem
for nodal curves, while the answer for the simpler case of non-singular
curves is only known up to degree 7 (see [Gudkov, Viro, Wilson] for
general information on Hilbert’s XVI problem). Thus, there is no hope
of obtaining such an optimal construction.

However, our bound is generically optimal in the following sense:
for every N and every K, there are orientable nodal algebraic curves
with N double points and K connected components which have not the
topological type of any algebraic curve of degree lower than 2N + 2K.
This is shown in Section 5. Moreover, in that same section we give a
topological characterization of algebraic curves for which the degree in
our main theorem cannot be lowered (see Theorem 5.2) for the precise
characterization).

The structure of the paper is as follows. In Section 2 we introduce
the notion of a topological model for an algebraic curve and the basic
concepts and results needed in our topological construction. Section 3
shows the main construction of a complicated topological model from
simple pieces, in which our construction of algebraic curves is based.
From this, Brussotti’s theorem would inmediately give the first part of
Theorem 1.1. To get the second part, an explicit perturbation technique
is exhibited in Section 4. Finally, Section 5 studies the optimality of the
degree obtained.

2 Topological preliminaries

We want to find an algebraic curve whose zero set has the same topolog-
ical type of a certain curve given in advance. Equivalently, we can say



294 Francisco Santos

that we are given a certain subset T C RIP? in the projective plane and
want to find an algebraic curve f such that V(f) has the same topo-
logical type as T. The conditions that such a T must satisfy for this

to be possible are contained in the following definition (cf. for example
[Boch-Cos-Roy]).

Definition 2.1. Let T be a subset of RIP2. We say that T is a topolog-
ical model for an algebraic curve if it is homeomorphic to a graph with
an even (possibly zero) number of edges incident to each vertex. We say
that an algebraic curve f realizes a topological model T if its zero set
V(f) C RP? has the same topological type as T. By a nodal (topolog-
ical) model we mean a topological model such that all of the vertices of
the underlying graph G have 0, 2 or 4 edges. We say that a topological
model is orientable if it can be isotopically moved to a position where it
does not intersect the line at infinity (equivalently, if it has an orientable
open neighborhood).

Observe that the underlying graph Gt of a certain topological model
T is not uniquely defined. In particular, an oval is homeomorphic to a
cycle graph with as many edges and vertices as one wants. The points
where a topological model T is locally homeomorphic to a line will be
called regular and the rest singular. The singular points of a nodal
topological model are the vertices with 0 and 4 edges of the underlying
graph Gr and will be called isolated points and double points of T,
respectively. A double point P will be said to be disconnecting if T \ P
has one connected component more than 7'

Our basic topological operation on a topological model T will be the
desingularization of some of its double points. Let P be a double point
of T. The desingualarization of T at P consists of considering a suit-
able small open neighborhood U of P and substituting T N U for two
disjoint open curves in such a way that we get a new model with one
double point less. This operation was called a ‘flip’ in [GCorb-Recio] and
[GCorb-Santos]. There are exactly two ways, up to topological equiva-
lence, of desingularizing a double point. These are shown in Figure 1.
If the double point was disconnecting, one of the two desingularizations
leaves the number of connected components unchanged and the other
one increases it by one.

Whenever we perform a desingulérization of a curve, we will mark
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the place where it has been done with a bonding line which joins the two
branches which we have inserted. In all our figures bonding lines will
appear as greyish dotted lines. The reason for including bonding lines is
that topological models are considered modulo topological equivalence.
Thus, we are allowed to transform them by global homeomorphisms.
The transformed bonding lines will tell us what topological change is
needed to recover the original topological type from the desingularized
one. :

Figure 1: Desingularization of a double point P.

We call faces of T the connected components of RP2 \7T. Clearly T
has a unique non-orientable face Fy. We will call depth of an arbitrary
face F of T the minimal number of crossings with T needed to go from F
to F (a crossing at a double point of T’ counts twice). The parity of the
intersection number with 7' of a path joining F to Fy does not depend
on the path (this is not true in general for non-orientable models). Thus,
adjacent faces have depths which differ by 1. Figure 2 shows the depth
diagram of a certain topological model.

v,

Figure 2: Depth of faces.
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Let P be a double point of 7. We have two possibilities for the
distribution of depths in the four faces around P (see Figure 3):

e we will say that P is of Type I if the depths of faces around P are
r,r+ 1, r and r + 1, for some r > 0

r-1

r+l r+l

Figure 3: Possible depth distributions around a double point.

o we will say that P is of Type II if the depths of faces around P
arer — 1, r, r +1 and r, for some r > 0.

We will say that a desingularization of T at some of its double points
is depth-consistent if the two faces which are joined by the desingular-
ization of each double point have the same depth.

Depth-consistency can equivalently be stated saying that each face
of the desingularized model 7’ has the same depth as all the faces of T
from which it has been obtained. Note that the different faces of the
original model T which form a face of T’ are still ‘separated’ by the
bonding lines. If the desingularization is depth-consistent, then there is
no ambiguity in considering the bonding lines or not for computing the
depth of a face of T’. Both desingularizations of a double point of type
I are depth consistent, but only one for double points of type II is.

3 Main Construction

The basis of our construction will be, given a nodal topological model
T, trying to obtain a desingularization of T which consists of ellipses
and with bonding lines being straight line segments. However, in order
to optimize the degree we will only perform a partial desingularization
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of T'; that is, some double points of T' will not be desingularized. We
first consider only connected models.

Proposition 3.1. Let T be a connected nodal orientable topological
model in RIP2. Then, there is a connected nodal orientable topological
model T' obtained as a desingularization of T in some of its double
points, and with the following properties (see Figure 4):

(i) The desingularization is depth-consistent.
(i) Every double point of T' disconnects T' and is of type II.

(ii1) Let b be a bonding line of T'. Let r be the depth of the face in which
b is. Then, at least one of the two faces adjacent to the extremal
points of b has depth r — 1.

Figure 4: Desingularization of the model in Figure which satisfies the
conditions in Proposition 3.1.

Proof. We first desingularize all the double points of type I in the
way that joins the two faces of maximal depth. This desingularizations
cannot disconnect T'; otherwise, for going from one of the two faces of
minimal depth to the non-orientable face it would be necessary to cross
the (now unique) face of maximal depth, which is impossible.

We then proceed to desingularize non-disconnecting double points
of type II one by one, until all the remaining double points are dis-
connecting. Condition (iii) is clearly satisfied for all the bonding lines
obtained.

Proposition 3.2. Let T be a connected nodal orientable topological
model in RP? which is not an isolated point. Let T' be a partial desin-
gularization T' of T satisfying the conditions of Proposition 3.1. Then,
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the boundary of the non-orientable face of T' is an oval C. Let a certain
homeomorphism h from C into an ellipse E of the proyective plane be
given. Then, T' can be transformed by a global homeomorphism of RIP2
into a topological model T" in the following conditions:

o T" is the union of a certain number of ellipses.

o if two of the ellipses intersect at a point P, then they do it tangen-
tially and one is inside the other one.

o the bonding lines are straight line segments.

o the global homeomorphism which sends T' to T" agrees with h when
restricted to C.

Proof. The fact that the boundary of the non-orientable face is an oval
is guaranteed by T’ being connected and having only Type II disconnect-
ing double points. Also, there are no bonding lines in the non-orientable
face because of condition (iii) in Proposition 3.1.

The rest of the proof will use induction on the maximal depth of faces
in T'. If the maximal depth is 1 then T consists of a unique oval C with
some bonding lines in its interior. Thus, T’ is topologically equivalent
to the ellipse £ with the bonding lines being straight line segments in
its interior. Clearly, the homeomorphism from C to E can be prescribed
in advance.

If the maximal depth of a face in T’/ is » > 1, we still have very
particular properties for T': for a certain double point P of T’ the
depth-consistent desingularization of T’ at P is precisely the one that
disconnects T'. Moreover, one of the connected components which re-
sults is inside the other one, because P is of type II. Let us call the inner
one the ear at the double point P.

Then, T' consists of an outer oval with some of these ‘ears’ attached
to it in its inner side. Each ear itself is a topological model in the
conditions of Proposition 3.1, but with maximal depth strictly less than
r. Moreover, different ears are not connected to one another by bonding
lines, because of condition (ii¢) in Proposition 3.1. However, an ear may
have bonding lines connecting it to the outer oval, or there might be
bonding lines connecting the outer oval to itself, through its inner face.
Let us do the following:
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First of all, take the outer oval as the ellipse E and realize inner
bonding lines of the outer oval as the line segments joining the points
on it prescribed by the homeomorphism k. Then insert a tangent ellipse
at each point where an ear has to be attached (this points are again
prescribed by &), small enough for not intersecting other ears or bonding
lines. Then, draw the bonding lines joining the inner ellipses to the
(again prescribed) points in the outer ellipse. This can be done in a
unique way modulo topological equivalence. Finally, prescribe in each
inner ellipse a homeomomorphism to the corresponding ear of 7’ in a way
which agrees with the extreme points of bonding lines already drawn,
and apply recursion to insert the rest.

The fact that the resulting topological model T" and bonding lines
is topologically equivalent to T’ follows from the fact that each step in
the ‘drawing’ process of 7" is unique, modulo topological equivalence.

Theorem 3.3. Let T be a nodal orientable topological model with N
double points, M isolated points and K connected components. Then,
there is a nodal orientable topological model T from which T can be
obtained by desingularization of some double points, in the following
conditions:

o T is a union of N + K ellipses and M isolated points.

e any intersection point P between ellipses of T is a tangent inter-
section of only two ellipses. There are at most 2N such tangency
points.

e The singular (i.e., double or isolated) points of T are in general
position (no three of them on the same line).
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Figure 5: The topological model T of Theorem 3.3.

Proof. Let us first assume that T is connected and not an isolated point.
Consider the topological model T’ obtained from T in Proposition 3.1,
embedded in the form described in Proposition 3.2. T’ has one ellipse
more than it has double points. In other words, T has Ny + 1 ellipses
and N2 bonding lines, with N1 + N2 = N. Substitute each bonding line
of T' by a sufficiently narrow ellipse joining the two ends of the bonding
line and tangent to the ellipses at the ends. Let T be the topological
model so obtained (see Figure 5).

The topological model T' can be recovered (modulo topological equiv-
alence) by desingularizing one of the two tangency points of these new
ellipses. This is exhibited in Figure 6 which shows the full sequence of
topological manipulations performed at a double point of T

-

Figure 6: Topological changes at a double point.
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The general position of the tangency points can be easily obtained
thanks the freedom we have in Proposition 3.2 for choosing the extremal
points of bonding lines and the tangency points of ellipses (by arbitrary
homeomorphisms into ellipses). This finishes the connected case.

If T is not connected, let T4,...,Tk be the connected components
of T. Starting with the outermost ones, apply the previous construction
to the connected components which have double points and realize the
others by ellipses or isolated points. Place a copy of the resulting models
T; in the appropriate part of RP? (reducing them as needed) in order to
get 7 in the required conditions. Observe that in the reduction process
it is essential to assume that the conics in the models are ellipses, i.e.,
that the models are embedded in the affine chart of the projective plane.

Remark 3.4. Suppose that the original nodal topological model T has
a non-disconnecting double point. We claim that, in these conditions,
the numbers of ellipses and double points of 7 in Theorem 3.3 can be
decreased by one.

Indeed, if T has a non-disconnecting double point, then the desin-
gularized model T” of Proposition 3.1 has at least one bonding line con-
necting two nested ellipses. In this case, the insertion of the inner ellipse
(the ‘ear’) in the proof of Proposition 3.2 can save one bonding line with
the following trick: insert the ear as an ellipse (as narrow as needed)
joining the contact point of the ear to the extremal point of the bonding
line in the outer ellipse (this produces two ellipses tangent to one an-
other in two different points). Then add the other bonding lines, if any.
The resulting model is not in the conditions of Proposition 3.1, but it
still serves for the construction in Theorem 3.3.

4 Perturbation of algebraic curves

In order to obtain our main theorem we only need to consider the topo-
logical model T obtained in Theorem 3.3 as being an algebraic curve of
degree 2(N + M) + 2K and algebraically perturb it in order to desin-
gularize some singular points. One way to do this could be enlarging
some of the ellipses in small amounts so that every tangency point be-
comes two transversal crossings (nodes). Then we could use the classical
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Brussotti's Theorem (see for example page 12 of [Gudkov]). This result
says that a singular curve having only nodal points can be perturbed
to a curve of the same degree where some of the singular points are
desingularized in an arbitrary prescribed way.

Nevertheless, we will show an explicit way to perturb the curve T
of Theorem 3.3 in the desired way, in order to obtain the second part
of Theorem 1.1. ‘and to make our result more constructive. Let us
first of all formalize the concept of a perturbation of an algebraic curve.
Perturbation techniques are quite standard in the study of the topology
of real algebraic curves (see [Gudkov, Viro]).

Let f be an algebraic curve with finitely many singularities. Let (f.),
e € [0,00) be a family of algebraic curves defined by polynomials f. of
the same degree as f = fo and whose coefficients vary continuously with
e. Then, for ¢ sufficiently close to zero, the zero-sets V (f.) are contained
in an arbtrarily small neighborhood of V (f) and their topology coincides
with the topology of V(f) except, maybe, at small neighborhoods of the
singular points of f. Moreover, the possible changes of topology at the
singular points can be predicted, if the singularities of f are sufficiently
simple. Our perturbations will be explicitly given in the form f. = f+eg,
where g is a polynomial of the same degree as f and with a finite number
of common zeroes with f.

The change in the topology of a curve in a neighborhood of a singular
point by. a small perturbation is called a dissipation. In our perturba-
tions, the singular points of f will be simple isolated points or tangencies
of two real non-singular branches. This two types of singularities are
classified as A] and A, (with ¢ > 3 and odd) in [Viro, p. 1098 ff.] (see
also [Arn-Var-GusZ]) and are diffeomorphic to the ones in X2+ Y? and
Y2 — X, respectively. The dissipations of an A} point P of f are easy
to describe: if the perturbing curve g has a singular point at P then no
change in the topology appears; if g has a zero non-singular point at P
then an oval passing through P appears; if g is non-zero at P then the
isolated point either dissapears or becomes an oval, depending on the
sign of g at P. The dissipations of an A; singularity admit several other
possibilities; we will be only interested in the following cases:

Lemma 4.1. Let f € R[X,Y, Z} be a homogeneous polynomial of a
certain degree d and let P be an A; singular point of f (with t odd ). Let



Optimal degree construction of real. .. 303

fe = f + g be a perturbation of f by a certain homogeneous polynomial
g € R[X,Y, Z] of the same degree d with finitely many intersections with
f. Then,

(i) if g is not zero at P, then the dissipation of P produced is a topo-
logical desingularization (as the ones in Section 3). Which of the
two desingularizations occurs depends only on the sign of g at P.

(i) if g has a nodal singular point at P (i.e., a double singular point
with two real branches of different tangents) then the perturbed
curve has a nodal or simple isolated point at P. By changing the
sign of g if necessary a nodal point can be obtained, with no change
in the topology of the curve.

Proof. Let us first prove a general fact: in a dissipation of a singular
point P of f obtained in the form f + eg with f and g having finitely
many intersections, at most one new oval can appear but never in our
cases (i) and (ii). In fact, observe that any new ovals (as well as the
dissipated real branches of f) must collapse to P as ¢ goes to zero and
that for different values &1 # €2 of the parameter the curves f + <19 and
f + €29 do not intersect in U \ P, for a certain neighborhood U of P.
From this, the perturbed curve cannot have ovals with P outside; if the
perturbed curve has an oval with P inside, then the oval is unique and f
cannot have any real branches at P; if the perturbed curve has an oval
passing through P, then g has a non-singular zero at P and no other
ovals passing through P or with P inside can appear.

Part (i) follows inmediately from the above, because in a neighbor-
hood of P the perturbed curve will not have singular points or new
ovals. For part (ii), we take P as the origin of an affine chart and study
the local developements of f and g at P. The lower degree part of f
is the square of a linear function ! (whose zero set is the tangent line
of f at P). The lower degree part of g is the product of two different
linear functions lilo. If I coincides with one of I; and l2 (say with ),
then the perturbed curve has (I + ¢l3) as lower degree part, i.e., a nodal
singularity. Otherwise, the lower degree part 12 + el;ly decomposes in
two (perhaps complex conjugate) linear factors for € small; by changing
the sign of ;15 if necessary the factors can be assumed to be real.

Thus, in any case a nodal singularity can be obtained (perhaps
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changing the sign of g). Since no new ovals can appear, there is no
change in the topology.

Theorem 4.2. Let f be an algebraic curve of degree d. Suppose that all
the singularities of f are a certain number of Af' points Pi,..., Py and
of Ay (with t odd) points Q1,..., Q. Suppose that the singular points
of f are in general position, i.e. no three of them on the same line.

Then there is a product g of d different lines such that the perturba-
tion fo = f + eg with ¢ > 0 preserves all the P;, converts a number |}
of the Q; in nodes (with no change in the topology), and desingularizes
the other lo =1 — 1) Q; in a prescribed way, under the assumption that
L+k+1/2<Ld.

Proof. According to the previous lemma and what we said for AT
singularities, the following conditions on g are sufficient to guarantee
the desired perturbation:

e For the k points (of type A7) to be preserved, that g has a singular
point at each of them.

e For the Iy points (of type A;) to be desingularized, that- g does
not vanish at them, and has the appropriate sign.

o For the I points (of type A; ) to be converted in nodes, that g has
a nodal point at each of them, and the appropiate distribution of
signs in a neighborhood of them.

Let ry,...,7x41, be different straight lines, each passing through two
of the singular points to be preserved (or converted in nodes) and such
that each of these points lies in two of them. Then, the product g; of
those k + I; straight lines has a nodal singular point at each of them,
because of the general position assumption on the points.

Let s1,...,84—k—1, be different lines not passing through the points
P; and so that each of the Q; lies in exactly one of them. These lines
exist, because of the condition {/2 < d — k — I;. Then, the lines can be
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slightly moved (as shown in Figure 7) in such a way that the product g2
of them has a prescribed sign at each point Q;.

Figure 7: Obtention of the adequate sign at a point by moving s;.

So, just make the signs of go at the points Q; be the ones that we
need in order to obtain g = g;g2 with the appropriate signs, and take ¢
sufficiently small and positive.

This, together with Theorem 3.3, gives our main theorem:

Theorem 4.3. Let T be an orientable nodal topological model with N
singular (double or isolated) points and K connected components. Then,
T can be algebraically realized by a curve f := f+eg of degree 2N +2K,
with f being a product of N+ K ellipses or degenerate conics and g being
a product of 2N + 2K lines.

Proof. Let f be the product of the ellipses obtained in the model T
of Theorem 3.3, and a factor of the form (cX ~ aZ)? + (bX — aY)? +
(cY —bZ)? for each isolated point (a,b,c) € RP? of T. Each connected
component T; of T contributes Nj + 1 ellipses or degenerate conics to
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f, where N; is the number of singular points in T;. Thus, f is as in the
statement.

Let k and ! be the number of isolated and double points of T, and | =
l; +12 with !; and l2 being the numbers of double points to be preserved
and desingularized, respectively. Then Iy + k= N and { = I; + I3 < 2N.
Thus, [y + £ +1/2 < 2N < d and Theorem 4.2 applies.

5 Optimality of the construction

The purpose of this section is to show in what cases the degree in our
construction is optimal. This will give us the somehow surprising result
that the only obstructions to lowering the degree in the construction are
those which are obvious, as the one in the following example. Consider
the model drawn in Figure 8 with three double points, or its obvious
generalization to an arbitrary number N of double points. Insert K — 1
additional ellipses inside the innermost face, one inside another. The
resulting model cannot be realized by any algebraic curve of degree lower
than 2N + 2K because in any realization of the model any straight
line passing through the innermost face intersects the curve (at least)
2N + 2K times, counted with multiplicity. '

Figure 8: A simple model, not realizable with degree lower than eight.

As a first result, in remark 3.4 we mentioned that if the topological
model T has a non-disconnecting double point, then the degree of the
construction can be lowered, at least, by two. Thus, we only need to
consider the case of topological models with only disconnecting double
points. This condition is necessary but not sufficient: for example, the



Optimal degree construction of real. .. 307

seven topological models in Figure 9 can easily be constructed with
degree 4 (as we will see in the proof of Lemma 5.1).

>0/ o<

. o /O | o
.. «/. 0looO

Figure 9: Some models which can be realized with degree 4.

Let T be a nodal orientable topological model, all of whose double
points disconnect it. Let N be the number of double points of T and K
the number of connected components. If we desingularize every double
point of T in the way that disconnects T we get a non-singular topo-
logical model Ty with N + K connected components. The topological
structure of T can be represented in a rooted tree, with a node for each
connected component of Tg and an extra node (the root of the tree) ‘at
infinity’. A component C; is a son of a second component Cs in the tree
if and only if C; is inmediately inside Ca. The sons of the root node are
the outermost components.

The interesting point is that a sufficient condition for the model
not being realizable with degree lower than 2N + 2K is that the tree of
connected components of Ty has at most two leaves (innermost connected
components): if this is the case, then for any algebraic realization of
Ty any line intersecting the two innermost components will cut every
connected component of T at least twice (counted with multiplicities).
If T was realizable with degree lower than 2N + 2K, then T would also
be, by means of a small perturbation. Thus, T itself cannot be realized
with degree lower than 2N +2K. We will see that this sufficient condition
turns out to be also necessary.

For this observe that the tree structure of T suggests a different
construction procedure for an algebraic realization of the topological
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model T', which produces the same degree 2N + 2K: starting with the
outermost components, realize each of them independently, either with
an ellipse or with a degenerate conic. Then, attach one by one the
other components in the place indicated by their bonding line if they are
connected to an exterior component, or in the appropriate face if they
are not. After all components have been inserted, perturb the curve so
obtained, using Theorem 4.2, in order to obtain a nodal algebraic curve.

Lemma 5.1. In the above conditions, if N + K > 3 and the tree of
connected components of Ty has at least three leaves, then T can be
realized with degree 2N + 2K — 2.

Proof. For N + K = 3 all the possibilities are shown in Figure 9.
The first one is obtained by perturbing the product of two ellipses. The
second one, by the curve Y222 = X272 X*. The first in the second row
by X2Y2+ X222+ Y222 All the others, by perturbations of the above.
Moreover, in any of the cases, different connected components can be
realized as small as one wants and each passing through a prescribed
point in the projective plane.

In the case N+ K > 3, consider the construction procedure described
above, by means of the tree of connnected components of Tj. Since the
tree has at least three leaves, we can consider these three leaves as the
three last components and insert them at the same time by adding degree
4 to the construction, instead of 6. This is possible using the curves in
Figure 9 and having into account that we don’t really need the connected
components to be attached being tangent to the previous ones. We can
place them with two nodal intersections and then perturb in order to
desingularize one of them in the appropriate way.

n
Thus, we have obtained:

Theorem 5.2. Let T be a nodal orientable topological model in the pro-
jective plane with K connected components, N double or isolated points
and N + K > 3. Then, the following conditions are equivalent:

(i) T is not topologically equivalent to any algebraic curve of degree
lower than 2N + 2K.

(%) T has only disconnecting double points and the tree of connected
components of To has at most two leaves.
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(iii) there are two points in the projective plane such that any pseudoline
passing through them intersects T in at least 2N + 2K points,
counted with multiplicity.

Proof. The implication from (i) to (ii) has been established in the
previous lemma. The implications from (i7) to (iii) and from (iii) to (i)
are obvious.
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