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On prequojections and their duals.
M.1. OSTROVSKII

Abstract

The paper is devoted to the class of Fréchet spaces which are
called prequojections. This class appeared in a natural way in the
structure theory of Fréchet spaces. The structure of prequojections
was studied by G. Metafune and V.B. Moscatelli, who also gave a
survey of the subject. Answering a question of these authors we
show that their result on duals of prequojections cannot be gen-
eralized from the separable case to the case of spaces of arbitrary
cardinality. We also introduce a special class of prequojections, we
call them canonical, and show that in the main result of G. Meta-
fune and V.B. Moscatelli on the existence of a prequojection with
a given dual we may require this prequojection to be a canonical
one.

The main purpose of this paper is to investigate a class of Fréchet
spaces which are called prequojections. This class appeared naturally in
the development of the structure theory of Fréchet spaces.

Let us recall some definitions. A Fréchet space F is called a quojec-
tion if there exists a sequence {Fy,}; 2, of Banach spaces and a sequence
of linear continuous surjective mappings Ry, : Fp41 — Fn (n € IN) such
that F' is isomorphic to the projective limit projn(Fn, Rn). According to
(6] quojections were first introduced by A. Grothendieck [5]. Since then,
quojections have been intensively studied by many authors (see surveys
[10], [6]). A Fréchet space whose strong bidual is a quojection is called
a prequojection. This class of spaces was introduced by S. Bellenot
and E. Dubinsky [2] in their study of Fréchet spaces with nuclear Kothe
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quotients. More precisely, S. Bellenot and E. Dubinsky [2] proved that
a separable Fréchet space F' (with fundamental system of seminorms
{pn}) has a nucleat Kothe quotient if and only if it satisfies the following
condition: there exists k such that for every ! there is an j with

sup(|Je'[;: =’ € P and ]} < 1} = o0, (¥

where ||- || is the dual norm of the seminorm p, on F, and F}, := {z' €
F': ||lz'|ln < 00}. S. Onal and T. Terzioglu [11] removed the assump-
tion of separability in this result. D. Vogt [13] proved that F doesn’t
satisfy condition (*) if and only if F is a prequojection. S. Bellenot
and E. Dubinsky [2] posed the problem which in ourdays terminology
can be stated as follows: whether every prequojection is a quojection?
This problem was solved in negative by E. Behrends, S. Dierolf and P.
Harmand [1]. (The solution relies heavily on the results of S. Dierolf
and V.B. Moscatelli [4].) Now, the following terminology is used. A
prequojection is called nontrivial if it is not a quojection.

The structure of prequojections was investigated in [8] and [7]. D.
Vogt [14] shows the relevance of quojections and prequojections in con-
nection with the splitting of exact sequences of Fréchet spaces. In the
present paper we continue investigations of [8], [7] of the structure of
strong duals of prequojections with continuous norms. In addition we
introduce a class of prequojections which we call canonical and study
the structure of strong duals of prequojections of this class.

The restriction of existence of continuous norm is justified to some
extent by the following result.

Theorem 1. [4] Let F be a nontrivial prequojection. Then there erists
a quotient of F which is a nontrivial prequojection with a continuous
norm.

Let us introduce some definitions and notation. Let X be a Banach
space and M be a total subspace of X*. The completion of X under the
norm '

llzllar = sup{|f(z)| : f € M, ||f|| <1}
will be denoted by Xjps. If M and N are total subspaces of X* and
M C N then the natural embedding of Xy into X s will be denoted by

Cn,m- The set of all limits of weak* convergent and bounded nets in
M is called the derived set of M and is denoted by M. Derived set of
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order n (n € IN) is defined inductively by the equality M™ = (M™ 1)1,
By B(X) and S(X) we denote the closed unit ball and the unit sphere
of a Banach space X.

We shall use the following characterization of nontrivial prequojec-
tions with continuous norm.

Theorem 2. [4] (a) Let F be a nontrivial prequojection with a continu-
ous norm. Then there ezists a Banach space X and a sequence of proper
total subspaces G(n) C X* (n € IN) such that for every n € IN we have
(G(n))! € G(n + 1), F is isomorphic to
Proju(Xcn): Co(n+1),6(n))
and (F', B(F', F)) is isomorphic to ind,G(n).
(b) Let X be a Banach space and {G(n)}52; be a sequence of proper
total subspaces of X* such that (G(n))' C G(n +1). Then
projn(Xcm)» Con+1),G(n))
is a nontrivial prequojection with a continuous norm and (F', B(F', F))

is isomorphic to ind,G(n).

Let {H(n)}32; be an increasing sequence of Banach spaces. We are
going to show that the “moderate” growth of density characters of the
sequence {H (n)}32, is necessary for ind,H (n) to be the strong dual of
a prequojection with a continuous norm.

Let us introduce cardinal numbers:
a = limsup,,_,dens(H (n + 1)/H(n)),
B = sup inf dens(H (n)/U),
n U

where the infimum is taken over all reflexive subspaces U C H(n).

Theorem 3. Ifa > 2% then indn, H(n) is not isomorphic to the strong
dual of a prequojection with a continuous norm.

Proof. Let us assume the contrary. Using part (a) of Theorem 2 we
find a Banach space X and an increasing sequence of total subspaces
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G(n) C X* (n € IN) such that ind,G(n) is isomorphic to ind,H (n).
Therefore there exists an injective linear continuous mapping of the
space ind, H (n) into X* satisfying the following conditions:

1) Its restriction to every H(n)(n € IN) is an isomorphism.

2) The images of H(n) (we shall still denote them by H(n)) are
eventually total.

Using the condition of Theorem 3 we find n € IV and a reflexive
subspace U C H(n) such that H(n) is total over X and

g2dens(H(/U) dens(H(n + 1)/ H(n)).

The space H(n) can be represented in form H(n) = cl(lin(U U V))
where V' is a subspace of H(n) with densV =dens(H (n)/U). Since H (n)
is total over X then V is total over U' ¢ X. Therefore

densU 7 < 2dens V _ gdens (H(n)/U)

Hence
dens(U T)* < 2dens (UT) ¢ p2dens (Hm/U)

Since U is reflexive then we have the canonical identity (U T)* = X*/U.
In addition

dens(H (n +1)/H(n)) < dens(H(n + 1)/U) < dens(X*/U).

Therefore we have
gdens (H(n)/U)

dens(H(n +1)/H(n)) <2

This contradiction completes the proof.

Remark 1. Theorem 3 gives the negative answer to the following ques-
tion posed in Remark 5 of [7, p. 224]:

Let quojection E =projn(En, Rn) be such that the spaces X, = /
kerR, are nonquasireflexive and densX, = const. Does there exist a
prequojection F' with a continuous norm such that F’ = E'?

In fact, let E,, be the n-fold direct sum of the space (Y & Z), where
Z is a nonquasireflexive Banach space with separable dual and Y is a re-
flexive space with densY > 2¢ (where c is the cardinality of continuum).
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For Ry : Epy1 — Ep, we take the natural projections. It is clear
that the sequence {E;}92 satisfies the conditions of Theorem 3. Hence

there does not exist a prequojection F with a continuous norm such that
F'= E'. On the other hand

dens kerRy, = dens(Y & Z) = const.

The strongest known result on the structure of the strong duals of
prequojections with continuous norms looks as follows.

Theorem 4. [7] Let quojection E =projn(En, Rn) be such that the
spaces Xn = kerR, (n € IN) are eventually separable. A nontrivial
prequojection F with a continuous norm for which F' = E' exists if and
only if the spaces X, (n € IN) are nonquasireflezive for infinitely many
n.

In [8] when proving Theorem 4 in the particular case E = (co)ZV
V.B. Moscatelli proved the following result:

There exists a closed total subspace M C (cg)* = !; such that

1) (Vn € IN)(M™ # (c0)*).

2) For every n € IN the subspace cl(M™) C l; is isomorphic to I;
and is complemented.

By part (b) of Theorem 2 these conditions imply that

F = projn((co)Mn, CMn-}—l’Mn) (1)

is a nontrivial prequojection with a continuous norm and that
(F', B(F', F)) is isomorphic to (1)),

Prequojections of the form (1) we call canonical. Let us give the
formal definition. Following [9] we call a total subspace M C X* strongly
nonnorming if M™ # X* for every n € IN. We call a prequojection F
canonical if it is isomorphic to projn(Xpn, Cppn+1 pn) for some Banach
space X and some total strongly nonnorming subspace M C X*.

We prove that the class of canonical prequojections is a proper sub-
class of the class of prequojections with a continuous norm.

Theorem 5. There erists a nontrivial prequojection with a continuous
norm which is not canonical.
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Lemma 1. Let X be ¢ Banach space and K be a subspace of X*. There

exists a continuous linear operator T : K** — X* such that T'|g = I
and T(K**) = K'.

Proof. Let us introduce the set A = {(A,¢) : A is a finite subset of
K*,e > 0} and the order relation > on it in the following way:

((A1,€1) > (A2,2)) & ((A1 D A2) A(e1 < €2)).

The set A with this order relation is a directed set. Let U be an
ultrafilter on A dominating the filter generated by this order relation.
It is easy to see that for every 2** € B(K**) we can find a collection

{za}aea € B(K) such that
z#* — U(K**,K*) _ h&rlZA.

On the other hand there exists a limit z* = o(X*, X ) — limy z). Let
us introduce an operator T : K** — X* by the equality Tz** = z*. It
is easy to verify that T is well-defined. Furthermore, we have ||T|| =
1,T(K*) = K! and T|g = I. Lemma 1 is proved.

Lemma 2. [12] Let Y be a separable nonquasireflezive Banach space.
Then for every countable ordinal ~ there exists a subspace N of Y* and
a bounded sequence {hpn}oe, in Y** such that:

A. If a weak* convergent and bounded net {z}}icA is contained in
NB Jor some B < v and z* = w* — limy z} then

(¥ € IV)(hn(a*) = lim hn(z3)) (@)

* oo o0

nminel,,,., of vectors in N7 such

B. There exists a collection {z
that for every k,n € IN we have

* . *
w'— lm =z = 0;
m—ooo  HM !

(Vm € W)(hk(x:l,m) = 6k,1l)'

Remark 4. Part A of this lemma was proved in [12] for sequences only,
but the same proof is valid for nets.
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Proof of Theorem 5. Let G be arbitrary quojection with densG < c.
Let Y be some nonquasireflexive Banach space and N C Y* be a sub-
space satisfying the conditions of Lemma 2 when v is the first infi-
nite ordinal. Let us show that there exists a non-trivial prequojec-
tion F with a continuous norm such that (F’,3(F’, F)) is isomorphic
to (G, (G',G)) & indp(cIN™).

Let G = proj,(Gn, Qn). We may assume without loss of generality
that Qn (n € IN) are quotient maps. Let us introduce the Banach space
H as a subspace in the Banach space direct sum (} ;21 ®Gn)oo defined
in the following way:

H = {{gn};)lozl 1 gn € Gn, Qngni1 = gn}-

It is clear that H* contains an increasing sequence of weak® closed sub-
spaces isometric to G and Q}, embeds G}, isometrically into Gy, ;.

Let T be a set of cardinality continuum. Let ¢ : 1(I') = H &Y be
some quotient mapping. Let {52}, be some total sequence in (11 (I'))*.
(Such sequence exists by the following well-known fact: if card’ < ¢ then
11(T) is isometric to a subspace of ).

Let us choose numbers v, > 0 (n € IN) in such a way that

o0

min{1/3,dist(S(¢*Y*), 0" H*)} > (1/2) D _ lvml - lIRall - lls3Il - (3)

n=1

Since ¢* is an isometric embedding of H* &Y * into ({1(I'))* we may
(and shall) identify spaces H* and Y* with their images under ¢*.
Let us introduce operator R : Y* — Io(I') = (11(I'))* by the equality

o0
R(y*) =y* + Z Unhn(y*)sh.

n=1

Let M := R(N) C lwo(T'). Let us prove by induction that for every
n € IN we have

M™ = R(N™). (4)

For n = 0 this equality is valid by definition. Let us suppose that it
has been proved for n = k and prove it for n = k + 1. Let z* € MEHL

65
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ie. r* = w*—limyz} for some bounded net {z}}yca C M*. By the
induction hypothesis there exist {y}}ea such that

o0
23 =93+ D vnha(yl)s,

n=1

Inequality (3) implies that R is an isomorphic embedding and hence the
net {ya}rca is also bounded. Therefore it contains a weak* convergent
subnet, say {ya}xrco. Let us denote by y* its weak* limit. The subnet
is of course bounded and by (2) we obtain

(Vn € N)(ha(y*) = lim hn(y3))-

This inequality immediately implies that z* = R(y*). Hence M**! ¢
R( Nk+1).

Let us prove the inverse inclusion. Let {y»}ca be a bounded weak*
convergent net in N and y* be its limit. Condition (2) implies that

* — * - l' * .
R(y") = w" - lim R(y3)
Hence we have R(N**1) ¢ M*+1, Therefore equality (4) is proved. It
immediately implies that
M“ = R(NY),

where w is the first infinite ordinal. Therefore we obtain M“ 3 R(z}, ,,) =
Zpm + Vnsy,. Since w* — limm_,0 Z}, ,, = 0 then s}, € M“*+!. Therefore
subspace M C (I;(I'))* is total

Let us introduce an increasing sequence {V(n)}n_l of subspaces of
(11(T))* by the equality:

V(n) = lin(G} Ucl(M™)).

By (3) and (4) the subspace V(n) is a direct sum of G}, and cl(M™).
Therefore
(V) =lin(GLUM™) c V(n +1).

Let us introduce prequojection F as

F = proj,(L(T)v(n), Cvint1),v(n))-
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Part (b) of Theorem 2 implies that F is a nontrivial prequojectign
with a continuous norm and (F', B(F', F)) =ind,V (n). It.is easy to see.
that this space is isomorphic to ind,G} &ind,cl(M™), and therefore is
isomorphic to ‘

(G',B(G',G)) ® indncIN™.

We finish the proof of Theorem 5 in the following way. Let G = ‘
[132, Un, where Uy, (n € IN) are nonseparable reflexive Banach spaces
and let Y be a nonquasireflexive Banach space with separable third. -
conjugate space. By what we have proved above we can find a nontnvzal
prequojection with a continuous norm such that

(F',B(F',F)) = ®2.,U} @ indp(cIN™),

where N is some total subspace of Y *. Let us show that F is not canon-
ical. Assume the converse. Then the space (F’, B(F', F)) is isomorphic
to ind,(clK™), where K is some total strongly non-norming subspace in
the dual of some Banach space.

By properties of inductive limits it follows that for every ne€N U{O}
there exists k(n) € IN such that

k(n)
m=1

K™ C &M UL & cl(NF™),

By reflexivity of {U,}22; and separability of Y *** it follows that the
spaces

((cI(K™))*™* /cl(K™))
are separable. Applying Lemma 1 we obtain that the spaaces&
clK™1/clK™ (n € IN) are separable. Since
k(0) ., %
K c X0 U @ c(NHO)
and Ugyg 1y Cel(K™) for some m € NN, it follows that Uk(o) +1 is sepa—
rable, a contradiction. Theorem 5 is proved.

It is not known whether the prequojections constructed by G. Meta-
fune and V.B. Moscatelli in their proof of Theorem 4 are canomcal We
prove the following generalization of the result of V.B. Moscatelh [8]
mentioned above.
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Theorem 8. Let quojection E = projn(EnRy) be such that the spaces
Un = kerRy are separable and nonquasireflexive. Then there exists a
canonical prequojection F' such that F' = E'.

In the proof of this theorem we use the following definition.

Definition 1. Let Zg,Zi,...,2Zn,... be an increasing sequence of Ba-
nach spaces. (Note that by increasing sequence of Banach spaces we
mean not only the sequence of spaces but also the sequence of isometric
embeddings). The sequence {Z,}32, is said to be representable by
weak* derived sets in the dual Banach space X* if there erists a total
subspace M C X* such that the following diagramm commutes for some
sequence {Yn}22, of isomorphisms.

Zog — A — Zy —_— ... Zin —_ ...
Yol Y1l Y2l l ¥n | l
M — M) — M) — ... — (M) —

Part (b) of Theorem 2 implies that in order to prove Theorem 6 it is
sufficient to find a Banach space X and an increasing sequence {Z,}32
which is representable by weak* derived sets in X* and is such that
ind, Z,, is isomorphic to E’. In order to do this we need the following
result.

Theorem 7. Let X be a Banach space and let {W;}2, be an increas-
ing sequence of subspaces of X* such that the following conditions are
satisfied:

)WoCXgCWiCX{C...CWsCX}tC....
2) (W) =X (i=0,1,2,...).
8) The quotients W;/(X;-,) are separable.

{) The strong closure of the natural image of X;_1 in (W;/(X))*
18 of infinite codimension.

5) The strong closure of the natural image of X in W§ is of infinite
codimension.

6) nl?i()Xi = 0.
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Then the sequence {W;}$2, is representable by weak* derived sets in X*.

First we prove Theorem 6 using Theorem 7. We may assume without
loss of generality that E; is nonquasireflexive and that R, (n € IV) are
quotient mappings.

Let X be a subspace of (} oo.; ®En)co defined in the following way:

X = {{Cn};o=1 . (Vn (S W) (Rnen+1 = en)}.
Let X (k= 0,1,2,...) be subspaces of X defined in the following

way:
Xe={{en}21: e1=... = €pq1 = 0}.
It is clear that NP Xy = {0}.
Let € be an element of X/Xp. Let {en}52; be its representation.
It is easy to verify that the correspondence é < ek is bijective and

defines an isometry between X/Xj and Egyj. Therefore the following
diagramm is commutative:

X/ X — X/Xk—
| |

Exyp — Ey,

where X/ X} — X/ X1 is the natural quotient mapping. Therefore X T
is isometric to (E;)*. By nonquasireflexivity of E; this implies that the
closure of the canonical image of X in (Xg)* is of infinite codimension.

Hence the spaces Wo := X satisfy condition 5 of Theorem 7.
We have identifications

X/ Xie = ((X/Xk01)' /(X[ X1)*) = (Xi/ X p11)" = (kerRe41)* = Ugyy.

Since Upg4; is nonquasireflexive then the natural image of Xy in
(XEa/X &)* = U}, is a closed norming subspace of infinite codimen-
sion.

In order to continue the proof we need the following lemma. Recall
that a subspace M of a dual Banach space X* is called 1-norming if

(Vz € X)(l|z|| = sup{|f(z)| : f € S(M)}).

Lemma 3. Let U be a separable nonquasireflezive Banach space. Then
there exists a separable 1-norming subspace M C X* such that the nat-
ural image of U in M* is of infinite codimension.
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Proof. Let {z;}32, be a sequence dense in S(U) and let {27}, C
S(U*)-be such that z}(z;) = 1.

Using [3, p. 360] we find a weak* null sequence {un}se, Cc U*,
a bounded sequence {u}*}32, C U** and a partition {Ix}2, of the
. integers into pairwise disjoint infinite subsets such that

PPN 1, forn € Iy;
uk (un) = 0, forn ¢ It.

Let us define M in the following way:

M = el lin({ug}22, U {ah}32,).

- It is clear that M is separable and 1-norming. Furthermore, the restric-

tions {u;*|ar}i>, are linearly independent and since {u}}32, is weak*
‘null then no linear combination of {u}*|ap}52 ; is contained in the natural
image of U. Lemma 3 is proved.

‘Remark 5. It is worth mentioning that since M is norming then the
natural image of U is closed.

We apply Lemma 3 to U = U (k € IN) and denote the obtained

 subspace of U = (Xi/Xj_ ;) by My. Let Ny be a separable subspace of

X ;L such that the strong closure of its image under the quotient mapping
Xt — X,;L/X,;L«I coincides with Mj. Let Wy = cl lin(Ny U X,ﬂ‘_l) (k €
IN). It is easy to verify that conditions 1, 3 and 4 of Theorem 7 are
satisfied. ‘

Let us show that (Wg)! = Xi& (k € IV). Since w* — clB(Wy) is a
weak® compact subset of X ,:L then its image under the quotient mapping
ok : X,gf — Xt/ Xt is also weak* compact. Since the image is dense
in the unit ball of My and My is 1-norming then

or(w* — clB(Wi)) = B(Xi/Xi1)-

Let us show that w*~clB(Wy) D (1/3)B(X ).
‘In fact let z € (1/3)B(X}t). Then

¢x(z) € (1/3)B(Xi/Xi1) = (1/3)¢r(w* — c1B(Wy)).

| Hence there exists z € (1/3)w*—clB(Wy) such that z — z € Xi& ;. It is
clear that ||z — z|| < 2/3. Since B(Xj-_ ;) C B(Wg) then

z={(z—2)+2 € (2/3)B(X,‘cj‘;1) + (1/3)w* — clB(Wi) C w* — clB(Wg).
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Thus we proved that the condition 2 of Theorem 7 is also satisfied. By = -
Theorem 7 and part (b) of Theorem 2 there exists a canonical prequo-
jection F such that (F', B(F', F)) is isomorphic to ind,Wp. This space

is in turn isomorphic to ind,X;- ~ E’'. Theorem 6 is proved.

In order to prove Theorem 7 we need the following lemma.

Lemma 4. Let X be a Banach space such that X* contains a closed
norming subspace M of infinite codimension. Then there ezist a se-

quence {f}}X, C X* and a countable collection of nets {zi}ren € =
X (i € N) (over the same directed set) such that the followzng condi- o
tions are satisfied: e el

1) supy; |lz}]] < oo; o
2) (vi,k € N)(lim) f(23) = 6ix); D

8) (Vi € N)(Ym € M)(limym(z) = 0).

Proof. The quotient X*/M is infinite dimensional. Therefore there

exists a basic sequence {2}, C X*/M. We may and shall suppose . -

that this sequence is bounded and is bounded away from zero. Let

{9:}2, C (X*/M)* = ML C X** be some biorthogonal functionals of

this sequence. It is clear that we may assume that the sequence {g;}&, e

is bounded. Let us denote by Q the quotient mapping Q : X* — X*/M.> "7

Let vectors {f¢}32, be such that ||f%|| < 2||zx|| and Qff = 2k (k € N).
Let us introduce a directed set A in the following way. Pairs (k, F), S

where k¥ € IN and F is a finite dimensional subspace of M are its ele—‘_’

ments. We define an order on A in the following way: o

((k1, F1) < (kg, F2)) © ((k1 < k2)&(F; C F3)).

By Helly’s theorem we can for every triple (k, /i) find a vector
a:};.’p € X which coincides with g; on lin(F U {f; ;‘-':1) and ||z}, pf| <o
2ol T
It is easy to verify that these vectors satisfy all conditions of Lemyma~ =
4. s

Proof of Theorem 7. Condition 4 allows us to apply Lemma 4 .
to X = Wk/(X,;L_l) and M defined as the natural image of Xp_y in..
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(Wr/(Xit1))* (k € V). By Lemma 4 we find nets

{xf\’k},\e/\(k) C Wk/(X,f__l) (i,k € IN)

and sequences {f}.}32; C (Wi/(Xi-;))* in such a way that the following
conditions are satisfied:

1) (Vz € Xp—1)(limpepgx) rf\'k(w_) = 0);

2) (Vi, 4,k € N)(limyeaqe) f1(=z%5) = 6i).

Let {gix}52, be norm—preserving extensions of functionals {f;,}32,
onto the whole (X */X ;). Using canonical identifications we may con-
sider {g;}2; as elements of X4 C X**.

Let ¥ : X* — X"‘/Xk_1 (k e N) be the quotient mappings. Since
WiD X ,:f‘_l then all extensions of z* X E X*/ X —; onto X are contained
in W. This observation implies that for some dlrected sets I'(k) (k € IN)
there exist nets

K
{vzr\n)}(f\n)ez\(k)xr(k) C Wy,
which are bounded and weak* convergent to zero and are such that

i,k i,k
ViV = 2X -

Therefore for every i, j, k, A and v we have
fi‘:k(a' ) = gi k(v()‘~,))

In other words for some system of nets {vz’k}geg(k) C Wi and some
collection of functionals {g;x} (i,k € IV) we have

9ik € Xih. )

Similarly using condition 5 of Theorem 7 and Lemma 4, we find in
Wy a countable collection of weak* convergent to zero and bounded nets
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{v‘g'o}gee(o) (j € IN) such that for some sequence {fo},cv C Wg§ we
have ‘

3 .30 —_
ol fio(vg”) = biy.

Let us denote by {gio};cpy some norm-preserving extensions
of {fo};cqv onto the whole X*.

Since the quotients Wy/Xi, (k € IV) are scparable then
we can for every ¥ € IN find a sequence {w{c 2, C Wi such that
Wi, =cl(lin(X -, U {wf}2,)).

Let reals a¥ (i € N.k=0,1,2,...) be such that

o)
> ofllgikll - llwg ™"l max{di, 1} < co.
i=1

Later on we shall impose two more conditions on numbers {ak}.
Introduce operators Tk : X* — X* by the equality

o o}
Ti(z*) = 3 afgipla*)wi ™.
i=1

For every pair (n, k) of integers such that 0 < n <k let
SE= (1 4+Te)(I +Tk=1) - ...- (I + Tn).

We shall suppose that the numbers {aF} are so small that the fol-
lowing conditions are satisfied:

1) For every n € IN the sequence {Sk}¢e,, converges in the uniform
topology.

2) For every 0 < n < k we have

llsx — 111 < 1/2.

The limit of the sequence {S¥}$2, will be denoted by S, (n =
0,1,2,...). It is clear that for every n = 0,1,2,... we have ||S, — I|| <
1/2 and therefore Sy, is an isomorphism. It is clear that Tn(X) C Wnyt.
Condition (7) implies that Ty vanishes on X ; (n € IN).
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Let M = So(Wo) Let us show by induction that for every i =
0,1,2,... we have

cl(M?) = Sy(Wy). (9)
'For i =0 this equality is satisfied by definition. Let us suppose
that we have proved that cl(M") = S,(W,) and prove the equality

(M) = Sn+1(Wni1).

Let z* € M™*1. It means that for some bounded net {z3}rer C M
we have z* = w* — limyz}. Using the induction hypothesis we find
{¥3}reA C Wy, such that z} = Sny) (A € A). Since Sy, is an isomorphism
then the net {y}}ica is also bounded. Therefore it contains a weak*
convergent subnet {y}}ice. Since T, is compact then we may assume
that the net {Thy}}ace is strongly convergent. Let us introduce vectors
y*' = w* — limycq ¥} and z* = limyco Thy}.

We have

= w — lim Snyf\ = w* -~ lim(SnHyf\ + Sn+1Tnyy3)-

Observe that y} € W, C X, and the restriction Sn+1| X, is the 1dent1ty
operator. The latter assertion implies that z* = y* + .S'n+1z Since y3 €
Wn C X; L and XL is weak* closed then y* € Xi. By Try3 € Wy it fol-
lows z* € Wpy1. Therefore z* €lin(X;- U Snt1(Wn+1)) = Sns1(Wni1).
Since Sp41(Wny1) is closed then it follows that cl(M ™) C Sp41(Wni1).

Let us prove the converse inclusion. At first we prove that for every
i € N we have Sppjw!™ € M™1L 1t is clear that M™! = (cl(M™))L.
. Therefore it is sufficient to prove that

Sni1wit! € (Sp(Wa))'. (10)

Let {v;’"}oee_(,,) C Wy, (i,n € IN) be the nets introduced above. We
have

Su(v:;’” = Sp41 (v + Za] g5, n(v”n "'H)

+Z gj,n(va )S'n-f—l'wj-'-1

Taking weak® limits over # € © and using conditions (5), (6), (8)
and weak* convetgence of {vg }oce to zero we obtain aSy, 1 (w"“) €
M™!, Since a? > 0 we obtain (10).
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Our next step is the proof of the inclusion
Xn Cel((Sn(Wn))Y). (11)

Let z* € X, Since (W,)! = X, there exists a bounded net
{z3}reA C Wy such that z* = w* —limy z}. We have Spz} = Sni1(z}+
Tnz}) = z) + Snt1Tnz}. By compactness of T, (passing to a sub-
net if necessary) we may assume that the net {Tpz}}ica is strongly
convergent. The definition of T, implies that its limit is contained in
cl(lin{w]1},). Therefore the net {S,z}}rca Weak* converges to the
sum of z* and some vector of cl(lin{Sy 1 w?*1}2,). It follows that

2* € (Sp(Wa))! + ol Ein({ S0 }2,).

By (10) the second summand is contained in the strong closure of the
first. Therefore (11) is proved.
Using the definition of {w?™!} we obtain
Sn+1(Wn+1) =cl lin(Sn+1X;|; U {Sn+1w?+1}f§1) =
cl lin( X, U {Sny10711}2,) € cl((Sn(Wa))t) = cl(M™FE).
Therefore (9) is proved. Let us write out the commutative diagramm

which is required in Definition 1. For the sake of convenience we write
it in three lines.

Wo — Wi —_ Ws —_— .. —_— Wi —_ ...
I} S8 1 S8 l St !
wo How, ow, o HIp ow 4B%

Sol 81} sz l Sil !
M — dMYH — dAM?) — . — (M) —

Some comments to this diagramm.

1) In the first and in the third lines arrows mean the natural embed-
dings. ‘

2) We assume that Sé"l is an isomorphism of W; since Ty, ..., Ti—1
map W; into itself and ||[I — S571|| < 1/2. By (9) operators Sy, are
isomorphisms of the spaces from the second and the third lines. It is
clear that the diagram is commutative.

It remains to prove that M is total. But this assertion easily follows
from the following facts:

NpeoXn = {0}, {Xn} is decreasing;
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U el(M™) D U2 X

Theorem 7 is proved.

The author would like to thank Prof. J. Bonet for communicating
him useful references.
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